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Abstract

Efficient intracellular delivery of small-interfering ribonucleic acid
(siRNA) to the target organ or tissues in the body is assumed as the
main hurdle for a widespread use of siRNAs in the clinics. Solid lipid-
based nanoparticles (SLNs) and derivatives can potentially fit this purpose
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by enabling to overcome the extracellular and intracellular physiological
barriers affecting the delivery. For that, rational formulations and rational
process designs are needed. This chapter addresses a comprehensive
description and critical appraisal of the main production methods of this
particular type of lipid nanoparticles and the leading strategies to prompt
a targeted delivery of siRNA.
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Chapter 14

Targeted siRNA Delivery Using Lipid Nanoparticles

Andreia Jorge, Alberto Pais, and Carla Vitorino

Abstract

Efficient intracellular delivery of small-interfering ribonucleic acid (siRNA) to the target organ or tissues in
the body is assumed as the main hurdle for a widespread use of siRNAs in the clinics. Solid lipid-based
nanoparticles (SLNs) and derivatives can potentially fit this purpose by enabling to overcome the extracel-
lular and intracellular physiological barriers affecting the delivery. For that, rational formulations and
rational process designs are needed. This chapter addresses a comprehensive description and critical
appraisal of the main production methods of this particular type of lipid nanoparticles and the leading
strategies to prompt a targeted delivery of siRNA.

Key words RNA interference, Solid lipid-based nanoparticles, Targeting, siRNA delivery, Tempera-
ture-based methods, Solvent-based methods

1 Introduction

In the 1990s, Fire and Mello discovered the ability of the small-
interfering ribonucleic acid (siRNA) to robustly inhibit the expres-
sion of specific genes in Caenorbabditis elegansand plants [1]. Since
then, RNA interference (RNAI) received a great deal of attention
for their application as next-generation medicines with potential to
prevent and treat genetic disorders, providing an alternative treat-
ment when conventional drugs fail.

The RNAi mechanism involves the pairing of double-stranded
siRNA with a 21-nucleotide (nt) endogenous mRNA. Briefly,
siRNA loads in a double-stranded fashion into a gene regulatory
complex, known as RNA-Induced Silencing Complex (RISC),
which includes three proteins, DICER, Argonaute2, and transacti-
vation response RNA-binding protein (TRBP) [2, 3]. One strand,
the sense strand, is discarded, degraded, and released, while the
antisense strand is paired to a complementary mRNA through
RISC complex. The bound mRNA is then cleaved at a position
10 and 11 nt from the 5-end of the antisense siRNA by the
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Argonaute2 that is considered the catalytic processor of the RNAi
machinery [4, 5].

From a therapeutic perspective, siRNA can be synthetically
designed to induce sequence-specific endonucleolytic cleavage of
a disease-causing mRNA. Although this approach is widely used in
preclinical models, the clinical translation of RNAI is still challeng-
ing, because of the difficulty in achieving good biodistribution and
pharmacokinetics. Similarly to other oligonucleotides, siRNA faces
multiple obstacles before reaching their intracellular site of action,
including plasma membrane and intracellular trafficking. Addition-
ally, naked siRNA is relatively unstable in the blood circulation, due
to the nonspecific uptake by the reticuloendothelial system (RES)
and aggregation with serum proteins, which leads to a rapid clear-
ance from the body by r1pi 1 renal excretion following degradation
by nucleases. Thus, when designing an effective siRNA delivery
strategy, the following requirements must be considered: (1) pro-
tection from the enzymatic digestion, (2) enhancement of the
pharmacokinetics by avoiding RES uptake and rapid renal filtration,
(3) improvement of the translocation through the endothelium,
(4) enhancement of the diffusion through the extracellular matrix,
(5) improvement of the cellular uptake, (6) intracellular endolyso-
somal escape, and (7) minimization of potential siRNA-induced
toxicity [6-9].

Progresses have been made tow 17cl the goal of siRNA applica-
tion as therapeutic oligonucleotides, recently recognized by US
Food and Drug Administration (FDA) with the approval of the
first drug based on RNA interference, ONPATTRO™ (patisiran)
from Alnylam Pharmaceutics. In addition, at least six other RNAi
therapeutics are currently in the late stage of clinical trials (Phase
III) [10]. Likewise, European Medicines Agency has also recently
approved patisiran. The success of converting siRNA molecules
into efficient drugs stems from the development of oligonucleotide
chemistries that evolved to increase the resistance to nucleases,
increase silencing potency, reduce oft-target activity, and avoid
innate immune responses [11-13]. However, and more impor-
tantly, the incorporation of siRNA molecules into “smart” vehicles
that can efficiently escort them into the target cells is a requisite. In
this regard, solid lipid-based nanoparticles (including solid lipid
nanoparticles and nanostructured lipid carriers) represent a
promising candidate for gene delivery.

The matrix of these carrier systems consists of a relatively firm
core of physiological lipids stabilized by an aqueous solution of
surfactant(s); therefore, to clearly differentiate these particles from
other lipid nanostructures, for example, nanoemulsions and lipo-
somes, they are called as solid lipid nanoparticles (SLN) [14]. SL.2
is made from solid lipids (i.¢., lipids that are solid both at room and
body temperature, e.g., fatty acids, glycerides, or waxes), while the
nanostructured lipid carriers (NLC), considered a second
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generation of lipid nanoparticles, result from a blend of solid and
liquid lipids (oils), with the blend being solid at body temperature.
The addition of the oil compound precludes the formation of
perfect lipid crystals, thus creating more imperfections and
providing a lipid matrix with enhanced drug-loading capacity and
physical stability [ 15, 16]. These nanostructures also bear a cationic
compound, usually a lipid, that electrostatically interacts with the
negative charges of the nucleic acids and forms a complex at the
particle surface [17]. Alternatively, neutral lipid—siRNA conjugates
have become a subject of considerable interest to improve the safe
delivery of oligonucleotides and enhance their pharmacokinetic
behavior and transmembrane delivery [8].

SLNs and NLGCs claim a number of technical advantages as
compared to other nanoparticle systems. These include (1) the
use of biocompatible lipids, therefore improving cell tolerance to
treatment; (2) high encapsulation; (3) protection capacity for
nucleic acid cargoes from biological impacts within the blood cir-
culation and at the target site; (4) control over release, ascribed to
their solid nature matrix; (5) appropriate storage stability; (6) effi-
cient scaling for large-scale production with a good cost-eftective
ratio, together with their (7) feasibility to support sterilization, and
lyophilization, as secondary processes [9, 18-20].

In this chapter, design considerations of solid lipid-based nano-
particles will be extensively reviewed, with focus on the production
methods and particle /siRNA targeting strategies to encourage the
scientific community to explore these valuable carriers. Oligonucle-
otide and lipid chemistries will be briefly discussed and overviewed
to highlight their utility to engineer targeted, safe, and efficient
lipid-based nanoparticles for siRNA delivery.

2 Materials

Select the appropriate essential excipients for the nanoparticles
preparation (see Note 1). These include solid lipids (as matrix
material in the case of SLN) or both solid and liquid lipids
(as matrix material in the case of NLC; see Notes 2 and 3), emulsi-
fier and water. The term lipid is used here in a broader sense and
encompasses the classes referred in Table 1. As emulsifiers, all
classes of surfactants/cosurfactants have been employed, but phys-
iologically compatible emulsifiers are preferred as stabilizers
[24]. Choose the cationic lipid/surfactant considering the mini-
mum amount required, according to the positive charge density-
toxicity profile balance (see Note 4).

Prepare all solutions using ultrapure water (purifying deionized
water, to attain a sensitivity of 18 MQ-cm at 25 °C) and analytical
grade reagents. Prepare and store all reagents at room temperature,
unless indicated otherwise (according to the stability). Carefully fol-
low all waste disposal regulations for the disposal of waste materials.
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Table 2

Targeted siRNA Delivery Using Lipid Nanoparticles

Equipment required according to the technique employed for the production of the nanoparticles

High-pressure

homogenization Melt dispersion  Solvent emulsification- Hydrophobic

technique technique evaporation technique ion paring Double emulsion

1. High-speed stirrer 1. High-speed 1. High-speed stirrer 1. Magnetic/ 1. Magnetic/

2. High-pressure stirrer 2. Ultrasonicator mechanical mechanical
homogenizer® 2. Ultrasonicator 3. Rotavapor stirrer stirrer

2. Ultrasonicator 2. Ultrasonicator
3. Rotavapor 3. Rotavapor

2.1 Equipment

The specialized equipment necessary for carrying out the techni-
ques described in Subheading 3 is indicated in Table 2.

High-pressure homogenizers function as follows: a pump
pushes a liquid (the hot pre-emulsion, or cold pre-suspension, as
referred in Subheading 3.1.1) with high pressure (100-2000 bar)
through a constricted passageway named the gap region (usually in
the range of a few microns). The fluid accelerates on a very short
distance to a very high velocity (over 1000 km /h), leaves the gap
region, and enters the exit region flowing in the direction of the
impact ring. After passing through this region, the fluid (nanoe-
mulsion) exits through the outlet [25].

3 Methods

3.1 Preparation of
SLNs

The design of solid lipid-based nanoparticles and derivatives (for
the sake of generality, the term SLN will be applied in a broader
sense to denote this type of carrier systems) for the delivery of
siRNA requires in most cases the use of cationic compounds (e.g.,
lipids or surfactants) that should be incorporated in their formula-
tion to provide proper surface positive charge necessary for the
complexation with siRNA. These complexes could be either
entrapped in the core or adsorbed on the nanoparticle surface. In
the case of the former, a neutral electrostatic complex (1:1 siRNA:
cationic lipid charge ratio) is intended. When siRNA is carried at
the particle surface, the optimal ratio of cationic SLNs to siRNA
must be obtained for maximizing siRNA complexation. Ideally, the
formulation of SLNs should be achieved with the least amount of
the cationic lipid, without compromising the properties that make
them suitable for the delivery of nucleic acids, that is, a sufficient
positive charge along with a reasonable colloidal stability. An excess
of these components can result in a higher degree of cytotoxicity.
There exists a number of successful methods of preparation of SLNs
and derivatives for an effective delivery of nucleic acids into target
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3.1.1 Temperature-
Based Methods

High-Pressure
Homogenization

Hot High-Pressure
Homogenization

Cold High-Pressure
Homogenization

cells (see Table 3). They can be classified into two distinct cate-
gories: temperature- and organic solvent-based methods. The for-
mer involves generally the use of high temperatures (above solid
lipid melting point), while the latter implies the use of organic
solvents. The most relevant ones will be described in detail [26].

High-pressure homogenization (HPH) is a technique widely used
in several research areas, including the pharmaceutical, for example,
in the production of parenteral emulsions [39]. The already estab-
lished HPH large-scale production lines allow to circumvent the
lack of scaling up associated to some nanoparticle production
methods. It is also a simple and very cost-effective technique.
Additionally, HPH leads to a product relatively homogeneous in
size, that is, possessing a higher physical stability in the aqueous
dispersion [40].

HPH can be used in two different production techniques: at
elevated temperature, hot HPH, or below room temperature, cold
HPH, including the steps described in what follows.

1. Heat the lipid to ~5-10 °C above its melting point.

2. Mix water, surfactant(s), cosurfactant(s) (se¢ Note 5), and the
cationic lipid, and heat to the same temperature as the lipids.

3. Add the melted lipid(s) in the hot aqueous phase containing
the cationic lipid(s) (se¢ Note 6) and the surfactant(s) under
vigorous stirring with a high-speed stirrer to promote the
formation of the pre-emulsion.

4. Homogenize the pre-emulsion in a heated high-pressure
homogenizer for several homogenization cycles (se¢e Note 7)
to form a hot o/w nanoemulsion.

5. Cool down the hot o/w nanoemulsion to room temperature,
to allow the lipid recrystallization and promote the formation
of SLNs.

6. Purify the SLN dispersion through, for example, ultrafiltration-
centrifugation or dialysis.

1. Heat the lipid to ~5-10 °C above its melting point.

2. Mix water, surfactant(s), cosurfactant(s), and the cationic lipid,
and heat to the same temperature as the lipids.

3. Rapidly cool the melted lipids in liquid nitrogen or dry ice.
4. Grind to obtain lipid microparticles (~50-100 pm).

5. Disperse the milled powder in a cold aqueous surfactant solu-
tion to form a pre-suspension.

6. Homogenize the pre-suspension in a high-pressure homoge-
nizer at room temperature or below for several homogeniza-
tion cycles to obtain the nanosuspension of SLN.
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7. Purity the SLN dispersion through, for example, ultrafiltration-

centrifugation or dialysis.

Melt Dispersion This technique is similar to the hot high-pressure homogenization,
differing in the homogenizing principles that are underlined. The
main steps are described in what follows:

1.

Heat the lipid to ~5-10 °C above its melting point.

2. Mix water, surfactant(s), cosurfactant(s), and the cationic lipid,

and heat to the same temperature as the lipids.

. Add the melted lipid(s) in the hot aqueous phase containing

the cationic lipid(s) and the surfactant(s) under high-shear
homogenization to promote the formation of a hot o/w
nanoemulsion.

. If necessary, sonicate the obtained hot nanoemulsion in order

to reduce particle size and narrow the size distribution [23].

. Cool down the hot o/w nanoemulsion to room temperature,

to allow the lipid recrystallization and promote the formation
of SLNE.

. Purify the SLN dispersion through, for example, ultrafiltration-

centrifugation or dialysis.

3.1.2  Solvent-Based The solvent emulsification-evaporation is a method similar to the
Methods production of polymeric nanoparticles by solvent evaporation in
o/w emulsions, comprising the following steps:

Solvent Emulsification/
Evaporation

1.

Dissolve the lipids in an organic solvent immiscible with water
(e.g., chloroform or methylene chloride).

. Prepare an aqueous solution containing the surfactant(s) and

the cationic lipid.

. Disperse (emulsity) the organic solution in the aqueous phase

containing the cationic lipid(s) and the surfactant(s) under
high-shear homogenization. For guidance, please see [41].

. If necessary, sonicate the obtained emulsion in order to reduce

particle size and narrow the size distribution (se¢ Note 8).

. Remove the organic solvent using a magnetic stirring or a

Rotavapor under reduced pressure in order to promote the
lipid precipitation in the aqueous medium and the formation
of the SLNs.

. Purify the SLN dispersion through, for example, ultrafiltration-

centrifugation or dialysis.

Hydrophobic lon Pairing The hydrophobic ion pairing (HIP) is an approach that enables to
overcome the challenge of loading siRNA within SLNs. Accord-
ingly, a drug-surfactant complex is first formed, which provides
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lipophilicity enough for incorporation of the siRNA in the lipid
core of SLN [7,42]. This technique comprises the following steps:

1.

10.

11.

12.

Dissolve siRNA in RNAse-free water and a cationic lipid (usu-
ally DOTAP) in chloroform.

. Add the DOTAP solution dropwise to the siRNA solution

while stirring (see Note 9).

. Briefly sonicate in a water bath sonicator (see Note 10) and mix

it with an appropriate volume of methanol to form a single-
phase solution.

. After incubation at room temperature (ca. 1 h), extract the

siRNA/DOTAP complexes into chloroform by phase
separation.

. Separately, dissolve the lipid matrix (e.g., lecithin and choles-

terol) in chloroform.

. Add this solution dropwise to the siRNA/DOTAP complexes

in chloroform while stirring.

. If applicable, add PEG derivatives (e.g., polyethylene glycol

(2000)-hydrazone-stearic acid (C18) derivative (PHC) and
polyethylene glycol (2000)-amide-stearic acid (C18) derivative
(PAC) [42], also previously dissolved in chloroform dropwise
to the siRNA-lipids mixture.

. Dry the resulting mixture under nitrogen gas.

. Dissolve the solid residual in an appropriate volume of organic

solvent (e.g., tetrahydrofuran).

Add the previous solution dropwise into water while stirring to
form nanoprecipitates.

Stir the resultant nanoparticle suspension (SLN) at room tem-
perature for a sufficient time to facilitate the evaporation of
organic solvent alternatively using a Rotavapor.

Purify the SLN dispersion through, for example, ultrafiltration-
centrifugation or dialysis.

The preparation of SLN through the solvent emulsification evapo-
ration method based on the water-in-oil-in-water (w/0/w) double
emulsion technique usually involves the following steps:

1.

Dissolve the lipid(s) (see Note 11) in an appropriate organic
solvent immiscible with water (e.g., chloroform, methylene
chloride).

Dissolve the siRNA in RNAse-free water.

Disperse (emulsify) the aqueous phase containing the siRNA in
the organic solution including the lipid(s) under high-shear
homogenization or sonication to form the primary emulsion
(w/0) (see Note 12).
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3.1.3 Methods Overview

3.2 Loading siRNA
into SLN

3.2.1 Coating of SLNs
with siRNA via Electrostatic
Interactions

4. Prepare an aqueous solution containing the surfactant(s) and, if
applicable, cationic lipids.

5. Disperse the primary emulsion (w/0) into an appropriate vol-
ume of the aqueous surfactant(s) solution under high-shear
homogenization or sonication to obtain the double emulsion
(w/0/w).

6. Remove the organic solvent using a magnetic stirring or a
Rotavapor under reduced pressure in order to promote the

lipid precipitation in the aqueous medium and the formation
of the SLNs.

7. Purify the SLN dispersion through, for example, ultrafiltration-
centrifugation or dialysis.

A global appraisal of the promising fabrication techniques of the
solid lipid-based nanoparticles applied to siRNA delivery is dis-
played in Table 4. The feasibility of the potential scale-up of these
methods to the industrial environment is also addressed.

siRNA loading into SLN typically involves direct complexation of
siRNA molecules to the surface of the preformed cationic carriers.
However, after abandoning the carrier protection, siRNA mole-
cules rapidly degrade, and the lack of true encapsulation will likely
result in the loss of siRNA in circulation. The same happens once
these molecules enter the target cells, resulting in a sharp and
rapidly decaying siRNA profile due to lack of control over release.
Such a trend will cause « hort RNAI action, implying a more
frequent administration. “Considering that siRNA is effective at
low level, a substantial fraction of the quickly discharged siRNA
will be consequently wasted, and the high levels of intracellular
siRNA could be associated to toxicity [9]. Moreover, when
siRNA is loaded electrostatically adsorbed at the particle surface,
an excess of positive charge (cationic compound) is necessary,
which in turn incurs into additional toxicity. The encapsulation of
siRNA within SLNs to provide a sustained release of siRNA is thus
highly desirable. Notwithstanding, the hydrophobic nature of
SLNs impedes efficient loading of hydrophilic drugs, such as oli-
gonucleotides. This issue could be overcome by previously forming
electrically neutral siRNA-cationic lipid /surfactant complexes, in
order to facilitate their loading into SLNs [7]. A summary of pros
and cons and a description of both siRNA-loading strategies into
SLNs are presented in Table 5 and in the following sections,
respectively.

1. Prepare siRNA/SLN complexes using a range of molar ratios
considering the ratio of amine groups (N) of the cationic lipid
to phosphate groups (P) of the siRNA. This charge ratio gives
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Table 5

Advantages and drawbacks of siRNA-loading strategies into SLNs

siRNA loading into SLN

strategy Advantages Drawbacks
Electrostatically complexed — Simple preparation — More susceptible to degradation
in the surface — More adequate for local — Reduced control over release
delivery — Possible siRNA dose dumping and

Encapsulated

potential toxic effects
— Toxicity associated to cationic lipid

— Higher protection — Complex formulation
— Sustained release — Risk of siRNA degradation during
— More adequate for intravenous ~ SLN preparationb

administration

— Reduced toxicity associated to
cationic lipid®

*A reduced toxicity associated to the cationic lipid is predicted, since it is entrapped in the core, and duly neutralized with
siRNA (1:1 ratio)_in contrast to the higher amount required and surface exposition observed when siRNA is complexed

at the surface

PIf proper salt ana mild temperature conditions are not provide:

3.2.2 Encapsulation of
SiRNA into SLNs

3.3 Targeted siRNA-
SLN

an indication of the ionic balance of the complexes and it can be
calculated by

[Ammonium groups from cationic lipid]

N/P ratio = [Phosphate groups from siRNA]

2. For that, add a fixed volume of siRNA aqueous solution at a
fixed concentration to a fixed volume of SLN dispersion at
variable concentrations, depending on N/P ratio selected.
The order of addition should be kept constant throughout
experiments (see Notes 13 and 14).

3. Vortex the final solution and incubate for 30 min at 37 °C to
allow siRNA binding to positively charged SLNs.

1. Prepare a complex electrically neutral of cationic lipid-siRNA
(1:1 charge ratio) (see Note 13).

[\

. Add the previous electrically neutral complex to the lipid/
organic phase.

3. Disperse into the aqueous phase and homogenize according to
the method selected (see Subheading 3.1).

Despite the substantial advances in siRNA technology, currently
available systems still demand more optimization. The key for
successful optimization is substantially dependent on developing
improved carriers for the efficient and safe siRNA delivery to a
target tissue/organ. The current optimization steps focus mainly
on improving the stability of siRNA in the circulation, enhancing
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3.3.1 Stability in the
Circulation

PEG Conjugation

SiRNA Chemical
Maodification

Targeted siRNA Delivery Using Lipid Nanoparticles

tissue targeting and cellular uptake, and improving endosomal
escape. As shown in Table 3, PEG conjugation to siRNA or lipids
is the most common strategy used to reduce the risk of siRNA
degradation that along with the encapsulation or adsorption of
this genetic material on SLNs should be able to protect the cargo.
Nevertheless, there exist an extended knowledge in the field of
oligonucleotide chemical modification that could provide addi-
tional protection of siRNA, reduce its immunostimulatory activity,
and minimize unwanted off-target effects, and it is important to
consider their utility in in vivh applications. Alongside with these
chemical modifications, careful design of covalent strategies for
linking siRNA and targeting moieties to reach specific sites of
intended action in body is also a requisite for achieving successful
silencing activity. In this section, a comprehensive enumeration of
the strategies developed so far for the enunciated purposes will be
presented. These will be directed either to siRNA modification or
engineered SLN surface.

PEG increases the colloidal stability and the water solubility of
nanoparticles (NPs) by forming a protective hydrophilic layer on
the surface of NPs that reduce their aggregation tendency and
interaction with blood components. As a result, this phenomenon
decreases the opsonization phenomenon and the uptake of NPs by
the macrophages of the mc = nuclear phagocyte system prolonging
the blood circulation time =/« 3]. Furthermore, PEG surface modi-
fication is helpful to the incorporation of active targeting ligands,
which allows for the development of effective antitumor therapeu-
tic strategies [44]. PEG can be conjugated with (1) a lipid, for
example, DSPE amine, and in this case, it is added directly to the
oily /organic phase [7, 32] or aqueous phase [37] (depending on
the technique employed; see Subheading 3.1) in the SLN prepara-
tion, or (2) directly conjugated with siRNA through a disulfide
bond [25]. The latter option comprises two sequential steps: the
conjugation of siRNA with PEG and incubation with SLN. The
conjugation of siRNA with PEG can be also performed by using a
linker (e.g., 3'-hexylamine) to connect the two molecules [26]. For
guidance, please see refs. 26, 45.

Most siRNAs used currently are chemically modified following
phosphoramidite approach as single-stranded RNA and then are
hybridized into double-stranded fashion. The incorporation of a
variety of natural and artificial modifications int=-+the siRNA strands
may allow to solve the problems inherent to ir +#* 0 administration,
including nuclease degradation, and also enhance siRNA potency
and specificity [46—48]. These modifications are typically per-
formed on the internucleotide phosphate linkage through the
replacement of the non-bridging oxygen with, for instance, sulfur
(PS) (phosphorothioate) [49, 50], boron (boranophosphate) [51],
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3.3.2 Tissue Targeting
and Cellular Uptake

or methyl (methylphosphonate) groups [52]. In addition, modifi-
cations at 2’-position of the ribose can also reduce nuclease degra-
dation while increasing duplex stability and offering protection
from immune activation. At this position, the most common mod-
ifications are 2'-fluoro (2'-F), 2’-O-(2-methoxyethyl) (2’OMe),
2’-O-(2-methoxyethyl) RNA (MOE), and 2'-fluoro-f-p-arabino-
nucleotide (FANA) [53-55]. Another modification of interest at
this level is siRNA with locked nucleic acids (LNA), which consists
of a methylene bridge that connects the 2'-O with the 4/-C of the
nucleobase and helps not only to increase the resistance of siRNA to
nucleases but also to increase the potency of siRNA [56].

Indeed, targeted delivery of anticancer drugs to cancer cells and
tissues is a widely exploited field due to its potential to spare
normal/healthy ones. Based on the growing knowledge in cell
biology, it is recognized that there are many overexpressed recep-
tors in cells that can mediate the internalization of specific ligands
and their cargoes. Taking advantage from cell-type-specific finger-
print, many smart nanoparticles have been designed to incorporate
specific moieties that can bind to the receptor docking sites
[57-59]. To achieve the desired selectivity, aptamers, antibodies,
peptides, proteins, carbohydrates, and small molecules, such as
folate and vitamins, are considered suitable candidates to act as
recognition modules. The advanced chemistries developed so far
for the functionalization of oligonucleotides offer great opportu-
nities to combine these specific modules with siRNA [60]. Proce-
dures for each of these alternatives will be referenced for guidance.

Aptamer chimeras are synthetic single-stranded DNA or RNA
molecule with high affinity and specificity to cell receptors or pro-
teins with large application in diagnostic and therapeutic field
[61, 62]. Their structure is strategically selected and optimized
in vitro by a procedure known as Systematic Evolution of Ligands
by Exponential Enrichment (SELEX) [63]. To date, multiple
chemical approaches have been developed for conjugating siRNAs
and aptamers [64]. Aptamers can be used in three different ways to
deliver siRNA: (1) covalently linked by a small spacer, (2) form a
chimera, and (3) electrostatically or covalently combined to nano-
particles. Aptamer-mediated targeted systems have been used to
deliver therapeutic oligonucleotides such as siRNA, miRNA, or
antisense DNA and proved to be valuable to improve the specificity
of nanoparticles. For example, McNamara and colleagues devel-
oped an aptamer-siRNA chimeric RNAs for the treatment of pros-
tate cancer in which the aptamer portion of the chimera mediates
the binding to a specific cell receptor overexpressed in prostate
cancer cells whereas the siRNA modulates the expression of survival
genes [65].

Small, larger peptides and protein-based targeting moieties
excel in mediating cell-specific delivery of siRNA. Among these
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3.3.3 Endosomal Escape
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natural macromolecules, cell-penetrating peptides have large appli-
cability due to their ability to cross biological barriers, so as cell
membrane and blood-brain barrier [66, 67], and they may be
obtained from natural or synthetic sources [68]. Electrostatic com-
plexation of nucleic acids with CPP has demonstrated to assist
oligonucleotide nuclear delivery [69]. Covalent strategies were
also exploited for conjugating CPPs with siRNA oligonucleotides
in an attempt to increase the efficacy of siRNA delivery and reduce
the risk of CPP dissociation in physiological fluids. Various types of
siRNA-CPPs conjugates were developed using, for example, Pene-
tratin, Tat, Transportan, and melittin peptide, among others
[70]. It is established that properties such as the biological activity
of siRNA-CPPs conjugates, cellular uptake, intracellular localiza-
tion, and cytotoxicity are dependent on the kind of CPP used as
well as on the length of the cationic peptide [71].

Another important class of molecules able to bind selectively to
cell receptors are carbohydrates. These molecules are included in
distinct biological processes including cell surface recognition
through lectins and specific binding to proteins. Galactose (Gal)
has demonstrated to be valuable for the delivery of siRNA to
hepatocytes by targeting cell surface lectins, the asialoglycoprotein
receptors [72], and have been extendedly exploited [73-75]. In
particular, the administration of siRNA-conjugated triantennary N-
acetylgalactosamine (GalNac) is currently being evaluated in a
Phase III clinical trial for the treatment of a rare neurodegenerative
disease [76, 77]. Another important carbohydrate derivative used
to direct cellular uptake is the hyaluronic acid (HA), a glycosami-
noglycan polymer ubiquitously found in extracellular matrix.
Chemical modification of HA with functional groups to achieve
novel HA derivatives with enhanced properties for drug, gene, and
protein delivery has been also exploited [78]. Surface modification
of cationic liposomes with biocompatible HA enhances their effi-
cacy by mediating active CD44 targeting in cancer cells while
augmenting their circulation time [79]. Hyaluronan-grafted lipid-
based nanoparticles have been reported for the delivery of anti-P-
glycoprotein (P-gp) and luciferase siRNAs, having shown to target
the cancer cells efficiently and specifically reduce mRNA and P-gp
protein levels when compared with control particles [80].

Once SLN-siRNA complexes internalize cells through endocytosis,
they stay trapped in endosomes. Nevertheless, siRNA should reach
the cytoplasm to be able to achieve the expected silencing activity.
The endosomal uptake pathway is considered to be a rate-limiting
barrier in intracellular delivery, especially for oligonucleotides that
due to their large size and high negative charge fail to reach the
cytoplasm of cells [81]. The accepted mechanisms for promoting
endosomal escape are (1) membrane destabilization and pore
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formation, which generally occurs with fusogenic peptides and
ionizable polycations, (2) rupture, which typically occurs with
highly ionizable polycations, and (3) membrane fusion, which
commonly occurs with lipid nanoparticles containing fusogenic
lipids. Reference [82] provides a compilation of the most relevant
methods used to follow the endosomal escape of nanoparticles and
a complete description of the associated mechanisms.

Fusogenic peptides, for example, GALA and HA2-penetratin
peptides [83, 84], undergo a structural change in response to
acidification of the endosome which stimulate to release from
endosome. Likewise, the change in the arrangement of
pH-sensitive lipids from lamellar to hexagonal phase, as it occur
for, for example, DOPE, also causes the destabilization of the
endosomal membrane and triggers the release of siRNA to the
cytoplasm. Within this class, cholesterol and PEG-lipid conjugates
have shown a crucial role in the fusogenicity and pharmacokinetic
properties of liposomes [85, 86]. Cationic polymers with ionizable
amino groups, such as polyethylenimine (PEI) and polyamidoa-
mine (PAMAM) dendrimer, are also powerful candidates to induce
the rupture of the endosomal membrane. Many mechanisms have
been proposed to explain the effect of cationic polymers with
ionizable amino groups on endosomes, but the more accepted
hypothesis is the so-called proton sponge that triggers the rupture
of' endosome through osmotic swelling [87]. PEI is one of the most
efficient polycation used for siRNA delivery, due to its great ability
to compact RNA combined with its excellent buffering capacity.
However, this polycation is highly cytotoxic which hampers its
application in in vivo settings [88]. The selection of low molecular
weight and branched PEI or the use of PEI polymers composed by
low molecular weight oligoamines bound with different reducible
cross-linkers may represent a solution to reduce its inherent cyto-

toxicity [89, 90].

4 Notes

1. The optimization of solid lipid nanoparticles benefits from a
relevant design of experiments. This methodology elucidates
the effects of many factors (composition and process para-
meters) simultaneously, also enabling to assess their relative
importance and to determine whether the factors interact
[91]. When optimizing a formulation or process, there are a
number of different methods for tackling the problem, and the
resulting data may also be analyzed in a number of different
ways. In what concerns experimental designs, a rough classifi-
cation into screening designs, response surface designs, and
mixture designs can be carried out. Screening designs, for
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example, fractional factorial and Plackett-Burman designs,
allow screening a relatively large number of factors in a rela-
tively small number of experiments. They are used to identify
the most influencing factors affecting the system, being applied
in the context of optimizing processes. Most often, the factors
are evaluated at two levels in these designs. In turn, response
surface designs are applied to find the optimal factor settings,
while mixture designs are used to optimize, for instance, the
excipients composition in formulations [92]. For guidance,
please see [93].

. When NLCs are selected for siRNA condensation, the lipid
choice is dictated by preliminary studies to assess physical com-
patibility between solid and liquid lipids. For that, prepare
mixtures of the solid and liquid lipid in a ratio of 1:1 in different
glass tubes. Melt the lipid mixture, shake, and allow to solidify
at room temperature. Analyze visually the glass tubes for the
absence of separate layers in the congealed lipid mass. Addi-
tionally, smear the congealed mixtures of solid-liquid lipid over
a glass slide and examine them microscopically [94].

. A higher liquid lipid content, in relation to the solid lipid,
generally results in an improved delivery achieved by a decrease
in particle size (typically below 100 nm). This type of carriers
system has been named ultrasmall nanostructured lipid
carriers [95].

. If a cationic surfactant is used, one-tailed cationic surfactants
are generally more cytotoxic than the two-tailed surfactants,
whereas the amino acid corresponding derivatives and cationic
lipids are well tolerated [23].

. Lipophilic emulsifiers (e.g., soya lecithin) are added to the oily
phase, while hydrophilic (o/w) emulsifiers (e.g., polysorbates)
are added to the aqueous phase.

. If a cationic lipid is used, it can be alternatively dissolved in the
oily phase rather than in the aqueous phase [23].

. When high-pressure homogenization is used for SLN produc-
tion, the number of cycles/time and pressure of homogeniza-
tion should be optimized according to the formulation
composition. Increasing the homogenization period does not
necessarily result in particle reduction. Instead, size enlarging
due to particle coalescence usually occurs, because of the high
kinetic energy of the particles.

. In the solvent emulsification /evaporation technique, the emul-
sification step can be supported by ultrasonication, followed by
high-shear homogenization or vice versa.

. Add siRNA and a cationic lipid (e.g., DOTAP) in an appropri-
ate charge ratio (1:1,i.e., one DOTAP molecule per phosphate
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group on the siRNA). In this mixture, DOTAP binds to siRNA
and forms a hydrophobic ion pair. The siRNA/DOTAP com-
plex is tightly held together by electrostatic interaction
between the negatively charged phosphodiester backbone and
the positively charged DOTAP headgroup, while the DOTAP
hydrophobic domains facilitate efficient encapsulation of the
siRNA/DOTAP complex in the lipid nanoparticle [96].

The sonication step used to aid the formation of siRNA/
DOTAP complex should be carried out using a water bath
sonicator and not a tip sonicator and for a short period of
time (seconds), so as to prevent possible siRNA degradation.

When using the hydrophobic ion pairing (HIF) technique, the
incorporation of the siRNA /DOTAP complexes into SLN can
be alternatively carried out by another solvent-based method,
for example, nanoprecipitation/solvent displacement tech-
nique, similar to that employed in the polymeric nanoparticles
preparation. For guidance, please refer to [7].

The addition of w/o surfactants may be needed to provide
stabilization of the primary emulsion.

A careful selection of buffer conditions should be carried out
considering the role of pH and ionic strength in the electro-
static interaction [97-99]. Rational siRNA design is a required
step in order to increase nuclease resistance and reduce
off-target effects. Chemical modifications are strategically
used to optimize siRNA pharmacokinetic properties and bio-
availability (see Subheading 3.3.1).

Complexes are preferably formed with a slight excess of posi-
tive charge to allow them to interact with the negatively
charged cell surface. Additionally, size and charge depend on
the weight ratio between the particle and siRNA [17].

PEG is used to prevent the interaction of drug carrier mole-
cules with insoluble blood proteins that would otherwise accel-
erate the clearance of nanoparticles. This is a beneficial
property of PEG for siRNA delivery provided the role of
DOTAP is not overshadowed by the presence of PEG. Thus,
DOTAP to PEG ratio should be optimized to achieve desired
results [21].
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