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Summary

This paper reports a study of the synthesis and characterization of
4,6-dinitroamino-1,3,5-triazine-2(1 H)-one (DNAM) carried out under
the perspective of looking for new ingredients in propellant formula-
tions. Emphasis is given to the characterization of DNAM. The fol-
lowing attributes were identified: low sensitivity to impact and friction,
thermal stability over a wide temperature range, energetic nature, high
density, and interesting particle size distribution. In Part 2 a pre-
liminary evaluation of DNAM capabilities in a propellant formulation
will be presented.

1. Introduction

The quest of new energetic materials for use in propellant

formulations is a continuous challenge. Usually, high per-

formances are constrained by safety considerations, whose

meaning is wider than before. Not only low vulnerability

requirements are necessary, but also important demands

concerning environmental impact of the combustion pro-

ducts are being a matter of investigation(1–4). The search of

alternative propellant ingredients for replacing the well-

known Ammonium Perchlorate (AP) based compositions

became a common issue in the field. However, it has been

argued that the development of new energetic materials

typically exhibits a lack of a logical and systematic approach

to the needed characterization of the new materials(5). This is

a pertinent question, made more relevant by the cost asso-

ciated with the development of new energetic molecules.

In the light of the above considerations, a work program

was defined according to which, instead of developing a

completely new halogenous free target molecule, priority to

the search of an acceptable alternative was given. The

nitrated derivative of 2,4,6-triamino-s-triazine (melamine),

known as dinitroammeline (DNAM), has been reported for

the first time in 1951(6). However, this compound has never

been deeply studied within the framework of propellants.

This paper reports the study on the compound 4,6-bis

(nitroamino)-1,3,5-triazine-2(1 H)-one (and=or its tauto-

meric forms) developed from the established nitration of

melamine, highlighting the characterization of the product.

The study started four years ago(7), has permitted us to clarify

the main DNAM attributes and therefore has opened new

avenues for its application.

2. Synthesis of DNAM

Besides the nitration procedure, relevant information—

already available on dinitroammeline characteristics when

we started our study—can be quoted as follows(6): it decom-

poses sharply without melting at 228 �C; the measured heat

of combustion 1519.67 kJmol�1; and a two-step curve was

obtained from an electrometric titration with NaOH.

DNAM was then synthesized according to the established

method by the nitration of melamine with an acetonitric

mixture:

The purity of the nitrated product was checked by ele-

mental analysis (Fisons EA1180). Typical results are as

follows: Anal. Calcd. for C3H3O5N7: C 16.60%; H 1.39%;

N 45.16%. Found: C 16.31%, 16.45%; H 1.51%, 1.45%;

N 45.10%, 45.05%.
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Once the original synthesis and purification routes have

been successfully reproduced, the main goal was directed to

the characterization of pure DNAM.

3. Characterization of DNAM

3.1 Chemical Properties

3.1.1 Spectroscopic Analysis

IR spectroscopy (Nicolet 750) was used to identify the

molecular structure of DNAM. This study (see Figure 1) has

shown that in the solid state, among the possible tautomeric

configurations, the keto forms 4,6-dinitroamino-1,3,5-

triazine-2(1 H)-one and 4,6-dinitroamino-1,3,5-triazine-

2(5 H)-one prevail over the enol form 4,6-dinitroamino-

1,3,5-triazine-2-ol (see Eq. (1), i.e. Scheme 1). The presence

of nitro groups is identified by the intense signals at 1600 and

1250 cm�1. The band around 3200 cm�1 is assigned to the

monosubstituted amino group. This is also revealed by the

absence of absorption in the region 1680–1640 cm�1, typical

of nonsubstituted NH2 groups in this kind of systems. The

predominance of keto forms is clearly shown by the presence

of the strong absorption near 1770 cm�1 due to the C55O

group. Also, the signal around 760 cm�1 is typical when the

triazine is in the iso form, i.e., with less then three double

bonds in the ring and at least one double bond external to the

ring(8).

3.1.2 Acidity

A three-step curve was found by potentiometrically

titrating (Metrohm—736 GP Titrino) DNAM, in ca.

0.001mol � l�1 aqueous solution, with 0.1mol � l�1 NaOH,

at room temperature. As a first approximation, the Hender-

son-Hasselbalch equation(9) was used to calculate the pKa
corresponding to the first dissociation of DNAM, whose

value was found to be 3.2. This figure confirms an acidity

character that could be anticipated from the primary nitra-

mino groups in DNAM. Such an acidity should be taken into

account in compatibility and ageing issues in formulating

studies. Parallel considerations should be given to the

decomposition of DNAM in aqueous solutions, which is a

matter being investigated.

3.2 Hazard Properties

Impact and friction sensitivity, and vacuum thermal stabi-

lity tests were performed. Characteristic results of these

measurements are summarized in Table 1. DNAM presents

good safety attributes; for instance, in comparative terms, it

appears to be less sensitive than an explosive such as HMX.

3.3 Physical Properties

Physical properties of DNAM such as density, specific

surface area, and particle size distribution were measured.

Table 2 resumes the results of these measurements, and

Figure 2 presents typical DNAM particle size distributions

and particle shape.

It was possible to have a first estimate for the density of

DNAM by using the Stine’s algorithm(10). A predicted value

of 1.916 g cm�3 was the first indication on the high density of

DNAM, of which confirmation is given by the measured

value of 1.949 g cm�3. The low value for the powder specific

surface area indicates a non-porous material.

As shown in Figure 2, the particle size distribution of

DNAM seems to be prone to some variations from batch to

batch, although within certain limits. This can be due to some

operating factors during the purification stage, and=or to a

non-uniform (slight) grinding of the solid samples (a pestle

and a mortar were used) necessary to avoid the formation of

particle aggregates. It should be mentioned that the actual

particle size(s) and correspondent mean value(s) are

Figure 1. FTIR of DNAM.

Table 1. Hazard and Thermal Stability Properties of DNAM

Property under study Method Result

Impact sensitivity BAM test >50.5 J
Friction sensitivity BAM test >360N
Vacuum thermal stability 40 h at 100 �C 0.257 cm3 g�1

Table 2. Some Physical Properties of DNAM

Property Technique Value

r=g cm�3 Gas (Helium) picnometry
(Micrometrics-AccuPyc1330)

1.949� 0.002*

S=m2 g�1 Multipoint BET
(Micrometrics-ASAP2000)

1.091

d50=mm Laser diffraction with PIDS
(Coulter LS130)

2.55–7.97

*Mean of 29 measurements. (The uncertainties are referred to a con-
fidence level of 95%; this note applies along the paper).
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expected to be somewhat higher than those exhibited by the

distribution curves in Figure 2 and the d50 values in Table 2.

The output of the laser diffraction technique from which

these are derived is based on the mean diameter of the

randomly projected area instead of the maximum projected

area as it is in image analysis(11). In fact, the image analysis

picture also shown in Figure 2 indicates that a particle size

analysis made by this technique would appear somewhat

shifted towards higher sizes.

3.4 Thermophysical Properties

3.4.1 Heat of Combustion and Standard Enthalpy of

Formation

The measurement of the heat of combustion was per-

formed in an oxygen bomb calorimeter (Parr 1271) and a

value of 1508.11� 14.79 kJmol�1 (mean of 6 measure-

ments) was obtained. The standard enthalpy of formation

(DHo
f at 298K) was calculated according to Ref. 12 and a

value of �111.21 kJmol�1 was found.

3.4.2 Heat Capacity

The heat capacity at constant pressure has been measured

by DSC (Perkin-Elmer—DSC7), leading to the values of

0.984 and 1.176 JK�1 g�1 at 35 �C and 75 �C, respectively.

3.4.3 Thermal Analysis

The thermal behavior of DNAM was studied with some

detail by means of simultaneous thermal analysis (STA)(13).

Typical thermoanalytical curves are presented in Figure 3.

It was concluded that DNAM presents good thermal

stability, without solid=solid transitions neither melting in

the wide temperature range that precedes the exothermic

thermolysis. This starts in the range 215–230 �C according

to the conditions of the study (Rheometric Scientific—STA

1500 equipment, sample mass of ca. � 2mg, N2 as purge

gas, and heating rates from 2.5 to 20 �Cmin�1). As shown

in Figure 3, the thermolysis occurs in a sharper way for

heating rates equal or higher than 5 �Cmin�1 as a conse-

quence of the sample auto-ignition followed by a thermal

runaway.

The Arrhenius parameters of the decomposition process

were estimated using as a first approach the ASTM

method(14,15), which assumes a ‘‘first order’’ reaction

kinetic model f ðaÞ ¼ ð1� aÞ (see below) for the pre-

exponential factor, A, determination. The calculated values

(for an approximate temperature range 220–235 �C) were

269 kJmol�1 and 2.5 � 1026 s�1 for EA and A, respectively
(13).

Improved results were obtained recently by applying a more

reliable methodology for the kinetic analysis of solid state

reactions as described below.

The start equation for kinetic data evaluation is the well-

known expression for the rate of the process in which it is

assumed that the temperature dependence k(T) is given by the

Arrhenius expression,

da
dt

¼ kðtÞ � f ðaÞ ¼ A � e�
EA
R�T � f ðaÞ ð2Þ

where a is the degree of conversion, EA the activation energy,
A the pre-exponential factor, T the absolute temperature, R

Figure 3. Thermoanalytical curves for DNAM.

Figure 2. Typical particle shape and size distributions of DNAM.
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the gas constant, t the time, and f(a) the kinetic model

function based on the physico-geometric assumption of the

reaction interface movement(16). Applying logarithms to

Equation (2) results

ln
da
dt

� �
¼ lnðA � f ðaÞÞ �

EA

R � T
ð3Þ

Equation (3) permits to estimate the value of EA without

any assumption other than the rate of the process being

described by the Arrhenius law(17,18). The concept of general-

ized time, t, proposed by Ozawa(19,20), allows Equation (3) to
be expressed as the reaction rate at infinite temperature(21):

da
dt

¼ A � f ðaÞ ð4Þ

The kinetic analysis of the thermolysis of DNAM was

restricted to the beginning of the exothermic event (tempera-

ture range 200–225 �C). A mass loss value far enough from

the auto-ignition of the sample was fixed after a careful

analysis of the thermoanalytical curves of all runs performed

at different heating rates. That value was used as a reference

for normalizing the TG curves in order to determine the

correspondent degree of conversion values, a, ranging from

0 to 1. Thus, it should be noted that this range of a
corresponds only to the beginning of the mass loss instead

of the overall mass loss of the exothermic event.

The EA as a function of a was obtained applying Equation
(3) at different conversion levels. The constancy of EA with

a is a fundamental requisite underlying the method. This

condition is fulfilled in good approximation for the case

under study, as shown in Figure 4.

Taking the mean value 239 kJmol�1 for EA from the

results of Figure 4, and applying an adequate methodol-

ogy(21,22), it was found that the first stage of the thermolysis

of DNAM is well described by the power law model

f ðaÞ ¼ 2 � a1=2: Once obtained a, the value of A was calcu-

lated according to Equation (4) and its invariance with a was
checked as shown in Figure 4. An approximate constant

value was found in almost every conversion range. This

check has been made for each heating rate, leading to mean

values (calculated for a
 0.10) of A in the range form

8.9 � 1023 s�1 to 10.6 � 1023 s�1. Finding a range of A instead

of a single value is understandable in the light of the kinetic

compensation effect known in the context of the kinetic

analysis of solid state reactions(23).

Finally, the adequacy of the kinetic analysis results in

describing that the process was verified comparing

the predicted with the experimental results as shown in

Figure 5. The good agreement is noticeable and deserves

further comments. The kinetic model found has a physico-

geometric background giving some theoretical basis for

interpreting the process instead of a purely empirical one.

The power law is the simplest kinetic expression resulting

from the modeling of the reacting interface advance. Its

validity is limited to the early stages of the reaction, when

the hypothesis of the formation and growth of unrestricted

nucleation can be applied(24). On the other hand, the power

law is usually ascribed to processes in which the rate of

incorporation of the reactant species in the reaction interface

appears to be the limiting step in the overall growth

process(16). It should be remembered that the performed

kinetic analysis of the thermolysis of DNAM was restricted

just to the very early stage.

It is of interest to place the thermolysis of DNAM in the

perspective of other works carried out on the decomposition

of nitramines(25–29). It is generally accepted that nitramine

functional group is predominant in the early decomposition

stages. It is the main source of highly reactive species as,

among others, nitrogen oxides such as NO2 and=or N2O,

whose relative amounts are dependent on factors like

temperature, pressure, and structure of the starting nitra-

mine(25,29). These reactive species are crucial as reaction

proceeds, namely because they are the only oxygen suppliers

when no other (external) oxygen source is available. Our

kinetic analysis results are qualitatively consistent within this

framework of the thermolysis of nitramines. In the light of

experimental evidences showing that primary nitramines are

strong generators of N2O when compared with secondary

ones(29), it is our belief that the primary nitramine groups in

DNAM would preferentially generate N2O in the early

decomposition stages. But the first species actually formed

in the reaction interface remain to be identified, and a deeper

research on the decomposition of DNAM will be necessary.

Figure 4. E and A as a function of a.
Figure 5. Checking the validity of the kinetic analysis of the first
stage of the thermolysis of DNAM.
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4. Conclusions

Being a halogen free compound, exhibiting low sensitive

to impact and friction, DNAM fulfils basic requirements

from the safety point of view. Its expected acidic character

should be cautiously faced in formulating studies.

DNAM is a high density material, and measured particle

size distribution appears advantageous in the perspective

of its use as a propellant ingredient: the relatively small

size of DNAMparticles would be a relevant attribute in terms

of processability, attainable higher solid loadings, and better

burning characteristics.

The thermoanalytical measurements revealed not only the

thermal stability of DNAM in a wide temperature range,

within which solid=solid phase transitions and melting are

absent, but also its energetic nature expressed by a sharp

exothermic reaction characterizing the thermolysis. The

kinetic study directed to the early stage of this reaction led

to interesting results, whose consistency with other published

results on the thermolysis of nitramines should be taken into

account in future studies for a better phenomenological

understanding of the decomposition of DNAM.

More work will be necessary for the full characterization

of DNAM. Nevertheless, the information already available

justifies a parallel evaluation of the DNAM potential as a

propellant ingredient. The work developed in this context is

reported in Part 2 of this paper.
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