Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/110903
Title: | The inequality of Milne and its converse II | Authors: | Alzer, Horst Kovacec, Alexander |
Issue Date: | 2006 | Publisher: | Springer Nature | metadata.degois.publication.title: | Journal of Inequalities and Applications | metadata.degois.publication.volume: | 2006 | Abstract: | We prove the following let α,β,a > 0, and b < 0 be real numbers, and let Wj (j = 1,...,n; n ≥2) be positive real numbers with w1+ ⋯+wn= 1. The inequalities α ∑j=1n wj/(1- pja) ≤ ∑j=1n wj/(1 - pj) ∑ j=1n wj/(1+pj) ≤ β ∑j=1n wj/(1-pjb) hold for all real numbers pj ∈ [0,1) (j = 1,...,n) if and only if α ≤ min(1,a/2) and β ≥ max(1,(1 -min 1≤j≤nwj/2)b). Furthermore, we provide a matrix version. The first inequality (with α = 1 and a = 2) is a discrete counterpart of an integral inequality published by E. A. Milne in 1925. | URI: | https://hdl.handle.net/10316/110903 | ISSN: | 1025-5834 1029-242X |
DOI: | 10.1155/JIA/2006/21572 | Rights: | openAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
The-inequality-of-Milne-and-its-converse-IIJournal-of-Inequalities-and-Applications.pdf | 201.74 kB | Adobe PDF | View/Open |
Page view(s)
61
checked on Nov 5, 2024
Download(s)
42
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License