Utilize este identificador para referenciar este registo:
https://hdl.handle.net/10316/95165
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Malheiro, Ricardo | - |
dc.contributor.author | Panda, Renato | - |
dc.contributor.author | Gomes, Paulo J. S. | - |
dc.contributor.author | Paiva, Rui Pedro | - |
dc.date.accessioned | 2021-07-04T18:13:28Z | - |
dc.date.available | 2021-07-04T18:13:28Z | - |
dc.date.issued | 2013 | - |
dc.identifier.uri | https://hdl.handle.net/10316/95165 | - |
dc.description.abstract | We present a study on music emotion recognition from lyrics. We start from a dataset of 764 samples (audio+lyrics) and perform feature extraction using several natural language processing techniques. Our goal is to build classifiers for the different datasets, comparing different algorithms and using feature selection. The best results (44.2% F-measure) were attained with SVMs. We also perform a bi-modal analysis that combines the best feature sets of audio and lyrics.The combination of the best audio and lyrics features achieved better results than the best feature set from audio only (63.9% F- Measure against 62.4% F-Measure). | pt |
dc.description.sponsorship | This work was supported by the MOODetector project (PTDC/EIA- EIA/102185/2008), financed by the Fundação para Ciência e a Tecnologia (FCT) and Programa Operacional Temático Factores de Competitividade (COMPETE) - Portugal. | pt |
dc.language.iso | eng | pt |
dc.relation | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/102185/PT/MOODetector - A System for Mood-based Classification and Retrieval of Audio Music | pt |
dc.rights | openAccess | pt |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt |
dc.subject | language processing | pt |
dc.subject | lyrics | pt |
dc.subject | machine learning | pt |
dc.subject | multi-modal fusion | pt |
dc.subject | music emotion recognition | pt |
dc.subject | natural language processing | pt |
dc.subject | machine learning | pt |
dc.title | Music Emotion Recognition from Lyrics: A Comparative Study | pt |
dc.type | conferenceObject | pt |
degois.publication.location | Prague, Czech Republic | pt |
degois.publication.title | 6th International Workshop on Music and Machine Learning – MML 2013 – in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases – ECML/PKDD 2013 | pt |
dc.peerreviewed | yes | pt |
dc.date.embargo | 2013-01-01 | * |
uc.date.periodoEmbargo | 0 | pt |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
crisitem.project.grantno | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/102185/PT/MOODetector - A System for Mood-based Classification and Retrieval of Audio Music | - |
crisitem.author.researchunit | CISUC - Centre for Informatics and Systems of the University of Coimbra | - |
crisitem.author.researchunit | CISUC - Centre for Informatics and Systems of the University of Coimbra | - |
crisitem.author.researchunit | CISUC - Centre for Informatics and Systems of the University of Coimbra | - |
crisitem.author.parentresearchunit | Faculty of Sciences and Technology | - |
crisitem.author.parentresearchunit | Faculty of Sciences and Technology | - |
crisitem.author.parentresearchunit | Faculty of Sciences and Technology | - |
crisitem.author.orcid | 0000-0002-3010-2732 | - |
crisitem.author.orcid | 0000-0003-2539-5590 | - |
crisitem.author.orcid | 0000-0003-3215-3960 | - |
Aparece nas coleções: | I&D CISUC - Artigos em Livros de Actas |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Malheiro et al. - 2013 - Music Emotion Recognition from Lyrics A Comparative Study.pdf | 190.39 kB | Adobe PDF | Ver/Abrir |
Visualizações de página
378
Visto em 5/nov/2024
Downloads
231
Visto em 5/nov/2024
Google ScholarTM
Verificar
Este registo está protegido por Licença Creative Commons