Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/110903
Title: The inequality of Milne and its converse II
Authors: Alzer, Horst
Kovacec, Alexander 
Issue Date: 2006
Publisher: Springer Nature
metadata.degois.publication.title: Journal of Inequalities and Applications
metadata.degois.publication.volume: 2006
Abstract: We prove the following let α,β,a > 0, and b < 0 be real numbers, and let Wj (j = 1,...,n; n ≥2) be positive real numbers with w1+ ⋯+wn= 1. The inequalities α ∑j=1n wj/(1- pja) ≤ ∑j=1n wj/(1 - pj) ∑ j=1n wj/(1+pj) ≤ β ∑j=1n wj/(1-pjb) hold for all real numbers pj ∈ [0,1) (j = 1,...,n) if and only if α ≤ min(1,a/2) and β ≥ max(1,(1 -min 1≤j≤nwj/2)b). Furthermore, we provide a matrix version. The first inequality (with α = 1 and a = 2) is a discrete counterpart of an integral inequality published by E. A. Milne in 1925.
URI: https://hdl.handle.net/10316/110903
ISSN: 1025-5834
1029-242X
DOI: 10.1155/JIA/2006/21572
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
Show full item record

Page view(s)

61
checked on Nov 5, 2024

Download(s)

42
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons