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Abstract

We study the error propagation of time integrators of solitary wave solutions for the regularized long wave
equationu; +uy + %(uz)x —uyy; = 0, by using a geometric interpretation of these waves as relative equilibria. We
show that the error growth is linear for schemes that preserve invariant quantities of the problem and quadratic for
‘nonconservative’ methods. Numerical experiments are present2@01 IMACS. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to analyze the growth with time of the error of time-integrators for solitary
wave solutions of the regularized long wave (RLW) equation. For this problem, we establish a better error
propagation for schemes that conserve invariants of the equation. These conservative methods exhibit -
linear error growth, while for ‘general’ integrators, the propagation with time of the error is quadratic. The
evolution of these invariants in the numerical integration is also influenced by the conservation properties
of the scheme considered.

The advantages gfeometric integrator$28], i.e., of methods that mimic geometric properties of the
system of differential equations being integrated, are well known in the case of ordinary differential
equations [5—7,14]. In Refs. [9,12], partial differential equations, as the Korteweg—de Vries equation and
the nonlinear Schrédinger equation, have been analyzed. These works are in the origin of the presen
paper, along with the geometric study given in Ref. [11]. We prove that the mechanisms leading to
favorable error propagation, that were studied to those equations, can be applied to this case.
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Our results are based on several facts: first, the RLW equation adidasétonian structurd1]. It
also possessessgmmetry groupl,23], generated by one of its invariants. In this context, solitary wave
solutions arise from eelative equilibrium problenjl]; this means that these solutions are critical points
of the Hamiltonian function restricted to level sets of the invariant associated to the symmetry group. This
provides a geometric point of view to understand the role of the conserved quantities in the problem.

On the other hand, in order to approximate these traveling wave solutions, we need to investigate their
stability. Several papers perform classical stability analyses for this kind of waves [2—4,34], but, for our
numerical treatment, we make useasfymptotic stabilityesults. The papers [26] and [33] were used in
[9] and [12], respectively. In this case, asymptotic stability for RLW solitary waves were first observed
numerically [13,22] and the proof of this property is obtained in [21].

The benefits of conservative schemes for this problem are shown in some aspects. The first one, a
we mentioned previously, is the more efficient behaviour in time of the error. Another point is that the
numerical solution may admit an asymptotic expansion in which a new solitary wave appears. This is the
so-calledmodified solitary wavethat comes from the original one through perturbations in time of the
wave parameters: amplitude, velocity and initial location. We point out that these perturbations depend
on the conservative character of the integrator considered. A final comment concerns the evolution of
the conserved quantities through the numerical approximation. Here, the relative equilibrium problem,
solved by the solitary waves, states a dependency between the invariants involved. This relation implies
a better behaviour of the conservative methods for this matter.

The paper is structured as follows: Section 2 describes some relevant properties of the problem being
considered, as the Hamiltonian structure of the equation and the symmetry group we will deal with; we
also interpretate the solitary wave solutions as relative equilibria. In Section 3 we analyze the linearization
of the equation around one of these solitary wave solutions, while Section 4 is devoted to the main results
and to numerical experiments.

A natural extension of this paper concerns the application of these techniques to interactions of solitary
waves. The equations studied in [9,12] are examples of integrable partial differential equations: they
possess an infinite number of conserved quantities and the so-called soliton property, for which the
nonlinear interaction of solitary wave solutions leaves the waves basically unaltered. This is not the
case of the RLW equation, which has only a finite number of invariants [24], which indicates that the
equation is nonintegrable. The solitary wave interaction problem for the RLW equation has been studied
numerically in several papers (see, for example, Refs. [13,15,16,30]) and, from this point of view, the
present work can also be another starting-point in the treatment of this problem.

Some other generalizations of our analysis can be considered. Miller and Weinstein [21] extend
their asymptotic stability analysis to the solitary wave solutions of the modified RLW equation,
u, +u, + %(u3)x — u; = 0, and our numerical study could be applied here. On the other hand, the
behaviour of higher order terms in the expansion of the error or different discretizations may also be the
subject of future work.
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2. The reqgularized long wave equation
2.1. Hamiltonian structure and symmetry groups

The equation treated in the present case is the regularized long wave (RLW) equation
u,—i—ux—l—%(uz)x—uxx,zo, —oc0o<x<oo, t>0. 1)

Eq. (1) appears in many physical applications [8,27,35], and it has been studied extensively. A classical
reference is Ref. [3]; in fact, (1) is also referred to as the Benjamin—Bona—Mahoney equation. Results on
the existence of solutions can also be seen in Ref. [21] and numerical works concerning (1) are numerous
as well [8,13,15,16,30]. In the present work, we focus on the Hamiltonian structure of (1). In this case,
the phase spac® for the Hamiltonian formalism consists of sufficiently smooth real functios the
spatial variable: with its derivatives decreasing sufficiently fast at infinity. Thus, Eq. (1) can be expressed
as the following infinite-dimensional evolution equation, in Hamiltonian form

du

5 = J8H ). @
where 7 is the skew-adjoint operator [3,21,27],
J=-(1-0)"0,, 3)

8 denotes variational derivative and the eneffjys given by
H(u)= / (3u”+ 2u®) dx. 4)

The Hamiltonian structure associated to the operator (3) is determined Bgigson brackef20,23]
(F,G} = / §FJ8G dx. (5)

Observe that (5) admitSasimir functiong20,23]; they are functionals with zero Poisson bracket with
any other functional. In particular, they give rise to trivial conserved quantities of Eq. (1), see Ref. [23].
In the subsequent analysis we make use of one of these Casimir functions

oo

Clu) = / udx, ©)

which we call ‘mass’. The RLW equation also admits another conserved quantity (‘momentum’)
I(u) = /(%u2+%u§)dx. (7)

Observe thab 7 (1) =1 — 9,,u; then the Hamiltonian vector field, = 7587 (1) = —u, associated with
1, is theinfinitesimal generato[23] of the one-parameter symmetry group of Eq. (1),

G:(ux)) =u(x—¢), eeR, (8)
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that consists of translations in the spatial variable. This meansthat the flow of the vector field;.
In terms of the Poisson bracket (5), the condition fbrto admit the symmetry group (8) id, H} =
constant. In fact, sincé is a first integral of (1), we havél, H} = 0. The Casimir function (6) is not
associated to any other group.

2.2. Solitary wave solutions

Eqg. (1) admits a two-parameter family of solitary wave solutions [10,35] that can be seen as relative
equilibria [1] associated to the symmetry group (8). The reduction described in Refs. [11,12] can be
applied to this case. Here, the phase spads foliated by level set§l = k} of the first integrall . These
level sets are manifolds that, because of the involution condjtio/ } = 0, are invariant by the flow of
(1), that is an initial condition ofif = k} leads to a solution of (1) remaining on this level set for all t.

On the other hand, due to the fact thaf 7} = 0, each orbi{ G.(«), ¢ € R} of the symmetry group is
contained in a level s¢f = k}. Thus, each of these level sets is foliated by orbits of the group and we can
construct the corresponding reduced phase space [1,23], that is, the quotient space consisting of point
that are orbits in the original phase space, determined by the kalDe each reduced phase space, the
original Hamiltonian system leads to a new Hamiltonian system, the reduced system [1,23], that governs
the time evolution of the group orbits, that is the evolutiomn @hodulo translations in.

For a fixed level set/ = k} we look for relative equilibriasg € £2 [1]

8 H (o) — ¢81 (ug) =0, €)

I(uo) =k, (10)
for, initially, ¢ € R. We are looking for stationary points d@f restricted to the level set. The group
orbit through a relative equilibriumg is an equilibrium of the reduced system. The condition (9ufor
generates a solution of (1) from this initial value in a simple way, given by the one-parameter symmetry
subgroup:u(t) = G,;.(up) [11]. Then, the time evolution of the initial profile is given by a translation

governed by parameters growing linearly with time.
The substitution of (9) for this case gives

cug —(c—Dug+ %u(z) =0,

generating, foe > 1, the solution

uo(x) = 3(c — 1)sech (%, /[1— %x) . (11)

The level set (10) determines the relation with the parameter
12(c—1)2( 1( 1))
k=—0=(14+=(1—-)).
J1-1/c + 5 c
The group orbit through gives rise to a one-parameter family of solutions

@(x, x0) = Gy, (ug) = uo(x — xo). (12)
Every solution (12) projects onto the same equilibrium in the reduced phase space. Finally, we obtain the
solutions of (1) given by

V(x,t, ¢, x0) = Gue(@) = 3(c — 1)sech (%, [1— % (x —ct — xo)> . (13)
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This is a two-parameter family of solitary wave solutions. The paramet#gtermines not only the
velocity of the wave but also its amplitude (compare with Refs. [9,12]), with the taller the wave the faster
it travels. On the other handgy governs the initial location.

3. The variational equation
3.1. The homogeneous linearized equation

The time propagation of the error in the numerical integration of solitary wave problems for (1) can be
studied in terms of the corresponding linearized equation of (1) near a relative equilibrium solution like

¥ in (13). If § denotes the perturbation ¢f from an initial small change (x, 0, ¢, xo) + £80(x), thens
satisfies the homogeneous variational equation

(1 =0, +0,(6+ ) =0. (14)
With the change of variables given by the symmetry grdepG, ., [12] we can write (14) as
Ar — Ager + cAggs +0: (L—c)A + ¥ A) =0, (15)
with & =x — ¢t — xo, T =t. Now, (15) can be expressed as an evolution equation
Ar =LA, (16)
with the operatol. given by [21]
L=(1—0s) 0:L,, 17)
Le=—clg+c—1-v(8). (18)

As in Ref. [12] we will also treat with the corresponding nonhomogeneous variational equation for source
terms that admi{G,.: ¢+ € R} as a symmetry group. By using the change of variables above, we can
present this nonhomogeneous case as

Ar =LA +s, (19)

with s constant.

In order to study (16) in more detail, we consider the Sobolev spaté21,26] that consists of
functionsv (&) such that € v(£) € H(R), for a constant with 0 < a < /I — 1/c. The norm considered
is

o]l g2 = [|€ 0| 2

Observe that the solitary wave(£) and its derivatives belong to this space.
The spectral properties of the operaloare analyzed in Ref. [21]:

Lemma 3.1. There existg* > 1 such that for allc € (1, ¢*] and for all but a discrete set ef> ¢*, A =0
is the only eigenvalue df in H! with Rei > 0, where0 < a < /I — 1/c. The geometric multiplicity of
this eigenvalue i4 and the algebraic multiplicity i2. The generalized kernel @&f, Ker, L, is spanned
by the functions
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D1(8) = (20)

oy
aXO’
0
Pr(8) = a_lﬂ
C
with LP, = 0, LDy =Dy

(21)

Then, (16) has solutions of the form
a®y = (P2 + TP1),

which, in terms of the original variables, ¢, are linear combinations of the partial derivatives of the
solitary wave with respect tog andc. They represent changes of the wave due to the perturbation of
its parameters. Explicitlyp, corresponds to the group generatgrat the solitary wave and therefore
induces changes in the locatiap. On the other handp, is associated to modifications in the solitary
wave corresponding to changes in the valué ,aletermined by.

We denote byP the projection offf* onto the generalized kernel bfand byQ its complement — P,
that is,

Py, = (v, ¥1)P1 + (v, ¥2) Do,
0,=v— Pu.

(22)

Here, ¥; and ¥, form a basis of the generalized kernel of the adjoint operatoof L, where(-, -)
denotes thd.? inner product. These functions can be chosen in such a wayd¢ha¥;) = §;;. More
precisely [21],

&
U =06 (ag Dy — / D2(y) dy) + 602(1 — 0ge) Y, 23)

Vo =03(1— 0ge) Y,

where

2
oo 1 __}((d/dc)cwf)) o

d/doyiy)”  FT 2\ (d/de) i)
Infact, L*¥, = 0 andL*¥, = —W,. Observe tha®; is essentially the gradient of the invaridntévaluated
at the solitary wavey .
An important result to analyze the solutions of the nonhomogeneous version (19) is also due to Miller
and Weinstein [21]. They show that the operdtagenerates & semigroup with exponentially decaying
H! norm on the spectral complement of its generalized kernel.

Lemma 3.2. Assume tha® < a < «/I—1/c and thati = 0 is the only eigenvalue of in H?! with
Rex > 0. Let Q denote the projection ontger, (L*)* (see(22)). If A(T) is a solution of(16) with initial
conditionAg € HXN Q(HY), thenA(T) € H:N Q(H}) for all T and there are constants, k, > 0 such
that

A | 42 < ka€727 || Aol 2. (24)
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That is, solutions of (16) with initial data ix = H! N Ker,(L*)* decay exponentially to zero in
H! norm ast — oo. As far as theH! norm is concerned, observe that solutions of (16) conserve the
functional

7 ~1
F(A>=/(%<65A)2 €N Zya )ds,

—0o0

(recall thatc > 1); therefore, ifA(T) is a solution of (16), we have

2 1 7
1A < mF(A(T>)+m/x/m2ds

_ 2 —2a& A 2 2a&
= —1F(Ao)+—/1//e A28 de

2
< 7 F(80) + CAM)|| | AT

2 1 2 , 2
< ZF(AO) + EHA(T)HHl +C HA(T)HH,}'

Now, F(Ap) can be written in terms dfAg|| ;2 and we have the following estimate:

Lemma 3.3. Under the conditions of Lemn®2, if Ag € X N H, then there exist&;, k, > 0 such that
AT || g1 < kol Aollr + €727 | Aol y2). (25)

Observe that, since the symmetry group (8) consists of translations, the growth with time of solutions
of (14) is similar to that of solutions of (16). The estimate (25) implies that the only source of growth
with time of these solutions comes from its component in the generalized keriigltibét is the term
that represents perturbations in the parameters of the solitary wave.

3.2. The nonhomogeneous variational equation

The results above are essential to study the solutions of (18)=If(£) € H?, we can decompose
s =sp + 5o With sp € Ker, L,sp = Qs € X. By using Lemma 3.1, we can writg = s; + s with
s1 € KerL ands, in a supplement of Kek in Ker, L. More precisely,
s1=01P1, S2 = P>,
with
oe,-:(s,llfl-), 121,2 (26)
In this context, we have

Lemma 3.4.1f 0 < a < /I—1/c and s € H?, the solution of(19) with zero initial condition can be
written in the following way
2

T
A(T) =a1TP1+ (TCbz + 7¢1) + I'(T), (27)
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wherea, a, are given by(26). The functionl” is of the form
T

[(T) = /exp((T ~D)L)s k. 28)
0

Moreover, ifs, € H! and there exist$ € H' N H? such thatsy, = LB, then"(T) remains, for allT,
bounded in theZ* norm.

Proof. The expression (27) can be proved by using Duhamel’s principle and the previous results in a
similar way to that of Ref. [12]. Observe that we can write

T? r
A(T)=Ts1+ (TI + 7L)sz + /exp((T —1)L)sq dr,
0
wherel is the identity operator. The substitutionsgfands, proves the first part of the lemma. Note that
the estimate (25) shows that,sif € H*, thenI"(T), with a bounded integrand, grows at most linearly
with time in the #* norm. On the other hand, i), is in the range of the operatdr, Q, = Lg for
B € HN X (note thatQ(H}) is invariant byL), then we can writd”(T') in the form

I'(T)=(exp(TL)—1I)B,
and we use Lemma 3.3 to conclude the proafi

Remarks.

(a) Note that the first two terms in (27) correspond to the projection of the solution QrLKesith
its components in Kek (Ts; and (T?/2)Lsy) lying in the direction of the group generator at the
solitary wave solution. The component in Kér but not in KerL corresponds to the variation of
the relative equilibrium with respect to the parametethat governs the level manifold. Then,
this first part represents perturbations in the wave parameters, growing quadratically with time in
the direction of Kel. (in the group parametet) and linearly in the level set parameterlf the
source terny is orthogonal to the gradient dfevaluated at the solitary wave, then= 0 and the
growth is linear.

(b) The behaviour of the integrdl (7)) in (28) shows that the perturbations that do not correspond
to changes in wave parameters grow at most linearly with time ifth@orm. In the following
section, we deal with smooth source terms s(¢) in H N Ha1 which are orthogonal to the
gradients of the invariant€ and I at the solitary wave. In this case, these perturbations can
be controlled inH* norm uniformly in time. To see this, we first observe that the orthogonality
conditions imply

(s,1) = (s, ¥2) =0,
with ¥, given by (23). Therefore,

(Qs, 1) = (s, 1) = (s, V1) (D1, 1) — (5, ¥o) (P2, 1) = {5, ¥1)(P1, 1) =0
(the last expression vanishes beca(ig 1) = 0). Then we can define

3
Fe) = / 0s(y) dy.
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that is a smooth function &1 N Ha1 such that; F = Qs. On the other hand, the operatbrcan
be written as

L=0:M,, M,=(1-0:) L.,
andL., given by (18), is selfadjoint i, with Ker L. = spar@; ¢) [33]. Now, we have

1
<(1— agg)F, aglﬂ> = —<65F, (1— agg)w> = —6—2<Qs, '1’2) = 0

This means thaf is in the range ofV..; therefore,Qs is in the range of. and the last part of
Lemma 3.4 applies.

4. Numerical approximation
4.1. Main results

We make use of the preceding theoretical results in order to study the behaviour in time of
approximations to a solitary wave of the family (13). We consider a semidiscrete (disaretginuousx)
one-step integrators for the initial value problem for (1) of the form

Un+1 — XA[ (Un> , (29)

whereAr denotes the time step,” = U" (x) is a numerical solution attime levgl=nAt, n=0,1, ...,
andy, approximates the flow of the equation. Thug/f = u,, thenU" is an approximation to the value
u(t,) of the solutionu of (1) with initial conditionug.

We make some additional hypotheses about the method (29). Takiag the relative equilibrium
¢ like (12) and if the corresponding solutiaf in (13) is approximated by (29) with/® = ¢, we first
assume that the local errort that is the difference between the trye-flow at and xa, (v), admits
an expansion of the form

AT @) + APTIR (Y, A, (30)

wherer is the order of the method, R are mappings defined 2 with values ins2, [ is independent of
Arand||R(-, At)||zj1 — 0 asAt — 0. Itis also reasonable to suppose that/ () is a smooth function
in H1 N H2, since this mapping depends gnand its derivatives, which belong to this space [9].

The second hypothesis states the invariance of the mappindy the one-parameter groyy,.:
t € R} so that the mappingin (30) admits this group as a symmetry group. Note that, since the group
consists of translations and most standard integrators are invariant with respect to linear transformations
[31], this condition is not restrictive.

Finally, we also assume that the global et x) — v (x, ¢,) has an asymptotic expansion of the form

U'(x) =Y (x, 1) =At"e(x, t,) + At q(x, t,, A1), —00<x <00, (31)
where the functiore is independent ofAr and satisfies the corresponding nonhomogeneous variational
equation [7]

(1—0ge)e, +0 (e +e)=—I(Y), —oo<x<oo,t>0,

e(x,0)=0.
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Moreover,q is a remainder that, for fixed tends to zero in thé* norm asAr — 0.
The following theorem describes the asymptotic behaviour with time of the approximation to the
solitary wave, given by (29).

Theorem 4.1 (i) (General case)Assume thaf30), (31)hold andx,, is invariant by the one-parameter
group{G,.: t € R}. Then, we have

U'(x) =¥ (x,t,,C %)+ At p(x, 1,) + A" Q(x, t,,, At), (32)
where

&=c+ at, At (33)

F=x0+ (alt,, + 062%) At (34)

witha; = — (I, ¥;), i =1, 2. The functiorp is independent oAr and there is a constartf > 0 such that
lo(-, Oz < Ct. The functionQ is a remainder such that, for fixed || Q(-, ¢, At)||z;1 — 0as At — 0.
(i) (Conservative case)f the method?29) satisfies

(1,81(p)) =0, (35)
then(33)+34) hold witha, = 0. Moreover, if
({,1) =0, (36)

then the functiom is bounded in théZ* norm uniformly in time.

Proof. The proof of (i) is similar to that of Ref. [12]. Observe that the tepntorresponds to the
component of the functiom that lies in the spectral complement of the generalized kernél [&7].
By using Lemmas 3.3 and 3.4 this term grows, in general, at most linearly in time. On the other hand, if
the method satisfies (35), singe is, except multiplicative constant, the gradient of the invariant at the
solitary wave (see (23)), then it is clear that= 0.

It remains to prove the last part of (ii). But if (35), (36) hold, then Remark (b) of Section 3.2 applies
and the functiorp is bounded in théd* norm. O

From the expansion (32) we note that the so-cathedlified solitary wav9,12], that is the first term
of the right hand side of (32), has a new veloditgiven by (33) (and, therefore, a new amplitude) that
is a linear with time perturbation of the velocityof the original wave. The new locatiof, given by
(34), differs from the originakg in terms that grow quadratically with time. If the method conserves the
guantity 7, then [9] it satisfies (35) and the modified wave keeps the original velocity (and, therefore,
amplitude) while the perturbation of,, that determines the modified locatian reduces its growth,
being only linear. Note that the same conclusion can be reached if the method preserves the Hamiltoniar
(4) instead off. In this case, the leading term of the local error is orthogonal to the gradidifitatfthe
solitary wave; but the relative equilibrium condition (9) implies that this gradient is proportional to the
gradient off at this wave and, therefore, the scheme also satisfies (35).

We can also note that, if the method conserves the Casimir fun€tidhen (36) holds. But, sinc€
is a linear functional, it is preserved by practically all methods used in practice [17], so (36) is not an
exigent condition.
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The second term\t” p of the right hand side of (32) is @omplementary terrid,12] that represents
errors of leading order \+") not associated to changes in the parameters of the wave. Recall that it
corresponds to the component of the leading term of the global erporlimthe ‘conservative’ case, this
term is bounded in thé&* norm, being necessary to impose the conservation not only of the quantity
but also of the Casimi€ in order to obtain this bounded behaviour. Note that the invadadbes not
seem to play any role in the perturbation of the parameters of the solitary wave solution (see (33), (34))
while we can see the influence of the invaridnh both the modified wave and the complementary term.

Finally, the third term in (32A¢” Q is a remainder of higher ordela:").

4.2. Numerical experiments

The purpose of the experiments below is to show some advantages in the use of numerical scheme:
that conserve some invariant in the numerical integration of the solitary wave problem for (1), rather than
to compare the efficiency of the methods. This idea will influence not only in the type of experiments
being presented, but also in the choice of the integrators being used.

e From this point of view, we first consider the well-known implicit midpoint rule, which we call
[ICM]. This method has order two and conserves quadratic invariants of the system being integrated
[29]. In our case, it preserves the quantitput not the Hamiltonian (4).

e We can interchange the invariant to be preserved and construct a second-order method [HCM] that
conserves the Hamiltonian but not the functiondl9,32]. This scheme can be written as

Un-‘rl — Un _ Al(l— axx)—lax(Un-‘rl/Z + G(U", UVH—l))’

Un+1/2 B U + Un+l
=
FU™ — F(U™) 1
G(U", U™t = , FWU)=Z=zU>
( ) Untl _pyn ( ) 6

e Finally, the Simply Diagonally Implicit Runge—Kutta method [NCM],

y O

Nl [ R

with ¥ = (3+ +/3)/6 and order three (see Ref. [18]), has been chosen to illustrate the behaviour of
a typical nonconservative scheme, because this method does not preserve any of the guaitities

It is not difficult to prove that the three methods considered conserve the Casimir fudttibm
fact, we have preferred to use schemes with some degree of competitivity instead of to construct mass
nonpreserving integrators.

We present results concerning approximations to the solitary wave (13) with parametels
(amplitude 3) andy = —10. To implement the methods, we use a fully aliased pseudospectral spatial
discretization in such a way that, virtually, errors obtained correspond only to the time discretization [9].
This makes possible to observe the error growth with time in more detail. We successively refine the
spatial grid until one is found for which no further error reduction is possible. On the other hand,
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standard analysis can check the validity of the hypotheses of the Theorem 4.1 for the three integrators
considered [12]. We classify the numerical experiments presented in three classes:

e Differences in long time behaviour of the approximations in connection with conservation

properties.

o Differences between the elements of the solitary wave solution and the form of the corresponding

numerical approximation.

o Differences in time behaviour of the invariantand H through numerical integration.

We first study the propagation in time of the global error of each method. Fig. 1 shov$ tham
of the error as a function of time, in log-log scale, uptg = 200. Here, the solid lines correspond to
[ICM] and the dashed lines to [NCM]. Fig. 2 only differs from Fig. 1 in the scheme associated to the
solid lines, that now represent [HCM]. The step sizes (for the two figureshare 5=, & & ;.

The results of Table 1, which gives the errors at the final tigag= 200 for the three methods, show
the order of convergence,= 2 for [ICM] and [HCM] andr = 3 for [NCM]. This can also be observed
in Figs. 1 and 2 by watching the distance between parallel lines corresponding to a given method. On
the other hand, the slopes of the lines show that, for [ICM] and [HCM], errors grow linearly with time,
while for [NCM] the growth is quadratic after= 10 (compare with the lines plotted in the right down
corner of the figures). Recall that the second-order methods [ICM] and [HCM] conserve, respectively,
the momentunt and the HamiltoniarH ; according to Theorem 4.1, the parameters of the solitary wave
solution are perturbed in terms that grow at most linearly with time. The behaviour in error propagation
must be different in the case of [NCM], that does not preserve any of the quantities and, in fact, the leading
term of its local error does not satisfy (35); here, the perturbations of the parameters grow quadratically
with time.

From Figs. 1 and 2 we can also observe that, for some values of the timastg@M] and [HCM]
give smaller errors at the final timig,x = 200 than the third order scheme [NCM] (see, for example, the
lines corresponding tat = %) 4i0). The different behaviour with time of the error propagation suggests
that, for long time integrations, it seems to be advisable to use an integrator with some conservation
property.

The conservative character of a scheme has influence not only on the perturbations of the parameter
of the wave (and therefore in the construction of the corresponding modified solitary wave) but also on
the behaviour in time of the complementary term (see Theorem 4.1). This can be analyzed numerically,
for moderate values of, by computing the parameters of the modified solitary waesd x, and by
measuring the errors between this new wave and the corresponding numerical solution. Table 2 gives
these modified errors, ih2 norm, for the three schemes, at the final tigg, = 200. Observe that in all
cases, the modified error for any of the valueshofconsidered is smaller than the corresponding true
error (compare with Table 1). Most of the error is incorporated to the perturbations of the parameters that
determined the modified solitary wave. Figs. 3 and 4 illustrate the evolution in time of the modified error
for [HCM] and [NCM], respectively (the case of [ICM] is similar to that of [HCM] and it provides
no further information). Recall that the theoretical results reveal that, in the conservative case, the
complementary term is bounded in time, while in the general case, the growth of this element is at
most linear withz. This different behaviour is shown in Fig. 3, reflecting the bounded behaviour in the
conservative case, and in Fig. 4, where error grows linearly with time.

Note that, since we only analyze the evolution in time of the leading term of the global error, not many
things can be said about the remainder, whose behaviour in time should also affect in some way. At this
point, two facts can be remarked. First, from Table 2 we see that, in the case of the second-order method:
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Fig. 1. L2-error against. Solid line: [ICM]; dashed line: [NCM]. The time steps ate = 3. 75. 4. 15 The
broken lines at the bottom show the slopes for linear and quadratic growth in time.

Fig. 2. L2-error against. Solid line: [HCM]; dashed line: [NCM]Ar = &, & & 2L The broken lines at the
bottom show the slopes for linear and quadratic growth in time.
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Table 1
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Errors with respect to the solitary waverat 200

At

[ICM]

[HCM]

INCM]

1E-01 6.5680E-01 5.7426E-01

5E-02
2.5E-02
1.25E-02
6.25E-03
3.125E-03

1.6527E-01
4.1371E-02
1.0346E-02
2.5866E-03
6.4667E-04

1.4447E-01
3.6164E-02
9.0438E-03
2.2611E-03
5.6530E-04

3.9329E-01
4.9593E-02
6.2069E-03
7.7595E-04
9.6989E-05

Table 2

Errors with respect to the modified solitary wave at 200

At

[ICM]

[HCM]

INCM]

1E-01
5E-02
2.5E-02
1.25E-02
6.25E-03
3.125E-03

8.1552E-02
1.9753E-02
4.8981E-03
1.2220E-03
3.0538E-04
7.6328E-05

3.8517E-02
9.0863E-03
2.2376E-03
5.5732E-04
1.3918E-04
3.4786E-05

1.4539E-01
3.6307E-03
2.5108E-04
3.1149E-05
3.9005E-06
4.8719E-07

[ICM] and [HCM], modified errors behave as(@®:?) suggesting that, for the values af considered,

the complementary term dominates over the remainder; however, the influence of the remainder is notec
in the case of [NCM], where modified errors do not have ani£3) behaviour for moderate values of

At relative to the final time of integration (see the values of the modified error corresponding to [MCN]
for At = 1—10 2—10 4—10, in Table 2). When we have smaller values of the time step, the complementary term
becomes dominant. This seems to show that, for a long final gjgxewe need smalleir to find the

leading order of the method in the modified errors.

On the other hand, by making the final time of integration longer and by retaining a fixed
we have observed that, in the conservative case of [ICM] and [HCM], the bounded behaviour of the
complementary term is lost, being substituted by the growth of terms hidden in the remainder. Note that
the expansion (32) is not uniform, in the sense that this remainder will in general grow with time [7].
Here we conclude the first type of numerical experiments.

The structure of the numerical solution can be nicely illustrated by plotting the solitary waves. Here,
other differences are noted. Fig. 5 showst at 100, the true solitary wave, with solid line, while the
broken line and the crosses represent, respectively, the modified solitary wave and the numerical solutior
corresponding to [HCM], withAr = 2—10 Fig. 6 displays the same elements for [NCM]. In both cases,
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x 10

25 B

0 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80

Fig. 3. L2-error with respect to the modified solitary wave againftfCM] with Az = 80

0 I I 1 1 1 I 1
0 10 20 30 40 50 60 70 80

Fig. 4. L2-error with respect to the modified solitary wave again§NCM] with Ar = 8—10.
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Il 1 1 1 1

0.5 1 1 1 1
180 182 184 186 188 190 192 194 196 198 200

Fig. 5. [HCM] with At = % at r = 100. Original solitary wave (solid line), modified wave (dashed line) and
numerical solution (crosses).

3

25

0.5

1 1 1 ! L 1 1

-0.5 ! !
180 182 184 186 188 190 192 194 196 198 200

Fig. 6. [NCM] with Ar = 2—10 atr = 100. Original solitary wave (solid line), modified wave (dashed line) and
numerical solution (crosses).
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we see that the numerical solution essentially behaves as a solitary wave, closer to the corresponding
modified wave than to the solution (see Tables 1 and 2). For the ‘conservative’ scheme [HCM], the
modified wave differs from the original one in a linear with time perturbation in the initial location (see
Theorem 4.1) which in the case of the figure delays its motion with respect to that of the true wave.
However, the modified wave keeps the original velocity, and therefore amplitude. In fact, the modified
wave associated to [HCM] also preserves the value of the ‘mass’ of the original solitary wave, represented
by the Casimir functiorC,

Cy)=12y/c(c - 1),

because this quantity only depends on the velacity

This is not the situation in the case of the ‘nonconservative’ method [NCM]. Here, the modified wave
has a different velocity of propagation and, therefore, amplitude, see (33), growing linearly with time with
respect to the velocity of the solution. This is visible in Fig. 6. In particular, the modified wave does not
conserve the ‘masg€”. Since the numerical solution does preserve it, the mass lost in the approximation
to the modified solitary wave is recovered in the formation @filg9] behind the numerical solitary wave
profile. This tail can be observed in Fig. 7, which displays the numerical solution appearing in Fig. 6,
but with a vertical scale with some more degrees of magnitude. This phenomenon does not occur in the
conservative case.

Finally, we complete the numerical experiments by analyzing the behaviour, through the numerical
integration, of the conserved quantitiesnd H. We study the evolution of the differences

H(U") = H (Y (1)) = H(U") - H(U°), (37)
1U") = 1(¥ ) =1(U") = 1(U°), (38)

between the values dfand H at the solitary wave solution and the discrete versions of the quantities, at
the numerical solution given by [HCM], for (38), and by [NCM], for both (37) and (38). These discrete
versions of the invariants use the pseudospectral spatial discretization and are good approximations o
the quantities at the corresponding semidiscrete numerical solution [25]. Observe thaf, aimt&/

are conserved quantities of the problem, the differences (37) and (38) also estimate the evollition of
and H in the numerical integration. Figs. 8 and 9 represent, respectively, the evoluticanofH at the
numerical solution given by [NCM], while Fig. 10 shows the values (38) in the case of [HCM].

Recall that, in general, the difference between an invariant of the problem considered at the numerical
approximation and at the true solution is of the order of the method [9]; if we expand this difference
in powers ofAt, the coefficient of the leading term is the inner product between the gradient of the
invariant at the true solution and the leading term of the asymptotic expansion of the global error. This
dominant order can be seen, in the case of [NCM], in Figs. 8 and 9, where errors (37) and (38) show
an O(Ar®) behaviour. However, as far as [HCM] is concerned, note that, the leading term of its local
error is orthogonal not only to the gradient Bf at ¢y (because the scheme is Hamiltonian conserving)
but also to the gradient of the other quantityat the solitary wave (because of the relative equilibrium
condition (9)). This fact and the conservationIaby the solutioryr implies [9,12] that the leading term
of the global error is also orthogonal to that gradient; them\as—> 0 with ¢, fixed, the order of the
error (38) is @A?). Fig. 10 shows an Q\+%) behaviour.
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ERs 4

4 - _

5 1 1 1 1 I 1 1 1 !
80 100 120 140 160 180 200 220 240

Fig. 7. NCM] with Az = %) at+ = 100. Numerical solution with magnified vertical scale. A tail is formed.
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Fig. 8. Momentum error against[NCM] with Ar = J5, &
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Fig. 9. Energy error against[NCM] with Az = 55, 4.
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Fig. 10. Momentum error againstfHCM] with At = &, .
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