Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/112591
Título: Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey
Autor: Adnane, Marouane
Khoumsi, Ahmed
Trovão, João Pedro F. 
Palavras-chave: amyotrophic lateral sclerosis; neurodegenerative diseases; extracellular vesicles; exosomes; miRNA; biomarkers
Data: 2023
Editora: MDPI
Projeto: PTDC/BTM-ORG/0055/2021 
UIDB/04539/2020 
info:eu-repo/grantAgreement/UIDP/04539/2020 
LA/P/0058/2020 
DL57/2016/CP1448/CT0027 
2022.13281.BD 
CEECIND/00322/2017 
2022.00011.CEECIND 
Título da revista, periódico, livro ou evento: Energies
Volume: 16
Número: 13
Resumo: Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs’ formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
URI: https://hdl.handle.net/10316/112591
ISSN: 1996-1073
DOI: 10.3390/en16134897
Direitos: openAccess
Aparece nas coleções:I&D INESCC - Artigos em Revistas Internacionais
FCTUC Eng.Electrotécnica - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Visualizações de página

108
Visto em 5/nov/2024

Downloads

54
Visto em 5/nov/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons