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Abstract

Catalysis of dynamical symmetry breaking by a constant magnetic field in (3 + 1) dimensions is considered. We use the three flavour Nambu–
Jona-Lasinio type model with ’t Hooft and eight-quark interaction terms. It is shown that the multi-quark interactions introduce new additional
features to this phenomenon: (a) the local minimum of the effective potential catalyzed by the constant magnetic field is smoothed out with
increasing strength of the field at the characteristic scale H ∼ 1019 G, (b) the multi-quark forces generate independently another local minimum
associated with a larger dynamical fermion mass. This state may exist even for multi-quark interactions with a subcritical set of couplings, and is
globally stable with respect to a further increase of the magnetic field.
© 2007 Elsevier B.V. All rights reserved.

PACS: 11.30.Rd; 11.30.Qc
It has been shown in a series of papers [1–3] that in (2 + 1)

and (3 + 1) dimensions a constant magnetic field H �= 0 cat-
alyzes the dynamical symmetry breaking leading to a fermion
mass even at the weakest attractive four-fermion interaction
between particles, and the symmetry is not restored at any arbi-
trarily large H . Soon thereafter it became also clear [4–6] that
the zero-energy surface of the lowest Landau level (LLL) plays
a crucial role in the dynamics of such fermion pairing. It has
been found that the dynamics of the fermion pairing in the ho-
mogeneous magnetic field is essentially (1 + 1)-dimensional,
and a deep analogy of this phenomenon with the dynamics of
electron pairing in BCS [7] has been stressed. The generated
fermion mass, Mdyn, turned out to be much smaller than the
Landau gap ∼ √|eH |.

The existence of a zero-energy surface in the spectrum of a
Dirac particle is ensured for any homogeneous magnetic field
with a fixed direction by a quantum mechanical supersymme-
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try of the corresponding second-order Dirac Hamiltonian [8].
This aspect of the phenomenon appears to be a quite excep-
tional situation and indicates that the dynamical generation of
mass is not so universal as one would expect by extrapolating
the results obtained for homogeneous or unidirectional [9] mag-
netic field profiles. For instance, it has been demonstrated by
Ragazzon [10] that the Nambu–Jona-Lasinio (NJL) model [11]
minimally coupled to a background magnetic field with variable
direction does not possess a massive phase until the coupling
constant exceeds some critical value. Obviously, in this case one
faces the conventional scenario of dynamical chiral symmetry
breaking, where the magnetic field does not play an essential
role.

Conversely, having in mind that homogeneous magnetic
fields can act as strong catalysts of chiral symmetry breaking,
one might ask what is the effect caused by the strong interac-
tion, when higher order multi-fermion interactions are present.
These extensions of the NJL model are well known [12–14], for
instance, the four-quark U(3)L × U(3)R chiral symmetric La-
grangian together with the U(1)A breaking ’t Hooft six-quark
interactions has been extensively studied at the mean-field level
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[15–18]. Recently it has been also shown [19,20] that the eight-
quark interactions are of vital importance to stabilize the multi-
quark vacuum.

The additional multi-quark forces can affect the result which
is obtained when only four-fermion interactions are considered.
We argue, in particular, that the ’t Hooft and eight-quark inter-
actions can modify the theory in such a way that the local min-
imum, catalyzed by the constant magnetic field, is smoothed
out by increasing the strength of the field. This is an alterna-
tive regime to the known one in which the strong magnetic field
cannot wash out the condensate from the LLL. For the first sce-
nario to become possible it is sufficient that the couplings of
multi-quark interactions are chosen such that the system dis-
plays more than one solution of the gap equation at H = 0.
Actually, the above condition is not a requirement. Even if the
gap equation has only one nontrivial solution at small H , an
increase in the magnetic field can induce the formation of a
second minimum.

The multi-quark dynamics of the extended NJL model is de-
scribed by the Lagrangian density

(1)Leff = q̄
(
iγ μDμ − m̂

)
q +L4q +L6q +L8q,

where the gauge covariant derivative Dμ is equal to Dμ =
∂μ + iQAμ with the external electromagnetic field Aμ and
quark charges Q = e · diag(2/3,−1/3,−1/3). It is assumed
that quark fields have colour (Nc = 3) and flavour (Nf = 3)

indices. The current quark mass, m̂, is a diagonal matrix with
elements diag(m̂u, m̂d , m̂s), which explicitly breaks the global
chiral SUL(3)×SUR(3) symmetry of the Lagrangian. We shall
neglect this effect in the following assuming that m̂ = 0.

The multi-quark interactions (in the scalar and pseudoscalar
channels) are

(2)L4q = G

2

[
(q̄λaq)2 + (q̄iγ5λaq)2],

(3)L6q = κ(det q̄PLq + det q̄PRq),

(4)L8q = L(1)
8q +L(2)

8q .

The U(3) flavour matrices λa, a = 0,1, . . . ,8, are normalized
such that tr(λaλb) = 2δab . The matrices PL,R = (1 ∓ γ5)/2
are chiral projectors and the determinant is over flavour in-
dices, which are suppressed here. The determinantal interaction
breaks explicitly the axial U(1)A symmetry [21] and Zweig’s
rule. The eight-quark spin zero interactions are given by

(5)L(1)
8q = 8g1

[
(q̄iPRqm)(q̄mPLqi)

]2
,

(6)L(2)
8q = 16g2(q̄iPRqm)(q̄mPLqj )(q̄jPRqk)(q̄kPLqi).

G,κ, g1, g2 are dimensionful coupling constants: [G] = M−2,

[κ] = M−5, [g1] = [g2] = M−8 in units h̄ = c = 1.
We proceed by calculating the effective potential of the

theory, V (mu,md,ms), in a constant magnetic field: Ax =
−Hy,Ay = Az = 0 (Landau gauge). The arguments, mi , are
simply real parameters; they are not to be identified with the
masses of any presumed one-particle states. Instead, we shall
use the capital letter Mi for the point where V takes its lo-
cal minimum, which specifies the masses of constituent quark
fields.
The potential is built of the following two terms

(7)V (mu,md,ms) = Vst + VS.

The first contribution results from the many-fermion vertices
of Lagrangian Leff, after reducing them to a bilinear form with
help of bosonic auxiliary fields, and subsequent integration over
these fields, using the stationary phase approximation (SPA)
method. The specific details of these calculations and the re-
sult are given in a recent work [19]. We obtain

(8)Vst = 1

16

(
4Gh2 + κhuhdhs + 3g1

2

(
h2)2 + 3g2h

4
)

,

where h2 = ∑
i=u,d,s h2

i , and h4 = ∑
i=u,d,s h4

i . The functions
hi depend on the coupling constants G,κ,g1, g2 and on the in-
dependent variables �i = mi − m̂i . To find this dependence one
should solve the system of cubic equations

(9)Ghi + �i + κ

16
hjhk|j �=k �=i + g1

4
hih

2 + g2

2
h3

i = 0.

In some parameter range the system has only one set of real
solutions, and this guarantees the vacuum state of the theory to
be stable [19].

The second term on the r.h.s. of Eq. (7) derives from the
integration over the quark bilinears in the functional integral of
the theory in presence of a constant magnetic field H . As has
been calculated by Schwinger a long time ago [22]

(10)VS =
∑

i=u,d,s

VS

(
mi, |QiH |),

where

VS

(
m, |QH |)

(11)

= Nc

8π2

∞∫
0

ds

s2
e−sm2

ρ
(
s,Λ2)|QH | coth

(
s|QH |) + const.

Here the cutoff Λ has been introduced by subtracting off suit-
able counterterms to regularize the integral at the lower limit,
i.e., ρ(s,Λ2) = 1 − (1 + sΛ2)e−sΛ2

. For the fermion tadpole
this works as the four-momentum covariant cutoff in the euclid-
ean space: �p2 + p2

4 < Λ2. The unessential constant is chosen
such that VS(0, |QH |) = 0. As a result we obtain

VS

(
m, |QH |)

= Nc

8π2

{
Λ2|QH |

[
ln 2π − 2 lnΓ

(
Λ2 + m2

2|QH |
)]

+ m2|QH | ln

(
1 + Λ2

m2

)
+ 4(QH)2

× d

dν

[
ζ

(
ν − 1,

Λ2 + m2

2|QH |
)

− ζ

(
ν − 1,

m2

2|QH |
)]∣∣∣∣

ν=0

(12)+ Λ4

2

(
ln

Λ2

2|QH | − 3

2

)
− Λ2m2

}
.

The quantity ζ(ν, x) denotes the generalized Riemann zeta
function [23].

We shall now illustrate the procedure which will be em-
ployed in the following, by considering first the simple SU(3)
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Fig. 1. The l.h.s. (straight short-dashed line) and the r.h.s. of Eq. (13) as func-
tions of m/Λ for four different values of the magnetic field strength H : full
curves (top to bottom) correspond to |QH |Λ−2 = 0.5;0.3;0.1, and the dashed
curve to H = 0. Box insert: close-up of region around origin with solid lines
for |QH |Λ−2 = 0.2;0.15;0.1 (top to bottom).

flavour limit for the situation in which m̂ = 0 and κ = g1 =
g2 = 0. For the purpose of illustration, we ignore the charge
difference of u and d, s quarks in the remaining. The averaged
common charge |Q| = |4e/9| will be used. In this case one ob-
tains the potential V (m) = Nf (m2/4G + VS(m, |QH |)). One
sees that the gap equation, dV (m)/dm = 0, has always a triv-
ial solution, m = 0. The nontrivial solution is contained in the
equation

2π2

GΛ2Nc

= f
(
m2;Λ, |QH |)

≡ ψ

(
Λ2 + m2

2|QH |
)

− |QH |
Λ2

(13)×
[

ln

(
1 + Λ2

m2

)
− Λ2

Λ2 + m2
+ 2 ln

Γ (Λ2+m2

2|QH | )

Γ ( m2

2|QH | )

]
,

where ψ(x) = d lnΓ (x)/dx is the Euler dilogarithmic function.
This equation has a solution at all G > 0, if H �= 0. Fig. 1 il-
lustrates this important result for GΛ2 = 3. One sees that in
absence of the magnetic field the system is in the subcritical
regime of dynamical symmetry breaking. The introduction of a
constant field, however small it might be, changes radically the
dynamical symmetry breaking pattern, due to the singular be-
haviour of the r.h.s. of Eq. (13) close to the origin: the right- and
left-hand sides will always intersect and the value of m where
this happens is a minimum of the effective potential.

Let us look at these different regimes more closely. As
H → 0, we recover the well-known NJL model gap equation

(14)1 = GNc

2π2

(
J0

(
m2) + |QH |2Λ2

3m2(Λ2 + m2)
+ · · ·

)
,

where J0(m
2) = Λ2 −m2 ln(1+Λ2/m2). Eq. (14) at H = 0 ad-

mits a nontrivial solution only if τ > 1, where τ = GΛ2Nc/2π2.
This determines the critical value Gcr = 2π2/Λ2Nc.

At m2/Λ2 � 1 the r.h.s. of Eq. (13) is

(15)−|QH |
Λ2

ln

(
m2

Λ2

)
+ v(ξ) +O

(
m2

Λ2

)
.

Here the function v(ξ) of the argument ξ = Λ2/2|QH |, is
given by

(16)v(ξ) = 1

2ξ

[
1 − 2 lnΓ (ξ + 1)

] + ψ(ξ).

This is a monotonically increasing function on the interval
0 < ξ < ∞; v(ξ) = 0 at the point ξ � 1.12; the asymptotic be-
haviour is

(17)v(ξ) ∼ 1 − 1

2ξ
ln(2πξ) (ξ → ∞),

(18)v(ξ) ∼ −γ − 1

2ξ
(ξ → 0),

where γ � 0.577 is the Euler’s constant.
In the approximation considered one finds the solution of

Eq. (13)

(19)Mdyn = Λ exp

[
−ξ

(
1

τ
− v(ξ)

)]
.

To discuss the physical content of this result, we recall that
the energy spectrum of relativistic fermions in a constant mag-
netic field H contains Landau levels

(20)En(pz) = ±
√

m̂2 + 2|QH |n + p2
z , n = 0,1,2, . . . ,

with pz denoting the projection of the 3-momentum on the z-
axis, i.e., along the magnetic field. If the fermion mass m̂ goes
to zero, as in the present case, there is no energy gap between
the vacuum and the LLL. Thus the integer part of ξ + 1 gives
approximately the number of Landau levels taken into account.

The first term in Eq. (15) has a clearly defined two-
dimensional origin, given the logarithmic dependence on the
cutoff in the corresponding gap equation

(21)1 = −GNc

2π2
|QH | ln

(
m2

Λ2

)

and, therefore, in the condensate (compare with Eq. (14)). Such
behaviour is associated with the (1 + 1)-dimensional dynam-
ics of the fermion pairing on the energy surface E0 = 0 of the
LLL [5]. As long as this term dominates over the second term,
v(ξ) in (15), one concludes that the condensate is mainly lo-
cated on the LLL. Actually this condition is fulfilled nearly
everywhere at τ < 1. Indeed, this is obvious for ξ = 1, since
v(1) = 1/2 +ψ(1) = 1/2 − γ � −0.08 is small compared with
1/τ . For ξ < 1 we come to the same conclusion after consider-
ing the asymptotics of the second term (18). The other formula,
(17), can be used to show that the above statement is also true
for ξ > 1, except near the critical region τ → 1−0, where v(ξ)

dominates; then the condensate spreads over many Landau lev-
els.
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In this special case it is possible to find an analytical solu-
tion. Indeed, using (17) in Eq. (15) we obtain

(22)1 − |QH |
Λ2

ln

(
πm2

|QH |
)

+O
(

m2

Λ2
,

4|QH |2
Λ4

)
.

To progress further we suppose that the two following small
variables are of the same order

(23)
m2

Λ2
∼

( |QH |
Λ2

)2

∼ ε.

Then it follows immediately that the term with the logarithm is
of order

√
ε ln

√
ε and goes to zero, when ε → 0. Thus, the gap

equation

(24)1 − 1

τ
= |QH |

Λ2
ln

(
πm2

|QH |
)

+O(ε)

is valid only in the region near the critical value τ → 1 − 0.
The closer τ to 1, the smaller is ε; Landau levels approach a
continuun distribution, and a condensate occupies many levels.
The physical reason for the changes found in the behaviour of
the condensate is the strength of the four-fermion interaction
which becomes essentially important here. The corresponding
solution is

(25)M2
dyn = |QH |

π
exp

[
− Λ2

|QH |
(

1

τ
− 1

)]
.

Note that the near-critical regime found here, differs from
the result of Ref. [5], being driven by a quadratic dependence
on the cutoff, Eq. (24); this is tantamount of having a (3 + 1)-
dimensional dynamics of fermion pairing.

Let us return now again to the three flavour case with
κ,g1, g2 �= 0. In the simplest case with the octet flavour sym-
metry, where current quarks have equal masses m̂u = m̂d = m̂s ,
which we set again zero, the system (9) reduces to a cubic equa-
tion with respect to h ≡ hu = hd = hs

(26)h3 + κ

12λ
h2 + 4G

3λ
h + 4m

3λ
= 0

with λ = g1 + (2/3)g2. This cubic equation has one real root, if
(see [20] for more details)

(27)
G

λ
>

(
κ

24λ

)2

.

Assuming that the couplings fulfill condition (27), we find a
single valued function h(m) from Eq. (26).

Considering that most of the investigations have been us-
ing multi-quark Lagrangians without the stabilizing eight-quark
interactions we make a short digression to discuss the case
with λ = 0 (see details in e.g. [19,24]). In this case Eq. (26)
is quadratic with a regular and a singular solution as κ → 0,
i.e.,

(28)h(1,2) = −8G

κ

(
1 ∓

√
1 − κm

4G2

)
.

In SPA this leads to an unstable effective potential. In the com-
monly used mean field approximation, which discards the sin-
gular solution, the effective potential is metastable and the re-
gion 4G2 < κm leads to complex values for h. This translates to
Fig. 2. The l.h.s. and the r.h.s. of Eq. (29) as functions of m/Λ with
f (m2;Λ, |QH |) shown for |QH |Λ−2 = 0;0.1;0.5. The l.h.s. with λ �= 0
(short-dashed line) is shifted with respect to the ordinate axis due to the ’t Hooft
interaction, the range of values for the λ = 0 curve (dash-dotted) is limited (see
discussion in text). The value of GΛ2 = 3 is the same as in Fig. 1. Here the six-
and eight-quark couplings are taken to be κΛ5 = −103 and λΛ8 = 3.67 × 103

(or λ = 0), respectively.

a restriction for the admissible values that the l.h.s. of Eq. (29)
can assume, shown as dash-dotted line in Fig. 2, discussed
below. Furthermore we find that qualitatively the symmetry
breaking pattern is the same as in presence of the eight-quark
interactions, but the occurrence of two minima requires higher
values of |κ|, as compared to the case with λ �= 0 (∼2.2κ for
the parameter set of Fig. 2). From now on we shall consider
only the case which fulfills the stability requirement, provided
by Eq. (27).

The nontrivial solutions for the mass of the fermion field in
a constant magnetic field are determined by the equation

(29)−2π2h(m)

Λ2Ncm
= f

(
m2;Λ, |QH |).

Comparing this result with Eq. (13), one sees that only the l.h.s.
is changed. The six- and eight-quark interactions have modified
it in such a way that now we get a function h(m)/m instead of
the former constant term involving only the coupling of four-
quark interactions, −1/G. The l.h.s. of Eq. (29), abbreviated
by u in Fig. 2, has now a bell-shaped form (short-dashed line),
to be compared with the horizontal line of Fig. 1. Note, that
h(m)/m = −1/G + O(m), i.e., the bell-shaped curve crosses
the ordinate axis at the same point as the former straight line
(for the same value of GΛ2). The r.h.s. of Eq. (29) is again
represented by the long-dashed curve (H = 0 case) and by the
full lines for the finite H cases: |QH |Λ−2 = 0.1,0.5. As men-
tioned before, these are not altered by the couplings G,κ,λ.
The intersection points of the l.h.s. with the r.h.s. curves yield
the nontrivial solutions of the gap equation: one sees that either
one or three solutions can be found for m > 0. If Eq. (29) has
no solutions at H = 0 we say that the set of couplings G,κ,λ
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are subcritical. It is said to be overcritical in the opposite case.
Note that the overcritical set may contain G < Gcr.

The trivial solution, m = 0, corresponds to the point where
the potential, V (m), reaches its local maximum. Indeed, the
second derivative

(30)lim
m→0

d2V (m)

dm2
= lim

m→0

Nc|QH |
2π2

ln
|m|Λ

2|QH | = −∞

is negative here. This is the general mathematical reason for the
phenomenon known as magnetic catalysis of dynamical flavour
symmetry breaking. The logarithmically divergent negative re-
sult ensures that this phase transition always takes place, if
H �= 0. This does not depend on the details related with the
multi-quark dynamics, i.e., the result is true even for free fermi-
ons in a constant magnetic field.

What is really sensitive to the multi-quark dynamics is the
local minima structure of the theory. Let us recall that in the
theory with just four-fermion interactions the effective potential
has only one minimum at m > 0, and this property does not de-
pend on the strength of the field H . We have demonstrated this
in Fig. 1. In the theory with four-, six-, and eight-quark interac-
tions one can find either one or two local minima at m > 0. The
result depends on the strength of the magnetic field H , and cou-
plings G,κ,λ. We illustrate these two cases in Fig. 2. Namely,
the upper full curve (r.h.s. of Eq. (29) for |QH |Λ−2 = 0.5)
has only one intersection point with the bell-shaped curve u

(l.h.s. of Eq. (29) for GΛ2 = 3, κΛ5 = −1000, λΛ8 = 3670).
This point corresponds to a single vacuum state of the theory.
The other full curve (r.h.s. of Eq. (29) for |QH |Λ−2 = 0.1) has
three intersections with the same curve u. These intersections,
successively, correspond to a local minimum, a local maximum
and a further local minimum of the potential.

It is interesting to note that the first minimum catalyzed by a
constant magnetic field (that is, a slowly varying field) is then
smoothed out with increasing H . It ceases to exist at some crit-
ical value of |QH |Λ−2, from which on only the large Mdyn
solution survives. This is shown in Fig. 3, for the parameter
set of Fig. 2. This process is accompanied by a sharp increase
in depth of the effective potential at the second minimum, es-
pecially if we had at the beginning the opposite ordering, i.e.,
V (M1) < V (M2). The reasons for such a synchronized behav-
iour are the following two facts. The first one is Eq. (30), which
teaches us that the only way to wash out the first minimum
is by lowering the barrier between this state and the second
minimum. The other fact is the observation that the second min-
imum is unremovable, because the asymptotic behaviour of the
functions in Eq. (29) is such that the l.h.s. dominates over the
r.h.s. at large m/Λ. This can also be understood from Fig. 2,
where one sees that the r.h.s. of the gap equation with H �= 0
approaches the H = 0 curve from above.

To discuss the physical content of the phenomenon just de-
scribed one should fix the characteristic scale Λ. We assume
that this value is determined by the problem under considera-
tion. Its choice can also be motivated by the number of Landau
levels to be considered.

In the region m2/Λ2 � 1 the four-fermion interaction domi-
nates the behaviour of the system. Since their coupling strength
Fig. 3. The dimensionless dynamical mass Mdyn/Λ as a function of the di-

mensionless magnetic field |QH |/Λ2. The full lines are minima, the dashed
line maxima. Up to |QH |/Λ2 = 0.084 the smaller Mdyn/Λ corresponds to the
deeper minimum of the potential, from this value on the larger solution becomes
the stable configuration.

is small, G < Gcr, the massless fermions behave like almost
free particles moving in a weak external magnetic field, with
access to a large number of Landau levels, ξ 
 1. This field
catalyzes the process of fermion–antifermion pairing on the en-
ergy surface E0 = 0 of the LLL. The first minimum localized
at m2/Λ2 � 1 is exactly formed by such a (1 + 1)-dimensional
condensate. If six- and eight-fermion forces would not act on
the system, this ground state would be stable: our formulae
as well as the result of paper [5] show clearly that a slow in-
crease of the strength H does not wash out the condensate
from the energy surface E0 = 0 of the LLL. However, when
the six- and eight-fermion interactions are present, a slowly in-
creasing magnetic field destroys finally this ground state. The
new condensate has a (3 + 1)-dimensional structure similar
in every respect to the standard NJL case with broken chi-
ral symmetry at H = 0, i.e., when the condensate spreads
over many single fermion states. This is because the increas-
ing magnetic field enlarges the dynamical fermion mass, and
scales of order m/Λ ∼ 1 become relevant. At these scales the
’t Hooft and eight-quark interactions push the system to a new
regime, where the fermions are not anymore free-like parti-
cles: they interact strongly with each other and this interaction
changes the fermionic spectrum and the structure of the ground
state in an essential way, with all the above mentioned conse-
quences.

Thus we have obtained not only a correct description of
the well-known physics related with the LLL, but have found
also a clear signature for the possibly important role played by
’t Hooft and eight-quark interactions. Namely, in the presence
of these interactions the magnetic field can change the conden-
sation zone from the zero-energy surface of the LLL to a wide
region, spread over many Landau levels and vice versa. One can
expect that hard gamma emissions accompany this process.

What is the characteristic scale of the magnetic fields which
can induce such a transition? We obtained the value H =
7.3 × 1013Λ2 G/MeV2 which actually depends on the cut-
off involved in the problem. For instance, in hadronic matter
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it is probably safe to assume that Λ � 800 MeV, leading to
H = 4.7 × 1019 G.

One can indicate several potentially interesting areas where
this effect may find applications. One of them is connected
with the recent studies of compact stellar objects in presence
of strong magnetic fields, in particular the young neutron stars,
magnetars [25]. The surface magnetic fields are observed to be
�1015 G, but actually they can be even much higher in the core
region. The other area is connected with the electroweak phase
transition in the early Universe [26], where the strength of mag-
netic fields can reach H ∼ 1024 G.
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