Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/110903
DC FieldValueLanguage
dc.contributor.authorAlzer, Horst-
dc.contributor.authorKovacec, Alexander-
dc.date.accessioned2023-11-27T11:49:27Z-
dc.date.available2023-11-27T11:49:27Z-
dc.date.issued2006-
dc.identifier.issn1025-5834pt
dc.identifier.issn1029-242Xpt
dc.identifier.urihttps://hdl.handle.net/10316/110903-
dc.description.abstractWe prove the following let α,β,a > 0, and b < 0 be real numbers, and let Wj (j = 1,...,n; n ≥2) be positive real numbers with w1+ ⋯+wn= 1. The inequalities α ∑j=1n wj/(1- pja) ≤ ∑j=1n wj/(1 - pj) ∑ j=1n wj/(1+pj) ≤ β ∑j=1n wj/(1-pjb) hold for all real numbers pj ∈ [0,1) (j = 1,...,n) if and only if α ≤ min(1,a/2) and β ≥ max(1,(1 -min 1≤j≤nwj/2)b). Furthermore, we provide a matrix version. The first inequality (with α = 1 and a = 2) is a discrete counterpart of an integral inequality published by E. A. Milne in 1925.pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titleThe inequality of Milne and its converse IIpt
dc.typearticle-
degois.publication.firstPage1pt
degois.publication.lastPage7pt
degois.publication.titleJournal of Inequalities and Applicationspt
dc.peerreviewedyespt
dc.identifier.doi10.1155/JIA/2006/21572pt
degois.publication.volume2006pt
dc.date.embargo2006-01-01*
uc.date.periodoEmbargo0pt
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

Page view(s)

61
checked on Nov 5, 2024

Download(s)

42
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons