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The location of the critical end point (CEP) and the isentropic trajectories in the QCD phase diagram are
investigated. We use the (2þ 1) Nambu–Jona-Lasinio model with the Polyakov loop coupling for different
scenarios, namely by imposing zero strange quark density, which is the case in the ultrarelativistic heavy ion
collisions, and β equilibrium. The influence of strong magnetic fields and of the vector interaction on the
isentropic trajectories around the CEP is discussed. It is shown that the vector interaction and the magnetic
field, having opposite effects on the first-order transition, affect the isentropic trajectories differently: as the
vector interaction increases, the first-order transition becomes weaker and the isentropes become smoother;
when a strong magnetic field is considered, the first-order transition is strengthened and the isentropes are
pushed to higher temperatures. No focusing of isentropes in region towards the CEP is seen.
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I. INTRODUCTION

The main goal of the heavy ion collision (HIC) program
is to understand strong force and extended systems gov-
erned by quantum chromodynamics (QCD). Developments
over the last two decades allowed the creation and inves-
tigation of new forms of QCD matter characterized by high
parton densities. One major achievement in HIC was the
discovery that QCD matter at energy densities greater than
1 GeV=fm3 acts like a strongly interacting plasma of
quarks and gluons. Indeed, the fast (local) thermalization
time and the good agreement of the data at RHIC with ideal
relativistic hydrodynamics models (which admit a fluid
evolution with zero viscosity) are evidences that the matter
formed at RHIC is a strongly interacting plasma of quarks
and gluons [1], as confirmed by the Large Hadron Collider
(LHC) data [2].
Since in HIC the expansion of the quark-gluon plasma

(QGP) is accepted to be a hydrodynamic expansion of an
ideal fluid, it will nearly follow trajectories of constant
entropy, the so-called isentropes. Due to the conservation of
the baryon number, the isentropic trajectories are lines of
constant entropy per baryon (s=ρB) in the (T, μB) space
with zero strange quark density, ρs ¼ 0, which contain
important information on the adiabatic evolution of the
system. For AGS, SPS, and RHIC, the values of s=ρB are
30, 45, and 300, respectively [3]. Lattice results for the
isentropic (2þ 1)-flavor equation of state (EOS) at these
values of s=ρB are given in Refs. [4,5].
In Ref. [6] it was proposed that the presence of a critical

end point (CEP) in the QCD phase diagram deforms the
trajectories describing the evolution of the expanding
fireball. This will have important consequences on the

search for the CEP, because modifications of the expansion
trajectory may lead to observable effects in the hadron
spectra (see Ref. [7]).
The possible existence of the CEP and its implications to

the QCD phase diagram is a very timely topic that has drawn
the attention of the physics community. From the theoretical
point of view, the location of the CEP has been intensively
investigated by using lattice QCD calculations (despite the
fermion sign problem, extrapolationmethods have been used
to access the region of small chemical potentials and look for
the CEP [8]), and more recently by using Dyson-Schwinger
equations [9]. Also, effective models such as the Nambu–
Jona-Lasinio (NJL) model and its extensions, like the NJL
model with eight-quark interactions and the Polyakov–
Nambu–Jona-Lasinio (PNJL) model, have been used to
study critical properties around the CEP [10–12].
From the experimental point of view, the location of the

CEP is one major goal of several HIC programs, but so far,
no definitive results have been found about its location, and
even its existence remains a mystery. Since 2010, the Beam
Energy Scan (BES-I) program at RHIC has been searching
for the experimental signatures of the first-order phase
transition and the CEP by colliding Au ions at several
energies [13]. In the near future it is expected that, if the
CEP exists at a baryonic chemical potential below
400 MeV, the upcoming BES-II program can provide data
on fluctuation and flow observables which should yield
quantitative evidence for the presence of the CEP. Also, at
RHIC, the STAR Collaboration is looking for the CEP,
but no definitive conclusions were possible from their
measurements of the moments of net-charge multiplicity
distributions. Future measurements with high statistics data
will be needed [14].
The NA49 program at CERN SPS has also investigated
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analyzing πþπ− pairs with an invariant mass very close to
the two-pion threshold, looking for critical fluctuations of
the sigma component in a hadronic medium [15]. Sizable
effects of πþπ− pair fluctuations with critical characteristics
were found in Siþ Si collisions, but these effects could not
be directly related to the presence of the CEP. Presently, the
NA61/SHINE program is dedicated to looking for the CEP
and to investigating the properties of the onset of decon-
finement in light and heavy ion collisions [16,17].
Recently, new possible hints on the CEP were given:
(i) In Ref. [18], a finite-size scaling analysis of

nonmonotonic excitation functions for the
Gaussian emission source radii difference obtained
from two-pion interferometry measurements in
Auþ Au (

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV) and Pbþ Pb
(

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV) collisions suggests a second-
order phase transition with the estimated location of
the CEP at TCEP ¼ 165 MeV and μCEPB ¼ 95 MeV.

(ii) In Ref. [19], a sharp peak in the trace anomaly and a
local minimum of the generalized specific volume at
a laboratory energy of 11.6A GeV was observed
which can provide a signal for the formation of a
mixed phase between the quark-gluon plasma and
the hadron phase.

(iii) In Ref. [20], it is argued that the observed collapse of
directed flow of protons and pions at midrapidity at
9 GeV <

ffiffiffiffiffiffiffiffi
sNN

p
< 20 GeV is the evidence for the

softening of the QCD equation of state (EOS),
possibly caused by a first-order phase transition.
If these results are confirmed—i.e., an unambiguous
experimental identification of a first-order phase
transition from the hadronic phase to the deconfined
phase, having in mind that lattice QCD calculations
at zero baryon chemical potential show an analytic
crossover for the transition from hadrons to quarks
and gluons [21–23]—the existence of the CEP gains
a strong foothold.

As a matter of fact, it might be easier to detect the first-
order phase-coexistence region than the CEP: when the
expanding matter created in a HIC eventually crosses a
first-order phase transition line, the system probably will
spend sufficient time in this region to develop measurable
signals. Possible observables of this transition are based on
the clumping of the system due to spinodal phase decom-
position. This could lead to enhanced fluctuations of
observables like the strangeness: the enhancement of the
kaon-to-pion fluctuations can be the result of the enhance-
ment of fluctuations in the strangeness sector (for a review,
see Ref. [7]). These fluctuations caused by spinodal
instabilities are a generic phenomenon of first-order phase
transitions and may be less suppressed by the short lifetime
and the finite size of the system, as compared to critical
fluctuations needed to detect the CEP.
The experience acquired in theoretical and experimental

investigations concerning the nuclear liquid-gas phase

transition can be very useful to the study of deconfinement
and chiral phase transitions in relativistic HIC [24]. Indeed,
in Ref. [25], the spinodal instabilities as a signal of the
nuclear liquid-gas phase transition have been successfully
identified in nuclear multifragmentation.
In the next several years, planned experiments at FAIR

(GSI) and at NICA (JINR) will strengthen the search for the
CEP (and the first-order transition of the QCD phase
diagram) by exploring regions of higher baryonic chemical
potentials, and definitive conclusions concerning its pos-
sible existence and location are expected (a review on the
experimental search of the CEP can be found in Ref. [26]).
It is also important to point out that the location of the

CEP is affected by several conditions like the isospin or
strangeness content of the medium [27], the role of the
vector interaction in the medium [28,29] or the presence of
an external magnetic field [27,29]. The possible location of
the CEP will allow us to set stricter constraints on effective
models.
Considering all that has been mentioned above, together

with its relevance for the understanding of the QCD phase
diagram, in the present work we investigate the isentropic
trajectories crossing the chiral phase transition around the
CEP in both the crossover and first-order transition regions.
We consider different scenarios of interest for the phase
diagram obtained by choosing different values of the isospin
and the strangeness chemical potentials. Finally, we explore
the effects of the vector interaction and of an external
magnetic field on the isentropic trajectories around the CEP.

II. MODEL AND FORMALISM

To investigate quark matter subject to strong magnetic
fields, we will use the PNJL model [30,31] with 2þ 1
flavors and a vector interaction. The PNJL Lagrangian in
the presence of an external magnetic field is given by

L ¼ ψ ½iγμDμ − m̂f�ψ þ GS

X8
a¼0

½ðψλaψÞ2 þ ðψiγ5λaψÞ2�

−GDfdet ½ψð1þ γ5Þψ � þ det ½ψð1 − γ5Þψ �g

−GV

X8
a¼0

½ðψγμλaψÞ2 þ ðψγμγ5λaψÞ2�

þ UðΦ;Φ;TÞ − 1

4
FμνFμν: ð1Þ

The quark sector is described by the SU(3) version of the
NJL model where GS represents the four-Fermi coupling
constant and GD denotes the ’t Hooft interaction strength
[32–34].
In Eq. (1), ψ ¼ ðu; d; sÞT is the quark field with three

flavors, and m̂f ¼ diagfðmu;md;msÞ is the corresponding

(current) mass matrix. λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
I, where I is the unit

matrix in the three-flavor space, and 0 < λa ≤ 8 denote the
Gell-Mann matrices.
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The coupling between the (electro)magnetic field B
and quarks, and that between the effective gluon field
and quarks, is implemented via the covariant derivative
Dμ ¼ ∂μ − iqfA

μ
EM − iAμ, where qf is the quark electric

charge (qd ¼ qs ¼ −qu=2 ¼ −e=3), AEM
μ and Fμν ¼

∂μAEM
ν − ∂νAEM

μ are used to account for the external

magnetic field, and AμðxÞ ¼ gstrongA
μ
aðxÞ λa2 , where Aμ

a

is the SUcð3Þ gauge field. A static and constant magnetic
field in the z direction, AEM

μ ¼ δμ2x1B, is considered.
In the Polyakov gauge, Aμ ¼ δμ0A

0, with A0 ¼ −iA4.
The trace of the Polyakov line defined by Φ ¼
1
Nc
⟪P exp i

R β
0 dτA4ð~x; τÞ⟫β is the Polyakov loop which

is the exact order parameter of the Z3 symmetric/broken
phase transition in pure gauge.
To describe the pure gauge sector, we choose an effective

potential, UðΦ;Φ;TÞ, which allows us to reproduce the
results obtained in lattice calculations [35]:

UðΦ;Φ;TÞ
T4

¼−
aðTÞ
2

ΦΦ

þbðTÞ ln½1− 6ΦΦþ 4ðΦ3þΦ3Þ−3ðΦΦÞ2�;
ð2Þ

where aðTÞ ¼ a0 þ a1ðT0

T Þ þ a2ðT0

T Þ2, bðTÞ ¼ b3ðT0

T Þ3.
The choice of the parameters for the effective potential
UðΦ;Φ;TÞ is a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.2, and
b3 ¼ −1.75. The parameter T0 of the Polyakov potential
defines the onset of deconfinement and is fixed to 270MeV
according to the critical temperature for the deconfinement
in pure gauge lattice findings [36]. This potential was
constructed in order to describe, for the pure Yang-Mills
sector, the expectation value of the color traced Polyakov
loop (which acts as an order parameter for the confinement-
deconfinement transition). Other potentials were proposed
in literature (see for example Ref. [28]). However, a new
and consistent Polyakov-loop potential fitted to the latest
lattice data that are continuum extrapolated and cover a
large temperature range is needed. This new effective
potential will eventually change the behavior of the
isentropic trajectories. Since this new potential is not yet
available, we utilize the potential most commonly used in
the literature given by Eq. (2).
The thermodynamical potential Ω is written as

ΩðT;μ;BÞ¼2GS

X
f¼u;d;s

hψfψfi2−4GDhψuψui

×hψdψdihψ sψ si−2GV

X
f¼u;d;s

hψ†
fψfi2

þ
X

f¼u;d;s

ðΩf
vacþΩf

medþΩf
magÞþUðΦ;Φ;TÞ;

ð3Þ

where Ωf
vac, Ωf

med, and Ωf
mag are the flavor contributions

from the vacuum, medium, and magnetic field, respec-
tively, which can be found in the Appendix. The effective
chemical potential for each flavor is given by

~μf ¼ μf − 4GVρf; f ¼ u; d; s: ð4Þ

The equation of state for the entropy density, s, is given by

sðT; μ; BÞ ¼ −
∂Ω
∂T : ð5Þ

Since the model is not renormalizable, we regularize it
by using a sharp cutoff in 3-momentum space, Λ, for the
divergent ultraviolet integrals only. For our numerical
calculations, we adopt the parameter set obtained in
Ref. [37]: Λ¼602.3MeV, GSΛ2¼1.835, GDΛ5 ¼ 12.36,
mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV. In the vacuum
(T ¼ μq ¼ 0), this choice of parameters gives the quark
masses Mvac

q ¼ Mvac
u ¼ Mvac

d ¼ 367.7 MeV and Mvac
s ¼

549.5 MeV [37].

III. THE ISENTROPIC TRAJECTORIES

We next analyze how the isentropic trajectories near the
CEP are affected by the influence of a repulsive vector
interaction and by the presence of an external magnetic
field. We start with the case where the vector coupling is
absent at zero magnetic field and use the results as
benchmarks to discuss the effects of the vector interaction
and of the presence of a magnetic field on the isentropes.
We will neglect the effect of the soft-mode fluctuations
around the CEP. Indeed, soft modes associated with the
CEP are important1; however, their contribution is only
important in a narrow region surrounding the CEP [39].

A. Results at GV = 0

In this section, we consider three different scenarios for
the phase diagram:
Case I: Equal quark chemical potentials (μu ¼ μd ¼ μs).
This scenario, used in most calculations, corresponds to
zero charge (or isospin), μQ ¼ 0, and zero strangeness
chemical potential, μS ¼ 0. It also allows for isospin
symmetry, Mu ¼ Md, and the net strange quark density,
ρs, is nonzero.
Case II: Equal u and d quark chemical potentials (μu ¼ μd)
and zero strange quark chemical potential (μs ¼ 0). It
corresponds to zero charge (isospin) chemical potential,
μQ ¼ 0, and the strangeness chemical potential is one third
of the total baryonic chemical potential, μS ¼ 1=3μB. This
is the relevant scenario to simulate matter created by

1For the QCD CEP, the associated soft mode is a linear
combination of fluctuations of the chiral condensate and the
quark number density instead of pure chiral fluctuations [38].
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ultrarelativistic HIC. Indeed, since thermalization is
reached within 10−22 sec (10–20 fm=c), the time scale
of the strong interaction, the system is far from β equilib-
rium. The net strange quark number should be zero before
the beginning of hadronization in the expansion stage [40],
so the strange quark density must be set to zero, ρs ¼ 0.
Case III: β-equilibrium matter corresponding to μu − μd ¼
μQ ¼ −μe and μd ¼ μs (μS ¼ 0).
Next, we present our results for isentropic trajectories

close to the CEP. In Fig. 1 we plot the isentropic trajectories
in the T-μq plane (left panel) and in the T-ρB plane (right
panel) for case I. The CEP is located at (TCEP ¼ 155 MeV,
μCEPq ¼ 291 MeV) (see Table I). At zero temperature, the
phase diagram presents a first-order phase transition with
μcritq ¼ 361 MeV being the critical chemical potential
where the transition takes place [34,41]. At μq ¼ 0, both
chiral and deconfinement transitions are crossovers, being
the respective pseudocritical temperatures at Tχ

c ¼
222 MeV and TΦ

c ¼ 210 MeV [41].
By analyzing the behavior of the isentropic trajectories

when T → 0, we note that all isentropic trajectories
terminate at the same point of the horizontal axes:
T ¼ 0 and μq ¼ 367.7 MeV, with μq ¼ Mvac

q > μcritq .
This combination (T ¼ 0, μq ¼ 367.7 MeV) corresponds
to the vacuum. Indeed, for the chosen set of parameters, at

T ¼ 0, the first-order transition point satisfies the condition
μcritq < Mvac

q [34]. This scenario implies the existence of a
strong first-order phase transition from the vacuum solution
Mq ¼ Mvac

q into the partially chiral restored phase withMq

small when compared withMvac
q . At the transition point, the

density jumps from zero to a relatively large value.
According to the third law of thermodynamics, when

T → 0, also s → 0, and therefore, for s=ρB ¼ const, we
must require that ρB → 0, which is fulfilled when μq ¼
Mvac

q [41]. In fact, at μcritq and T ¼ 0, the total baryonic
density jumps from zero to ∼2.5ρ0, equally carried by
quarks u and d (the density of strange quarks, ρs, is still
zero, and we only have ρs ≠ 0 when μq > Ms).
In the vicinity of the first-order region, the isentropic

trajectories with s=ρB ≲ 6 come from the region of partially
restored chiral symmetry and reach the unstable region
(spinodal region), bounded by the spinodal lines, going
then along with it as T decreases until it reaches T ¼ 0
(see Fig. 1, left panel). Taking the line for s=ρB ¼ 0.5, it is
seen that the isentropic trajectory intersects the spinodal
line at (T ≈ 44 MeV, μq ≈ 372 MeV) and crosses the
first-order line twice, at (T ≈ 43 MeV, μq ≈ 358 MeV)
and (T ≈ 29 MeV, μq ≈ 360 MeV), as the temperature
decreases in a “zigzag”-shaped trajectory bounded by
the spinodal lines. Now, taking the line with s=ρB ¼ 4,
it becomes interesting to note that the isentropic trajectory
starts by having a behavior similar to that of s=ρB ¼ 0.5,
but then it leaves the spinodal region. However, as the
temperature decreases, the isentropic trajectory reaches the
spinodal region again from lower values of μq. This also
happens for lines with s=ρB ¼ 5 and s=ρB ¼ 6.
For cases with s=ρB > 6, the isentropic trajectories,

given by the curves in magenta, go directly through the
crossover region (the crossover is defined as the zero of the
∂2hqfqfi=∂T2, i.e., the inflection point of the light quark

FIG. 1. Left panel: QCD phase diagram in the T-μq plane. The full red line is the first-order chiral phase transition, and the gray region
is the unstable region bounded by the spinodal lines—the spinodal region. Right panel: QCD phase diagram in the T-ρB=ρ0 plane with
ρ0 ¼ 0.16 fm−3. The full red line delineates the phase coexistence boundary (binodal line). The metastable region is bounded externally
by the binodal line and is separated from the unstable region by the spinodal lines (gray lines). For both panels, the isentropic trajectories
correspond to (from right) S=ρB ¼ ½0.5; 1; 2; 3; 4; 5; 6; 7; 10�. The isentropic trajectories in magenta intersect the crossover line.

TABLE I. Temperature, quark chemical potential, and baryonic
density for the CEP in the different scenarios considered
(ρ0 ¼ 0.16 fm−3).

T [MeV] μq [MeV] ρB=ρ0

Case I (μu ¼ μd ¼ μs) 155 291 1.98
Case II (ρs ¼ 0) 157 296 1.84
Case III (β equilibrium) 146 308 1.71

PEDRO COSTA PHYSICAL REVIEW D 93, 114035 (2016)

114035-4



condensates hqfqfi, f ¼ u, d), displaying a smooth behav-
ior, and they reach the spinodal region from lower values of
μq. In the crossover region, the isentropic trajectories have a
behavior qualitatively similar to that obtained in lattice
calculations [5,42].
As already pointed out in Ref. [41], no focusing of

isentropic trajectories towards the CEP is seen, but only
smooth trajectories. The focusing effect was suggested in
Ref. [43], and it is argued that hot and dense QCD matter,
as systems with a possible CEP of the same universality
class as the three-dimensional Ising model, would exhibit
focusing near the CEP: the CEP would act as an attractor
for the isentropes [43]. However, several models do not
exhibit the focusing effect near the CEP. In Ref. [44],
isentropic trajectories were investigated in a renormaliza-
tion group approach applied to the quark-meson model, and
no focusing was found. Indeed, while the critical behavior
at the CEP is universal, the focusing effect is not, because
the entropy per baryon does not diverge at the CEP. The
characteristic shape of the isentropic trajectories in the
vicinity of the CEP can vary from model to model, even if
they belong to the same universality class [44].
Next, we will proceed by investigating case II (see left

panel of Fig. 2) due to its relevance to heavy ion collisions.
As already pointed out in Ref. [39], the phase diagram is
only slightly changed by the constraint ρs ¼ 0; in our case
the CEPmoves from (TCEP ¼ 155 MeV, μCEPq ¼ 291 MeV)
to (TCEP ¼ 157 MeV, μCEPq ¼ 296 MeV), as can be seen in
Table I. In Ref. [39] it was also argued that the strangeness
neutrality only has a perceptible effect on the isentropic
trajectories at high temperatures. The reason for this behavior
lies in the fact that the constituent mass of quark s,Ms, is still
heavy around the chiral crossover when compared with the
masses of the quarks u and d, and consequently ρs ≈ 0 even
without a constraint, as long as T is low and μq is smaller
than Ms.
In right panel of Fig. 2, we present the results concerning

case III, matter in β equilibrium, which has a large isospin

asymmetry. The CEP for β equilibrium occurs for a larger
quark chemical potential, but also for a lower temperature
when compared to the other scenarios. The reason is related
to the fact that matter in β equilibrium, being less
symmetric, is also less bound, and therefore, the transition
to a chirally symmetric phase occurs at a lower temperature
and density than in the symmetric case [27]. On the other
hand, at T ¼ 0, the spinodal region is reduced by 10 MeV
when compared with cases I and II, where the spinodal
region occurs between 346 and 378 MeV for both cases.
Concerning the isentropic trajectories, the behavior is
qualitatively similar to both cases previously studied, but
they have some peculiarities, as can be seen in the right
panel of Fig. 2: i) all isentropic trajectories will end at
T ¼ 0 and μq ¼ Mvac

q ¼ μcritq ¼ 367.7 MeV; and ii) for the
same values of s=ρB, the isentropic trajectories occur at
lower temperatures, especially for lower values of s=ρB.

B. Results at GV ≠ 0: The influence of the vector
interaction on the isentropic trajectories

In this section, we investigate the influence of the vector
interaction in the isentropic trajectories. Henceforward, we
restrict our study to case I (μu ¼ μd ¼ μs). The role of the
vector interaction in the phase diagram was studied in detail
in Ref. [28] and more recently in Ref. [29], where the
presence of an external magnetic field was also considered.
It was shown that the CEP can be absent in the phase
diagram when the value of the coupling GV is greater than
the critical value of Gcrit

V ≈ 0.71GS within the present
parametrization [29]. Indeed, as the value of GV is
increased from 0 to Gcrit

V , the first-order phase transition
is weakened: the CEP is located at lower temperatures
and larger chemical potentials, but smaller densities. For
GV ¼ 0.5GS, the CEP is located at (TCEP ¼ 88 MeV,
μCEPq ¼ 371 MeV), while at Gcrit

V ≈ 0.71GS, it is located
at (TCEP ∼ 0 MeV, μCEPq ¼ 390 MeV) (see Table II).

FIG. 2. Left panel: Phase diagram in the T-μq plane for case II (ρs ¼ 0). Right panel: Phase diagram in the T-μq plane for case III (β
equilibrium). The isentropic trajectories in magenta intersect the crossover line.
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In the left (right) panel of Fig. 3, we present the results
for the isentropic trajectories when GV ¼ 0.5GS

(Gcrit
V ≈ 0.71GS). For GV ¼ 0.5GS (left panel of Fig. 3),

their behavior is different from that obtained with GV ¼ 0
(left panel of Fig. 1): Due to the repulsive nature of the
vector interaction, when T ¼ 0, the first-order phase
transition only takes place at a critical potential
μcritq > Mvac

q , meaning that the system will not form quark
droplets; instead, the system has a homogeneous quark gas
at low densities. The constituent mass of light quarks goes
gradually down and the respective density starts to rise
smoothly at μq ≈Mvac

q , well before μcritq . Consequently,
isentropic trajectories will not finish in the spinodal region
as T → 0 but for μq nearMvac

q . Taking the trajectory s=ρB ¼
1 (dashed blue line), it intersects the first-order line three
times, being the highest-temperature crossing near the CEP.
Then, as the temperature decreases in its path inside the
spinodal region, it reaches the chemical potentials of both
the lower and upper spinodal lines. At T ≈ 15 MeV, the
isentropic trajectory leaves the spinodal region to the
chirally broken phase going to μq ∼Mvac

q when T → 0.
The trajectory with s=ρB ¼ 2 goes through the crossover at
T ≈ 96 MeV and μq ≈ 369 MeV, very close to the CEP
(TCEP ¼ 88 MeV, μCEPq ¼ 371 MeV), and comes into the
spinodal region from lower values of μq just below the CEP.
At T ≈ 70 MeV, the isentropic trajectory leaves the spi-
nodal region, its behavior being similar to that of the line

s=ρB ¼ 1. The trajectories with s=ρB ≥ 3 (in magenta) do
not cross the spinodal region.
In the high-chemical-potential region, the isentropic

trajectories behave similarly to case I (see also the left
panel of Fig. 1). In this region, the chiral symmetry is
already restored for all scenarios, being the constituent
masses of the quarks close to their current values. This also
happens when Gcrit

V ≈ 0.71GS (see right panel of Fig. 3),
even if in this case the first-order phase transition no longer
occurs and the transition to the partially chiral restored
phase is a crossover, except at the CEP where the transition
is of second order.

C. The influence of the magnetic field on the
isentropic trajectories

The influence of a magnetic field gives rise to a magnetic
catalysis (MC) effect—i.e., the enhancement of the quark
condensate due to the magnetic field. Increasing the
chemical potential and/or the temperature and increasing
the magnetic field have competing effects: while high
chemical potentials and/or temperatures favor the restora-
tion of chiral symmetry, the magnetic field has an opposite
effect [45].
The influence of external magnetic fields on the position

of the CEP was investigated in detail for both NJL and
PNJL models in Refs. [27,29,46]. The main conclusions
when μu ¼ μd ¼ μs were that the trend is similar for both
models: as the intensity of the magnetic field increases until
a certain value (eB ∼ 0.4 GeV2 [27,29]), the transition
temperature increases and the baryonic chemical potential
decreases. For even stronger magnetic fields, when no
inverse magnetic catalysis (IMC) effects are considered,
both TCEP and μCEPB increase [27,46]. This can be seen from
Table III. If the isospin symmetric matter scenario is taken,
μu ¼ μd and μs ¼ 0, the influence of the magnetic field on
the CEP is very similar to the previous one, the temperature
being only slightly larger and the baryonic density only
slightly smaller for the CEP’s location [27].

TABLE II. Temperature, quark chemical potential, and bar-
yonic density for the CEP for different values of the vector
coupling, GV (ρ0 ¼ 0.16 fm−3).

T [MeV] μq [MeV] ρB=ρ0

GV ¼ 0 (case I) 155 291 1.98
GV ¼ 0.5GS 88 371 ∼1.4
Gcrit

V ¼ 0.71GS ∼0 390 ∼1.1

FIG. 3. Phase diagram in the T-μq plane for GV ¼ 0.5GS (left panel) and GV ¼ Gcrit
V ¼ 0.71GS (right panel). For GV ¼

Gcrit
V ¼ 0.71GS, all the isentropic trajectories do not cross the first-order transition region.
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When IMC effects [47,48] are taken into account,
noticeable effects on the location of the CEP occur for
sufficiently high values of the magnetic field: the CEP will
now occur at increasingly smaller chemical potentials and
at a practically unchanged temperature [29]. Under an
increase of the magnetic field, the CEP eventually moves
toward μB ¼ 0, and the deconfinement and chiral phase
transitions should become of first order as predicted by
lattice calculations [49].
To investigate the influence of the magnetic field on

the behavior of isentropic trajectories, we take eB ¼
0.05 GeV2, a relatively small magnetic field, and eB ¼
0.3 GeV2 (a magnetic field that could occur at LHC
experiments, even if the magnetic field can only be
produced for a short period of time in HIC), which are
plotted in Figs. 4 and 5, respectively. No IMC effects on the
location of CEP will be considered. From the panels of both
figures, we conclude that as the magnetic field increases,
the spinodal region is enlarged, especially for eB ¼
0.3 GeV2: the extension of the spinodal region at T ¼ 0
goes from Δμq ¼ 32 MeV for eB ¼ 0 to Δμq ¼ 167 MeV
for eB ¼ 0.3 GeV2. A complete study of the effect of
the magnetic field intensities on the EOS at T ¼ 0 was
performed in Refs. [29,50]. As pointed out, for some ranges
of the magnetic field, several first-order phase transitions
occur which disappear when the temperature is slightly
increased, so they will not influence the behavior of the

chosen isentropic trajectories. In fact, like in our case for
eB ¼ 0.05 GeV2, the filling of the Landau levels originates
Haas–van Alphen oscillations (the effect of Landau quan-
tization of charged particles’ energy). Larger values of B
increase the amplitude of the fluctuations and reduce their
number, because fewer Landau levels are involved [50].
The consequence is that the larger the intensity of the
magnetic field, the greater the difficulty in restoring chiral
symmetry. On the other hand, by increasing the temper-
ature, thermal energy can become of the order of the level
spacing and washes out these Landau quantization effects.
Nevertheless, at sufficiently low temperatures, Landau
quantization still manifests itself by the appearance of
oscillations in physical quantities like the pressure.
The investigated isentropic trajectories are quite affected

by the growth of the spinodal region as would be expected:
there is an entrainment of the isentropes to higher temper-
atures within this region as it grows, due to the increasing of
the magnetic field, as can be seen by comparing the left
panels of Figs. 4 and 5. Together with the shift of the CEP
(see Table III) to higher (lower) temperatures (chemical
potentials) by increasing magnetic fields (making the
spinodal region bigger), also the isentropic trajectories
are pushed to higher temperatures in the transition region,
especially when eB ¼ 0.3 GeV2.
However, outside of the spinodal region and for high

chemical potentials, the isentropes have almost the same
temperature as the those with eB ¼ 0, in particular for
eB ¼ 0.05 GeV2. This can be understood by considering
the fact that at high temperatures and chemical potentials,
the restoration of chiral symmetry already took place
and the magnetic catalysis effect is almost suppressed: due
to the increasing temperature, more Landau levels will be
filled when compared with low temperatures, being the
system less affected by the magnetic field. For lower
temperatures, isentropes with s=ρB < 4, at eB ¼
0.3 GeV2, are more affected by the magnetic field

TABLE III. Temperature, quark chemical potential, and bar-
yonic density for the CEP at eB ¼ 0, eB ¼ 0.05 GeV2, and eB ¼
0.3 GeV2 (ρ0 ¼ 0.16 fm−3).

T [MeV] μq [MeV] ρB=ρ0

eB ¼ 0 (case I) 155 291 1.98
eB ¼ 0.05 GeV2 156 289 ∼2.0
eB ¼ 0.3 GeV2 192 225 ∼3.5

FIG. 4. Left panel (right panel): Phase diagram in the T-μq (T-ρB=ρ0) plane for eB ¼ 0.05 GeV2. The isentropic trajectories
correspond to (from right, counterclockwise) S=ρB ¼ ½0.5; 1; 2; 3; 4; 5; 6; 7; 10�. The isentropic trajectories in magenta intersect the
crossover line.
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(as can be seen in the left panel of Fig. 5), where they can
decrease as μq is increased.
As in the previous sections, no focusing of isentropic

trajectories towards the CEP is seen with increased mag-
netic field but only smooth trajectories, as with the results
obtained in the model SU(2).
Finally, from the right panels of Figs. 4 and 5, it is seen

that the baryonic density area of the transition region
increases as the magnetic field increases. This is the result
of the strengthening of the first-order transition due to the
magnetic field. As already mentioned, stronger magnetic
fields induce larger spacing between the Landau levels, and
consequently, it is more difficult to restore chiral symmetry.
On the other hand, for high magnetic fields, the lower-
density spinodal line is pulled to very small densities, and
some isentropes (see the case for s=ρB ¼ 4 in the right
panel of Fig. 5) can reach the spinodal region for small
values of the density. With this behavior, it is expected that
the enhancement of fluctuations of observables caused by
spinodal instabilities, like strangeness, will be more easily
detected in the presence of strong magnetic fields.

IV. CONCLUSIONS

In the present work, we have investigated the isentropic
trajectories around the CEP. The isentropic trajectories are
very interesting because the hydrodynamical expansion of
a HIC fireball nearly follows trajectories of constant
entropy. New insights about the QCD phase diagram can
be obtained by investigating these possible paths for the
hydrodynamic evolution of a thermal medium created in
the collisions. An unambiguous experimental identification
of a first-order phase transition (if it exists) from the
hadronic phase to the deconfined phase is one important
goal of HIC experiments at present and future facilities.
However, the first-order transition can be affected by the
isospin or strangeness content of the medium, by the role of
the vector interaction in the medium, or by external
conditions, like the presence of an external magnetic field.

We considered different scenarios of interest for the
phase diagram by choosing matter with different content of
strangeness and isospin (the β-equilibrium case having the
largest isospin asymmetry). We also explored the effects of
the vector interaction and of an external magnetic field on
the isentropic trajectories around the CEP.
More asymmetric matter weakens the first-order tran-

sition: the CEP for matter in β equilibrium occurs at lower
temperatures and densities than the symmetric cases
(μu ¼ μd ¼ μs and μu ¼ μd, μs ¼ 0); at T ¼ 0 the spinodal
region is also smaller for matter in β equilibrium.
Concerning the isentropic trajectories, the behavior is
qualitatively similar for all cases investigated, but for the
same values of s=ρB, the isentropic trajectories occur at
lower temperatures for matter in β equilibrium.
When a vector interaction is introduced, the first-order

transition becomes even weaker, which is reflected in the
CEP location (it can even disappear in the μq axis) and in an
increasingly smaller area of instability as GV grows. In the
high-chemical-potential region, the isentropic trajectories
behave similarly to the case without vector interaction once
the chiral symmetry is already restored for all scenarios and
the influence of vector interaction fades out.
On the other hand, the influence of a strong magnetic

field on the phase diagram is reflected in the strengthening
of the first-order transition with the respective enlargement
of the spinodal region and the displacement of the CEP
to higher temperatures and lower chemical potentials. The
isentropic trajectories are entrained for higher temperatures,
and the ones with lower values of s=ρB at lower temper-
atures are more affected by the magnetic field, especially
for higher values of B. For high magnetic fields, the lower-
density spinodal line is pulled to small densities, and some
isentropes can reach the spinodal region for small values of
the density. It is then expected that there will be an
enhancement of fluctuations of observables caused by
spinodal instabilities in the presence of strong magnetic
fields at lower densities.

FIG. 5. Left panel (right panel): Phase diagram in the T-μq (T-ρB=ρ0) plane for eB ¼ 0.3 GeV2. The isentropic trajectories correspond
to (from right, counterclockwise) S=ρB ¼ ½0.5; 1; 2; 4; 6; 8; 10; 12�. The isentropic trajectories in magenta intersect the crossover line.
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APPENDIX

The flavor contributions from vacuum Ωf
vac, medium

Ωf
med, and magnetic field Ωf

mag [51,52] are given by

Ωf
vac ¼ −6

Z
Λ

d3pf

ð2πÞ3 Ef; ðA1Þ

Ωf
med ¼ −T

jqfBj
2π

X
n¼0

αn

Z þ∞

−∞

dpi
z

2π
ðZþ

ΦðEfÞ þ Z−
ΦðEfÞÞ;

ðA2Þ

Ωf
mag ¼ −

3ðjqfjBÞ2
2π2

�
ζ0ð−1; xfÞ −

1

2
ðx2f − xfÞ ln xf þ

x2f
4

�
;

ðA3Þ

where Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpi

zÞ2 þM2
f þ 2jqfjBk

q
, α0 ¼ 1 and

αk>0 ¼ 2, xf ¼ M2
f=ð2jqfjBÞ, and ζ0ð−1; xfÞ ¼ dζðz; xfÞ=

dzjz¼−1, where ζðz; xfÞ is the Riemann-Hurwitz zeta
function. Zþ

Φ and Z−
Φ read

Zþ
Φ¼ lnf1þ3Φe−βðEf−μfÞþ3Φe−2βðEf−μfÞþe−3βðEf−μfÞg;

ðA4Þ

Z−
Φ¼ lnf1þ3Φe−βðEfþμfÞþ3Φe−2βðEfþμfÞþe−3βðEfþμfÞg:

ðA5Þ

The quark condensates hψfψfi are given by hψfψfi ¼
hψfψfivac þ hψfψfimag þ hψfψfimed, where

hψfψfivac ¼ −6
Z
Λ

d3p
ð2πÞ3

Mf

Ef
; ðA6Þ

hψfψfimag ¼ −
3mfjqfjB

2π2

�
lnΓðxiÞ −

1

2
lnð2πÞ

þ xi −
1

2
ð2xf − 1Þ lnðxfÞ

�
; ðA7Þ

hψfψfimed ¼
3ðjqfjBÞ2

2π

×
X
n

αn

Z þ∞

−∞

dpi
z

2π
ðfþΦðEfÞ þ f−ΦðEfÞÞ:

ðA8Þ

The distribution functions fþΦ and f−Φ are

fþΦðEfÞ¼
Φe−βðEf−μfÞ þ2Φe−2βðEf−μfÞ þe−3βðEf−μfÞ

1þ3Φe−βðEf−μfÞ þ3Φe−2βðEf−μfÞ þe−3βðEf−μfÞ ;

ðA9Þ

f−ΦðEfÞ¼
Φe−βðEfþμfÞ þ2Φe−2βðEfþμfÞ þe−3βðEfþμfÞ

1þ3Φe−βðEfþμfÞ þ3Φe−2βðEfþμfÞ þe−3βðEfþμfÞ :

ðA10Þ

By employing a mean-field approach, the effective
quark masses, Φ, and Φ can be obtained self-consistently
from

Mf ¼ mf − 4GShψfψfi − 2GDϵijkhψ jψ jihψkψki
ðA11Þ

and

∂U
∂Φ ¼ ∂U

∂Φ ¼ 0: ðA12Þ
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