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Abstract 

Methamphetamine (METH) is an illegal stimulant drug with over 500,000 

individuals estimated to abuse METH, in the United States, each month (Substance 

Abuse and Mental Health Services Administration, 2010). Long term users are at 

greatly increased risk for psychiatric problems including depression pathology (Curtis 

2006; Hendrickson et al. 2008; Kaye et al. 2007; Zweben et al. 2004).  The present 

study aims to characterize the effect of a single-high neurotoxic METH dose (30mg/kg) 

on early mood behaviour and on the underlying frontal cortical and hippocampal 

metabolic profile in mice.  Three days post-METH injection mice showed an anhedonic 

state and decreased self-care, with a rather diminished self-grooming time, in the splash 

test (p=0,0348). This confirms a previously reported depressive-like behavior.  

However, elevated plus maze excluded anxiety-like behavior in METH-intoxicated 

mice.  A 1H-NMR metabonomics analysis showed a decrease in both NAA/creatine and 

lactate/alanine ratio in frontal cortical from METH-intoxicated mice, 3 days post-

treatment. This is suggestive that METH imposed disturbed frontal cortical energetics.  

In spite of metabolic alterations the METH-intoxicated mice failed to show 

synaptoxicity as probed by normal synaptophysin and Syntaxin 1 levels when compared 

with control animals.  However the metabonomics analysis showed that other 

parameters including astrocytic, glutamatergic and gabaergic markers were similar to 

control animals. Additionally, the hippocampal metabolic profile from METH-

intoxicated mice was not statistically different from control mice. Herein, we provide 

evidence, for the first time, that anhedonic-like behavior is underlined by a frontal-

cortical perturbed energy metabolism.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611962/#R55
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611962/#R55
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Resumo 

 A Metanfetamina é uma substancia psicostimulante viciante, amplamente 

consumida em todo o mundo, constituindo um grave problema para a saúde pública 

mundial. Uso abusivo desta droga aumenta o risco de desenvolvimentos de problemas 

psiquiátricos, como a depressão. 

 O presente estudo tem como objetivo a caracterização do efeito de uma única 

dose neurotóxica de METH (30mg/kg) no comportamento de ratinhos, bem como 

compreender as alterações metabólicas no córtex e hipocampo associadas a tal 

administração. Três dias após a injeção de METH, os animais revelaram anedonia e 

baixo self-care, com diminuição significativa do tempo de grooming no teste splash 

(p=0,0348). Tal resultado confirma o comportamento tipo depressivo anteriormente 

descrito. Por outro lado, o elevated plus maze excluiu comportamento tipo ansioso 

associado à exposição à METH. 

 A análise por Ressonância Magnética Nuclear exibe diminuições nos níveis de 

NAA/creatina e na razão lactato/alanina nos córtices pré-frontais dos animais do grupo 

METH, três dias após o tratamento. Tal informação é sugestiva do impacto da METH 

no metabolismo energético desta região cerebral. Apesar das alterações metabólicas, 

níveis normais de sinaptofisina e sintaxina revelaram ausência de sinapto-toxicidade 

associada à intoxicação por METH. Outros parâmetros, incluindo marcadores 

astrocíticos, glutamatérgicos e gabaergicos registaram valores semelhantes aos 

controlos, bem como os níveis metabólicos no hipocampo, que também sofreram não 

alterações. 

 Assim, provamos pela primeira vez que o estado de anedonia é associado a 

perturbações no metabolismo energético no córtex pré-frontal.
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1. Brain Glucose Metabolism 

 Unlike other organs, the energy supply of the brain is almost exclusively by aerobic 

glucose degradation. In the adult brain, neurons have the highest energy demand, and, 

since its capacity to store energy is extremely limited, it requires continuous delivery of 

glucose from blood. In humans, the brain account for approximately 2% of the body 

weight, but consumes approximately 20% of glucose-derived energy, making it the 

main consumer of glucose (approximately 5.6 mg glucose per 100 g human brain tissue, 

per minute) (Berg et al., 2002).  

 Glucose metabolism provides the fuel for physiological brain function through the 

generation of ATP, the foundation for neuronal and non-neuronal cellular maintenance, 

as well as the generation of neurotransmitters. As such, substrate selection by the brain 

is highly specific, while peripheral organs can metabolize glucose, fat or proteins. Fatty 

acids cannot traverse the blood-brain barrier (Peters et al., 2004). 

Therefore, regulation of glucose metabolism is critical for brain physiology and 

disturbed glucose metabolism in the brain underlies several diseases affecting both the 

brain itself, as well as the entire organism - obesity, depression, polycystic ovaries and 

metabolic syndrome, among others (Mergenthaler et al., 2013). 

 

1.1 Glucose metabolic pathways 

In astrocytes, glucose is driven across the endothelial membranes of the blood-

barrier barrier, via glucose transporter 1 (GluT1). This transporter has two isoforms with 

different abundance in different cellular types: the 55kDa isoform is more abundant in 

the endothelial cells, whereas the 45kDa-form is expressed in astrocytes (Figure 1). 

GluT1 further mediates glucose uptake from extracellular fluid into astrocytes, 
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oligodendroglia, and microglia, while GluT3 facilitates neuronal glucose uptake.  

Glucose transport capacity exceeds demand over a wide range, and the higher transport 

rate of GluT3 ensures that neurons have sufficient glucose supplies under varying 

glucose levels and different activity states (Breu, Guggenbichler, & Wollmann, 2008a).  

Only traces of other GluT isoforms are found in the brain; of these, GluT4 has been 

detected in distinct neuronal populations and GluT5 in microglia. 

 

 

Figure 1 - Location of different glucose transporter isoforms in the brain. GluT1 55-kDa 

isoform is abundant in the endothelial cells, whereas the 45-kDa isoform is expressed in 

astrocytes. GluT3 is the neuronal glucose transporter. Only traces of other GluT isoforms are 

found in the brain; of these, GluT4 has been detected in distinct neuronal populations and GluT5 

in microglia. From: Duelli  and Kuschinsky, Physiology, 2001. 
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Once inside brain cells, glucose is phosphorylated by hexokinase (HK) to Glucose-

6-phosphate (G-6-P), which can follow three different metabolic pathways. Firstly, G-6-

P can be metabolized through the Pentose Phosphate Pathway, producing reducing 

equivalent in the form of NADPH. Secondly, G-6-P can follow glycogenesis, enriching 

glycogen stores. Finally, it can give rise to two molecules of pyruvate, plus ATP and 

NADH, through glycolysis. Pyruvate can enter the mitochondria to be metabolized 

through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, thus 

originating ATP and CO2. Alternatively, in astrocytes, Lactate Dehydrogenase (LDH) 

can reduce pyruvate to lactate, which can be released into the extracellular space 

through monocarboxylate transporters (MCT’s) and taken up by neurons, where it 

converts back to pyruvate and originates ATP, at the mithocondria. (Bélanger, Allaman, 

& Magistretti, 2011) (Figure 2).  
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Figure 2 - Brain Glucose Utilization in the brain: Schematic representation of glucose 

metabolism. Glucose enters cells trough glucose transporters (GluTs) and is phosphorylated by 

HK to produce glucose-6-phosphate. Glucose-6P can be processed into three main metabolic 

pathways. First, it can be metabolized through glycolysis (i), giving rise to two molecules of 

pyruvate and producing ATP and NADH. Pyruvate can then enter mitochondria, where it is 

metabolized through the TCA cycle and oxidative phosphorylation, producing ATP and CO2 

while consuming oxygen. In astrocytes, pyruvate can otherwise be reduced to lactate by lactate 

dehydrogenase (LDH) and then released in the extracellular space through monocarboxylate 

transporters (MCTs). The complete oxidation of glucose produces larger amounts of energy in 

the form of ATP in the mitochondria (30–34 ATP) compared to glycolysis (2 ATP). 

Alternatively, glucose-6P can be processed through the pentose phosphate pathway (PPP) (ii), 

leading to the production of reducing equivalent in the form of NADPH. Note that the PPP and 

glycolysis are linked at the level of glyceraldehyde-3-phosphate (GA3P) and fructose-6-

phosphate (fructose-6P). Finally, in astrocytes, glucose-6P can also be used to store glucosyl 
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units as glycogen (iii). Abbreviations are as follows: GPI, glucose-6-phosphate isomerase; PFK, 

phosphofructokinase-1; Fructose-1,6-P2, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone 

phosphate; TPI, triose phosphate isomerase; G6PDH, glucose-6-phosphate dehydrogenase; 6-

PGL, 6-phosphoglucono-d-lactone; 6-PG, 6-phosphogluconate; 6 PGDH, 6-phosphogluconate 

dehydrogenase; ribulose-5P, ribulose-5 phosphate; ribose-5P, ribose-5-phosphate; xylulose-5P, 

xylulose-5-phosphate; TK, transketolase; sedoheptulose-7P, sedoheptulose-7 phosphate; TA, 

transaldolase; and erythrose-4P, erythrose-4-phosphate. Taken from Bélanger et al., 2011. 
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1.2  Glutamate - glutamine cycle 

Glutamate (GLU) is an amino acid neurotransmitter that does not cross the BBB 

intimately involved in neurotransmission, being strongly dependent on astrocytic 

metabolism (Hertz & Dienel, 2002). In fact, due to the lack of the enzyme pyruvate 

carboxylase, neurons depend on astrocytes for de novo synthesis of glutamate.  

Indeed, GLU is released at the synapse, activates glutamatergic receptor and 

must be removed rapidly. Neurons remove little GLU from the synapse, being the 

largest portion of GLU taken up by astroglia, through excitatory aminoacid transporters 

(EAAT’s; mainly EEAT1 and EEAT2) via a sodium-dependent mechanism. (Danbolt, 

2001). Once inside, the cycle starts with GLU amidation to glutamine in an ATP-

requiring reaction in which an ammonium ion is fixed into GLU. This reaction is 

catalyzed by glutamine synthase - an enzyme almost exclusively localized in astrocytes 

- and provides an efficient means of disposing not only of GLU, but also ammonium. 

Glutamine (GLN) is then released by astrocytes and is taken up by neurons where it is 

hydrolyzed back to glutamate by glutaminase, thus contributing to the replenishment of 

the neurotransmitter pool of GLU in neurons (Shen, 2013). 

Overall, glutamate enters the astrocytes, via EEAT1, together with 3 Na+ ions. 

The astrocytic Na+/K+ ATPase responds predominantly to increases in intracellular 

sodium concentrations and, consequently, astrocytes increase glucose uptake, through 

GluT1, followed by lactate production and release, through glycolysis (Pellerin & 

Magistretti, 1994; 2003). 

 



CHAPTER 1 - Introduction 
 

 8 

 This metabolic pathway, allows the removal of potentially toxic excess of GLU 

from the extracellular space while returning to the neuron a synaptically inert precursor 

that will lead to the regeneration of the neuronal pool of GLU (Daikhin & Yudkoff, 

2000). 

This evidence supports the idea that glutamate uptake-induced aerobic glycolysis 

in astrocytes serves a neurometabolic coupling between astrocytes and neurons.  
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Figure 3 - Glutamate-glutamine cycle and the the metabolic coupling hypothesis between 

neurons and astrocytes. Glutamate released to the synaptic cleft during glutamatergic 

neurotransmission is co-transported with Na+ to the astrocytes. Astrocytic Na+ is exchanged by 

extracellular K+ through the Na+/K+ ATPase, consuming one ATP molecule. Astrocytic 

glutamate produces glutamine through glutamine synthetase, consuming one additional ATP 

molecule. Lactate that is produced exclusively in astrocytic glycolysis to support these energy 

demands is extruded to the extracellular medium, taken up by the surrounding neurons and 

oxidized as their main metabolic fuel. Note the apparent stoichiometric coupling between 

glutamate–glutamine cycling and glucose uptake as well as the exclusive 

glycolytic or oxidative metabolisms in astrocytes and neurons, respectively. Gln, glutamine; 

Glu, glutamate; GluT1 and GluT3, glucose transporters 1 and 3; Lac, lactate; MCT1 and MCT2, 

monocarboxylate transporters 1 and 2; PGK, phosphoglycerate kinase; Pyr, pyruvate. Figure 

taken from Tsacopoulos&Magistretti,1996. 

  

http://journal.frontiersin.org/Journal/10.3389/fnene.2013.00009/full#B130


CHAPTER 1 - Introduction 
 

 10 

1.3  Astrocyte-neuron Lactate Shuttle 

Lactate was first discovered in sour milk by Swedish chemist, Carl Wilhelm 

Scheele, in 1780. It is produced naturally by the body, for example when muscles are at 

work. In the brain, it is regarded as an energy source which can be delivered to neurons 

as fuel to keep them working when brain activity increases (Dienel, 2012). As a product 

of glycolysis, - which provides the majority of ATP to normal cells - the accumulation 

of lactate leads to the decrease of the intracellular pH and cessation of glycolysis. In 

order for glycolysis to continue at a high rate, this molecule must be transported out of 

the cell, to neurons, where it can be converted to pyruvate, through Lactate 

dehydrogenase (LHD1), and enter the TCA cycle, producing ATP, CO2 and water.  

Magistretti and Pellerin (1999) proposed an astrocytic-neuronal lactate shuttle 

(ANLS) (Figure 4), in which glutamate, released from neurons during synaptic activity, 

is taken up by astrocytes trough the glutamate-glutamine cycle, activating the Na+-K+-

ATPase, which triggers glucose uptake, resulting in the rapid formation and release of 

lactate from astrocytes via monocarboxylate transporters (MCT1 and MCT4). The 

lactate released by astrocytes into the extracellular space is, according to this 

hypothesis, transported into neurons by MCT2 and used to fuel activity-dependent 

energy demands. Additionally,  recent studies describe new roles for the lactate in the 

brain, as a signalling molecule in the locus coeruleus (LC). The LC is the principal 

source of noradrenaline to the frontal brain and thus one of the most influential 

modulatory centres of the brain. In fact, astrocytes release L-lactate, which excites LC 

neurons and triggers release of noradrenalin (Tang et al., 2014). 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645067/#R27
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Figure 4 - Schematic representation of proposed astrocyte-neuron lactate shuttle. After 

neuronal activation and synaptic glutamate release, glutamate reuptake into astrocytes triggers 

increased glucose uptake from capillaries via activation of an isoform of the Na+-K+-ATPase, 

which is highly sensitive to ouabain (possibly the 2-isoform). Glucose is then processed 

glycolytically to lactate by astrocytes that are enriched in the muscle form of LDH (LDH5). The 

exchange of lactate between astrocytes and neurons is operated by monocarboxylate 

transporters (MCT). Lactate is then converted to pyruvate because neurons contain the heart 

form of LDH (LDH1). Pyruvate, via the formation of acetyl CoA by pyruvate dehydrogenase 

(PDH), enters the tricarboxylic acid (TCA) cycle, thus generating 17 ATP/lactate. From: 

Magistretti and Pellerin (1999).  

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645067/#R27
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1.4  Alterations in brain’s glucose metabolism relation with psychiatric 

disorders 

 As been stated before, astrocytic glucose metabolism plays a crucial role as 

energy source for brain function. Therefore, a disruption in this pathway may be 

associated to neurologic and psychiatric disorders as well as to neurotoxicity (Picco et 

al., 2014). 

 In fact, previous studies have confirmed this association. Oxidative stress was 

proven to play a role in impairing brain glucose utilization in elderly subjects with 

increasing severity of cognitive disturbance. Brain glucose metabolism progressively 

decreased in the bilateral posterior temporoparietal and cingulate cortices across the 

three groups: subjects with subjective cognitive impairment, patients with mild 

cognitive impairment and those with mild Alzheimer’s disease.  

PET imaging also disclosed that different patterns of brain glucose metabolism 

were present in epilepsy patients at early stages of the disease. (Nasrallah & Dubroff, 

2013). 

Metabolic deregulation influences brain function and disturbances in peripheral 

glucose regulation might be associated with cognitive impairment and depressed mood. 

Results showed an association between depressive symptoms and glucose metabolism 

status, but not anxiety (Bouwman et al., 2010). 

Drug abuse is also intimately associated to brain glucose metabolism disruption. 

For example, cocaine shifts glucose metabolism of differently between anatomical 

areas: the shift in glucose metabolism was greatest in the thalamus when compared to 

frontal cortex and striatum (Kaplan et al., 2013). 

The 2-deoxyglucose method was used to study the effects of acute administration of 

small intravenous doses of heroin on rates of glucose utilization in rat brain to identify 
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brain regions that may be involved in the acute behavioral effects of heroin. 

Administration of 60 µg/kg of heroin, intravenously, resulted in glucose utilization rates 

that were 16% lower than saline-treated animals (Martin et al., 1997). 

 The relation between drug abuse, major depressive disorder and glucose 

metabolism disruption will be further discussed on this work. 
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2. Drug abuse 

The recreational use of illegal drugs, such as cannabis, cocaine and 

methamphetamine, imposes great human and financial costs on society, due to 

premature deaths, drug-related crime, health care expenditures and reduced productivity 

(Justinova, Panlilio, & Goldberg, 2009). 

The National Institute on Drug Abuse defines addiction as a chronic, relapsing brain 

disease, characterized by compulsive drug seeking and use, despite harmful 

consequences. It is considered a brain disease since it causes long lasting alterations to 

the brain structure and function and can lead to harmful, often self-destructive, 

behaviors (http://www.drugabuse.gov). 

According to the 2013 European Drug Report, at least 85 million adult Europeans 

have used an illicit drug at some point in their lives, representing around a quarter of 

Europe’s adult population, whereas over 250.000 drug-related deaths were reported in 

the USA and more than 250 billion dollars were spent on this matter. 

The initial events that lead to addiction involve acute effects at a specific site (or 

sites) of action of a drug of abuse, as a transporter or receptor. These sites of action 

typically activate neuronal networks associated with positive reinforcement. Repeated 

‘on–off’ exposure to a drug of abuse progressively leads to stable molecular and cellular 

changes in neurons, which alter the activity of the corresponding neuronal networks, 

leading to neurobiological changes in the brain reward circuits and behaviors 

characteristic of addiction: tolerance, sensitization, dependence, withdrawal and craving 

(Kreek, LaForge, & Butelman, 2002). The combination of positive (e.g., euphoria) and 

negative (e.g., withdrawal symptoms) reinforcement may provide a powerful 

motivational force for compulsive drug taking. Associated neurobiological changes and 
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behavioral abnormalities and deficits in cognitive function may persist for months or 

years after discontinuation of drug use (Breu, Guggenbichler & Wollmann, 2008b). 
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2.1 Amphetamine-type Stimulants (ATS) 

Amphetamine (1-Methyl-2-phenylethylamine) gave the name to a group of 

stimulant compounds, with similar structures and biological properties, called 

amphetamine type-stimulants (ATS) or ‘amphetamines’. This group also includes 

methamphetamine (METH) and 3,4-methylenedioxy-N-methylamphetamine (MDMA) - 

widely known as ecstasy. – These are all considered popular psycho-stimulant drugs, 

causing sensations of euphoria and wakefulness. 

In the US, amphetamine is a FDA approved treatment for attention-

deficit/hyperactivity disorder (ADHD) and narcolepsy, Amphetamines have been used 

illegally, mainly among young population, since the FDA limited them to prescription 

use in 1965 ( Berman et al., 2008).  

 

Figure 5 - Chemical structure of methamphetamine (METH) (1), as well as the closely 

related psychostimulant d-amphetamine (AMPH) (2). Adapted from Barr et al., 2006. 

 

http://en.wikipedia.org/wiki/Methylenedioxy
http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Methyl
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2.2 Epidemiology of abuse of amphetamine-type stimulants 

The World Drug Report issued in 2013 reported signs that the market for 

amphetamine-type stimulants (ATS) is expanding: seizures and consumption levels are 

increasing, manufacture seems to be spreading and new markets are developing. The 

use of ATS, excluding “ecstasy”, remains widespread globally, and appears to be 

increasing in most regions. In 2011, an estimated 0.7 per cent of the global population 

aged 15-64, or 33.8 million people, had used ATS in the preceding year. 

The United Nations Office on Drugs and Crime (UNODC) estimated that the 

worldwide production of ATS is nearly 500 metric tons a year, with 24.7 million 

abusers, in 2010.  

According to the European Drug Report (2013), amphetamine is widely use in 

Europe, while methamphetamine consumers in Europe are mainly from Czech 

Republic, where the drug is produced in small illegal laboratories for domestic 

consumption but also for exportation. In Czech Republic, Sweden, Finland and 

Slovakia, 20-60% of those seeking drug abuse treatment are due to ATS consumption. 

In Portugal, the METH consumption is more common among the young population. 

 Hunt et al. (2007) characterized the target population as being Caucasian, 

unemployed, single or divorced people who live in rural or suburban areas. As for the 

gender, unlike many other illegal drugs, methamphetamine is a drug that appeals 

equally to men and women. 
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Figure 6 - Use of ATS in 2011. Information taken from World Drug Report, 2013. 

 

 

Figure 7 - Quantity of amphetamine (left) and methamphetamine (right) seized, 2011 Figure 

taken from World Drug Report 2013. 
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2.3 Methamphetamine: pharmacokinetics and pharmacodynamics 

Amphetamine was first synthesized in 1887 in Germany, at the Berlin 

University. However, it was not used clinically until the 1920’s, after the discovery of a 

more potent, easy to make and more lipophilic derivative Methamphetamine (N-methyl-

O-phenyllisopropylamine) in Japan.  

During the World War II, amphetamines were widely used for diverse clinical 

conditions. In the 1950’s, METH was prescribed to induce weight loss and to manage  

depression, but it rapidly became a drug of abuse and was made illegal for most uses in 

1970 by the US government (Halpin, Collins, & Yamamoto, 2014). Nowadays, METH 

is prescribed to treat children with ADHD and severe obesity. The therapeutic dose used 

for ADHD children is 5-30 mg/day, whereas METH abusers need 40-60mg/day to 

achieve the euphoric state (Kish, 2008). 

A different way to obtain METH is through the reduction of pseudoephedrine or 

the condensation of phenylacetone and methylamine (Cho & Melega, 2002; Cho, 2012), 

producing a lipid-soluble pure base form. For being extreme volatile, this product is 

often converted to a water-soluble methamphetamine-HCl powder, dealt in the streets 

by the name of ‘speed’, ‘crank’ or ‘crystal’ (Derlet, Heischober, & Linda, 1988). 

Acute METH administration depresses appetite, increases wakefulness, alertness 

and energy levels; it causes euphoria, heightened libido and feelings of self -esteem and 

–confidence (Meredith et al., 2004). Methamphetamine also activates the cardiovascular 

system (increased heart rate and blood pressure) and, for this reason, can cause death at 

high doses. Chronic use of METH contributes to anxiety, depression, aggressiveness, 

social isolation, psychosis, mood disturbances and psychomotor dysfunction. 

Neuropsychological studies of chronic METH users detected deficits in attention span, 

working memory, and decision-making. These neuropsychiatric complications are 
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related to drug-induced neurotoxic effects including damage to dopaminergic and 

serotonergic terminals. 

 

2.4 Routes of administration 

The intensity and duration of the psychotropic effects depend on how fast the 

drug arrives to the CNS. Abusers use different administration methods and ways, in 

order to enhance the drug bioavailability and achieve rapid and intense “high” 

(McAvoy, 2009). METH can be taken by mouth (oral), injection (intravenous), 

smoking/inhalation (‘chasing the dragon’), snorting (intranasal) or rectally (‘shelving’). 

Smoked methamphetamine is rapidly absorbed thought the lungs and reaches the brain 

in 6-8 seconds. Intravenous administration produces peak brain uptake in four to seven 

minutes. These drug forms have the highest bioavailability, allowing elevated drug 

concentration at the CNS, and, thereby, a very rapid and intense “high” that lasts a 

couple minutes. For this reason, smokable and injectable METH forms are highly 

addictive and have enhanced overdose risks. 

Oral and intranasal methamphetamine have a slower absorption and onset of 

effect (30-45 minutes), have a longer peak effect (about 3 hours post dose), and a more 

gradual decline from peak. The peak intensity of effect is weaker than with smoked or 

intravenous administration because less active drug reaches its site of action in the 

brain. The elimination half-life of METH ranges from 10 to 12h (Schepers et al., 2003). 

 



CHAPTER 1 - Introduction 
 

 21 

2.5 Mechanism of action 

In the brain, a primary action of METH is to elevate the extracellular levels of 

monoamine neurotransmitters (dopamine, serotonin and noradrenaline) by promoting 

their release from nerve endings (Kish, 2008). Due to its lipophilicity METH permeates 

monoamine terminals triggering monoamine leakage from the vesicles, thus increasing 

their intracellular concentration.  This excess of neurotransmitters is then carried by 

transporter molecules out of the terminals into the synapse. For example,, high 

extracellular concentration of dopamine in the mesolimbic pathway causes feelings of 

pleasure and euphoria (Hsieh et al., 2010).  

METH is highly addictive because it works directly on the brain's reward 

pathway, making the user feel intense pleasure and exhilaration. 
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2.6 Methamphetamine neurotoxicity: shedding light into brain glucose 

handling 

 There is a mounting body of evidence of preclinical and clinical data suggesting 

that perturbed glucose handling is a hallmark of METH-induced neurotoxicty (Kobeissy 

et al., 2012).  

a) Preclinical evidence 

In order to study the toxic effects of METH administration, numerous animal 

models have been developed over the years. These methods range from single exposure 

acute models to extended chronic models. 

Among the well-characterized models is the acute model regimen. Rodents are 

exposed to a large dose of METH within a single-day period which can be achieved by 

administering a single large bolus of METH or through repeated doses of METH during 

a single day. Administering repeated doses allows for the assessment of very high doses 

of METH without the potential of premature animal death due to sudden overdose of 

METH.  

The chronic model or the escalating dose model starts with low nontoxic doses 

and then increases METH concentration administered over the time period until larger 

neurotoxic doses of METH are achieved. This increase can either be consistent across 

days, which simulates the progression of use observed in humans, or end with a large 

challenge dose on the final day, which is often used to assess any protective effects of 

previous exposure to METH. 

Huang et al. (1999) used the 2-[14C]deoxyglucose (2DG) method  to analyze the 

effects of repeated METH administration (12.5 mg/kg, i.p., 4 times every 2 hr within a 

day) 14 days and 60 days after drug administration on rat brain glucose utilization. The 
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results showed a widespread decrease in the regional cerebral glucose utilization at both 

time-points. In a different study, a daily dose of 15mg/kg for 5-6weeks almost 

completely inhibited glucose transport into the frontal and occipital cortex of mice, 

along with diminished levels of GluT1 expression (Muneer et al., 2011). 

 The effects of acute intravenous administration of methamphetamine (0.5-

2.5mg/kg) on rates of local cerebral glucose utilization in freely-moving rats were also 

analyzed using the 2-DG method. Methamphetamine administration resulted in 

widespread dose-dependent increases in glucose utilization within structures of the 

extrapyramidal motor system including globus pallidus and substantia nigra reticulate. 

These effects were correlated with the increase in locomotor activity that was seen 

simultaneously in the same animals (Pontieri, Crane, Seiden, Kleven, & Porrino, 1990).  

A single administration of methamphetamine to Wistar rats induced 

dopaminergic nerve activation, ATP consumption and an increase in mitochondrial 

respiratory chain function in both the striatum and cortex (Shiba et al., 2011). This is 

consistent with a previous study demonstrating that high METH doses significant and 

acutely  increased extracellular concentrations of lactate in striatum and prefrontal 

cortex (Stephans et al., 1998).. There are also in vitro studies tackling this metabolic 

issue. In fact, cells from elective abortus specimens of human fetal brain tissues were 

exposed to METH, showing biphasic effects on astrocytic glucose uptake:  while 20 

mM METH increased the glucose uptake, 200 mM inhibited it (Muneer et al., 2011a). 

Another study by these authors looked at the dose-dependent effect of METH (5 - 500 

μM) exposure for 24 h on glucose uptake by primary human brain endothelial cell 

(hBEC) culture (Muneer et al., 2011b). These authors provide data indicating that there 

was an insignificant increase in glucose uptake by hBECs following exposure to 5-20 

μM of METH. However, the higher concentrations 50-500 μM of METH decreased 
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dose-dependently the glucose uptake by hBECs. Also, a time-dependent study showed 

that 20 μM METH gradually decreased the glucose uptake by hBECs with exposure 

time, suggesting that low concentration of METH may activate GluT1 in acute condition 

but in long-term it impairs GluT1.  

 

 

a) Clinical evidence 

Several clinical studies have noted cerebral glucose hypometabolism in human 

METH abusers. 

For example, relative regional cerebral glucose metabolism (rCMRglc) changes 

in abstinent methamphetamine users were explored by Kim et al. (2005). These authors 

showed that METH users had lower rCMRglc levels in the right superior frontal white 

matter, relative to healthy comparison subjects. Age or smoking habits did not interfere 

with the metabolism of glucose. 

 Also, the 2-[14C]deoxyglucose method to analyze the effects of repeated METH 

administration (12.5 mg/kg, i.p., 4 times every 2 hr within a day) 14 days and 60 days 

after drug administration. Chronic treatment reduced subcortical glucose metabolism in 

rats. The regions with decrease metabolism included all the extrapyramidal systems, the 

hippocampus formation and dorsal raphe nucleus (Huang et al., 1999). 
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3. Major Depressive Disorder  

 Major depressive disorder (MDD) is also known as major depression or unipolar 

depression. The term unipolar refers to the presence of one pole, or one extreme of 

mood - depressed mood. This may be compared with bipolar disorder which has the two 

poles of depressed mood and mania (i.e., euphoria, heightened emotion and activity) 

(reference). 

 According to the National Institute of Mental Health, MDD currently affects 

about 6.7% of the U.S. population over age 18. In adults, major depressive disorder 

affects twice as many women as men. For both genders it is most common in those who 

are 25-44 years of age, and least common for those over the age of 65 (Kessler et al., 

2005). In children, clinical depression affects girls and boys at about the same rate. 

Within an entire lifetime, major depression will affect 10-25% of women and 5-12% of 

men. The average age for developing the illness seems to be in a person's mid-20's, but 

MDD can affect teens, children and older adults, though it frequently goes undiagnosed 

and untreated in these populations. Those with a parent or sibling who has had major 

depression may be 1.5 to 3 times more likely to develop the condition than those who 

do not. Studies of clinical samples suggest that 10–30% of individuals with MDD 

develop a chronic course despite adequate treatment, indicating that chronic major 

depression is a major public health problem, and is expected to be the second greatest 

cause of disability by 2020 (Blanco, 2010). Decreased energy and focus, sleep 

deprivation, headaches and body aches, the feelings of sadness, hopelessness, loss of 

interest or pleasure (anhedonia), guilt, shame and anger, appetite changes and thoughts 

of suicide are among the most common depressive symptoms (APA, DSM-IV-TR, 

2000). 
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Only 50-70% of MDD cases report complete lack of symptoms and unpleasant 

secondary effects, such as nausea, insomnia, decreased sex drive, weight gain, diarrhea 

and constipation with long-term treatment using antidepressants (Berton & Nestler, 

2006). 

 

3.1 Depression: focusing on brain glucose metabolism disruption 

Although perturbations in serotonergic system play an important role in the 

pathophysiology of major depression (Cowen, 2008), the link between brain 

metabolism alterations  and depression is also under close scrutiny (Videbech, 2000). 

 Functional neuroimaging techniques, including fluorine-18-fluorodeoxyglucose 

positron emission tomography (18F-FDG PET) have helped to delineate regional 

differences in metabolic activity between depressed and non-depressed subjects. Studies 

have shown abnormalities of regional cerebral blood flow (CBF) and glucose 

metabolism in multiple prefrontal cortical and limbic structures that have been more 

generally implicated in emotional processing (Drevets et al., 2002; Kennedy et al., 

2007) . In fact, these authors showed that the mean metabolism was increased in the left 

and right lateral orbital cortex/ventrolateral prefrontal cortex (PFC), left amygdala, and 

posterior cingulate cortex, and decreased in the subgenual ACC and dorsal 

medial/dorsal anterolateral PFC in the unmedicated depressives relative to controls. 

Following treatment, metabolism significantly decreased in the left amygdala and 

changes in the orbital and posterior cingulate cortices approached significance.  

 Kimbrel et al. (2002) reported  a decreased cerebral glucose metabolism 

(rCMRglu) in right prefrontal cortex and paralimbic/amygdala regions as well as 

bilaterally in the insula and temporoparietal cortex from depressed patients when 
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compared with healthy control subjects using PET imaging . Decreased glucose 

metabolism was also observed in the parietal cortex of depressed patients using 18F-

FDG PET (Bive et al., 1994; Hosokawa, Momose, & Kasai, 2009). 

 

3.2 Depressive behavior during early methamphetamine withdrawal 

 It is widely known that substance abuse and mood disorders are intimately 

associated. Notably, the initial phase of withdrawal in chronic METH users, known as 

crash, is characterized by psychiatric and somatic symptoms (Cryan et al., 2003). In 

fact, during withdrawal, chronic METH abusers have more psychiatric complaints than 

physical manifestations, namely anxiety, depression with severe dysphoria, anhedonia, 

irritability and melancholia, social isolation, fatigue with hypersomnia, psychomotor 

dysfunction, mood disturbances, impaired social functioning,  intense craving for the 

drug  and even paranoia or aggression, as well as attention deficits and memory in 

making decisions (Scott et al., 2007; Darke et al., 2008). While the abstinence syndrome 

seems to be transient, symptoms associated with MDD can persist for months (Barr et 

al., 2006).   

 Moreover, when abstinent for 1 week,  METH abusers showed more severe self-

reports of depressive symptoms than control subjects, and these self-reports covary with 

relative uptake of the radiotracer 18F-FDG in anterior cingulate cortex and amygdala 

evaluated by PET (Berman et al., 2008).  

 However, the temporal relationship between depression and METH use is 

unclear: it is unknown whether experiencing depressive symptoms promotes METH 

use, whether depression results from or is enhanced by METH use, or whether it is 

bidirectional (Sutcliffe et al., 2009).  
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 This relationship between depressive disorders and METH has been also studied 

in animal models. For example, a depressive-like behavior was reported in mice during 

an early METH withdrawal (4-7 days), after short (1h) and extended (6h) access 

to methamphetamine self-administration (0.05 mg/kg) (Jang et al. 2013). 

 Also, Kitanaka et al. (2012) suggested that a single administration of 

methamphetamine to mice early in the light period decreases running wheel activity  

The same group reported increased anxiety during mice withdrawal, after ten days of 

consecutive METH administration (1.0 or 2.5 mg/kg; twice a day) (Kitanaka et al., 

2010). A transitory reduced locomotive activity was also reported in mice, 3 days after 

METH subcutaneous injection (10mg/kg; 4 injections every 2h). However, 1 week after 

the drug administration animals displayed normal locomotor activity. 

 A depressive-like behavior was also observed by Cryan et al. (2003), 24h after 

AMPH administration (5mg/kg/day, 7days) due to increased immobility of mice on the 

tail suspension test. 

 Finally, our group recently demonstrated that a single high neurotoxic dose of 

METH (30 mg/kg i.p.) evoked a long-lasting depressive-like behavior as gauged by 

increased immobility in the tail-suspension task  measured within the first week (3 days) 

and 7 weeks post-METH treatment (Silva et al., 2014). This long-lasting depressive-like 

profile was accompanied by monoaminergic (dopamine and serotonin) disruption in 

both striatum and frontal cortex. 

 Importantly, psychostimulant withdrawal in rodents seems to provide the basis 

for the development of an animal model of depressive symptoms, such as despair, 

anhedonia and lethargy (Paulson, Camp, & Robinson, 1991; Cryan et al., 2003).This 

would allow the screening of new pharmacological approaches on the search for a 

efficient treatment to reverse the abstinence syndrome (Barr, Markou, & Phillips, 2002).
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Aim 

  

 The aim of this work is to further characterize the negative emotional states of 

mice and the underlying frontal cortical and hippocampal metabolomic profile probed 3 

days following a single high neurotoxic METH dose (30 mg/kg) – early withdrawal.   
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1. Animals 

 Ten-week old male C57BL/6 mice weighing 21–26g were obtained from 

Charles River Laboratories (Barcelona, Spain) (Figure 8) and maintained in the animal 

house of the Faculty of Medicine, University of Coimbra (FMUC) with a standard 

12:12-hour light-dark cycle and controlled humidity, temperature (22 ± 1° C), and 

pathogen-free conditions. Animals were grouped in 4 cages (4 per cage) with food and 

water provided ad libitum. Their weight was monitored before the administration of 

METH and before the sacrifice, in order to evaluate the anorexic effect of the drug.  

 All experiments were approved by the Institutional Animal Care and Use 

Committee from Faculty of Medicine, Coimbra University, and were performed 

following the European Community directive (2010/63/EU). The animal procedures 

were performed in strict accordance with the “Guide for the Care and Use of Laboratory 

Animals” (Institute of Laboratory Animal Resources, National Academy Press 1996). 

  All efforts to minimize animal suffering and to use the smallest possible number 

of animals were made. 

 

 

Figure 8 - Example of C57BL/6 mouse. Image from the Jackson Laboratory. 
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2. Drugs and Chemicals 

 We were issued permission by INFARMED, Portugal (National Authority of 

Medicines and Healths Products) to import methamphetamine.HCL (METH) from 

Sigma-Aldrich (St. Louis, MO, USA). The other used chemicals (ultrapure and pro 

analysis quality) were purchased from Santa Cruz Biotechnologies, Inc., Merk KGaA 

(Darmstadt, Germany),  Merck Millipore, Merk KGaA, Sigma-Aldrich and Abcam 

(Cambridge, UK).  
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3. Experimental Design 

 A total of 16 animals were randomly divided into 4 cages, with 4 animals each: 

2 cages having control groups (SAL) and other 2 cages having methamphetamine 

groups (METH).The animals were previously identified with ink stripes on the tail and 

housed in their respective cages, and were allowed one day of adaptation to the animal 

house before the experimental procedure.. Mice weight was recorded before the 

administration of the neurotoxin and 72h post-injection, using an analytical balance 

(Kern CB 6 K1, Germany). Control groups (SAL) were administered a saline solution 

(NaCl 0.9%, 250μl.), while METH groups were injected with 30 mg/kg 

methamphetamine.HCL (METH; 3mg/ml). Animals were injected with a single 

intraperitoneal dose (i.p.). Immediately following METH injection, animals were 

extremely agitated, sweated and presented bristly tail and coat and repetitive rapid 

movements. This is consistent with what is reported in the literature (Meredith et al. 

2005). 3 days following METH administration, behavior tests were performed and 

animals were, finally, sacrificed for dissection of discrete brain regions (namely frontal 

cortex and hippocampus). 
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4. Behavioral Tests 

 Behavioral tests that included elevated-Plus Maze (EPM) Splash and Forced-

swim test (FST) and were performed72 hours after administration of METH (30 mg/kg, 

i.p.) or saline to assess mice negative emotional states. The tests were performed in the 

listed order to prevent carryover effects.  Tests were performed between 9 am and 

6pm, in a sound-attenuated room lit with low intensity Light (12 lx). Animals were 

transferred to this room 1h before the start of the testing so that animals can get used to 

the environment. The behavior was monitored by a video camera positioned above the 

equipment and the images were subsequently analyzed with the system of video 

monitoring ANY Maze (Stoelting Co., Wood Dale, IL, USA) by an experienced 

experimenter who was unaware of the experimental group being tested. 
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4.1 Elevated-Plus Maze 

 The Elevated-Plus Maze is often used to evaluate the anxiolytic or anxiogenic 

drug effects in mice (Lister, 1990). 

 This test was performed in a black acrylic apparatus (LE 848 PANLAB, Barcelona, 

Spain) placed 55 cm above the floor. The four arms heighted 18 cm long and 6cm width. 

Two opposite arms were surrounded by gray opaque walls, 15cm high (closed arms), while 

the other two had no walls around it (open arms) (Figure 9). Each animal was placed in the 

center of the apparatus, facing an open arm, and observed during 5 minutes, by an 

experienced person. The following parameters were evaluated: time spent and the number 

of entries into open and closed arms. An animal was considered to entry an arm whenever 

all four limbs were inside an arm. An anxiolytic-like behavior was defined by a decreased 

proportion between the number of entries on the open arms divided by the total number of 

entries in the four arms and also by a decrease in the time spent on the open arms, compared 

to the total time spent in both type of arms. The total number of entries in the closed arm 

was used as a measure of locomotor activity. 

 

Figure 9 - Elevated-Plus Maze: Mice are placed in the centre, facing an open arm. 
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4.2 Splash 

 This test protocol was used to evaluate the impact of methamphetamine 

administration on grooming behavior in mice as an index of self-care and motivational 

behavior phenotype of the experimental groups and was adapted from Yalcin et al. 

(2005). For this purpose, 10% sucrose solution was squirted on the dorsal coat of mice 

in their home cage. Following this viscous solution dirtying the mice fur, animals 

initiate grooming behavior. The mice grooming time was recorded in an acrylic 

chamber (40 x 40x 40 cm) during 6 minutes (Figure 10). 

 Grooming bouts were  recorded including nose/face grooming (strokes along the 

snout), head washing (semicircular movements over the top of the head and behind the 

ears) and body grooming (body fur licking) (Kalueff & Tuohimaa, 2004) Anhedonic 

symptoms were characterized by decreased grooming time (d’Audiffret et al., 2010). 

 

Figure 10 -  Splash Test: A - Mouse in cage 2 is grooming his back fur (sucrose grooming); B - 

schematic representation of sucrose grooming. 
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4.3 Forced-swim test 

 The Forced-swim test has been used as a model predictive of antidepressant 

effect (Cryan et al., 2003). The test procedure was carried out according to Porsolt et al. 

(1977) with some modifications. Mice were individually forced to swim in open 

cylindrical container (21 cm height × 12 cm internal diameter) containing fresh water 

till a height of 15 cm at 23±1 °C; the total duration of immobility was recorded during a 

6 minute period (Figure 11). The water was changed and the cylinder refilled with clean 

water after each mice. 

 During the 6 min swimming test session, a trained observer recorded the total 

immobility time (i.e. the time spent floating in the water without struggling, making 

only those movements necessary to keep its head above water level) Since animals tend 

to immediately struggle when dropped in the cylinder, the same trained experimenter 

also recorded the previous behavioral responses during the last 4 minutes of the test, in 

order to discard the initial agitation caused by the sudden drop in water. An increased 

duration of immobility time is indicative of a depressive-like behavior (Porsolt,  1977).  

 

Figure 11 - Forced Swim Test: Mice placed into an open cylindrical container. 
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5. Frontal cortex and Hippocampus isolation 

 Following behavioral tests, animals were sacrificed by cervical dislocation and 

decapitated. The brains were rapidly removed and immediately frozen in liquid nitrogen 

and stored at -80 ° C later utilization. The hippocampus and the frontal cortex were later 

dissected on ice based on the coordinates for the mouse brain described by Paxinos & 

Franklin (2004). Biological samples from the right hemisphere were used for 1H-NMR 

analyses while the ones from the left hemisphere were used for Western Blotting 

analyses.  
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6. Proton HRMAS 

 Proton (1H) high rotation magic angle spinning (HRMAS) spectroscopy was 

performed in the different brain regions using a 800 MHz Brucker NMR spectrometer 

equipped with a 4 mm HR MAS Triple H/C/N probe-head, specific for high resolution 

liquid or semi-solid samples. A 1D Carr–Purcell–Meiboom–Gill (CPMG) NMR 

sequence was used. Typical acquisition parameters included a 5.45 seconds acquisition 

time, defining a 12 kHz sweep width, and a recycle delay of 2 seconds. A total of 256 

scans were averaged to allow good signal to noise for metabolite quantification. Before 

Fourier transformation each FID was multiplied by 0 0.5 Hz Lorentzian to improve 

signal to noise. Spectral integration for metabolite quantification was performed using 

NUTSproTM. 
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7. Western Blotting 

 The frontal cortices from left hemispheres were homogenised in 400 μL of RIPA 

buffer (NaCl 150 mM; Tris-HCl 50 mM, pH=8.0; EGTA 5 mM; Triton X-100 1 %; sodium 

deoxycholate (DOC) 0.5%; sodium dodecyl sulfate (SDS) 0.1 %) with protease and 

phosphatase inhibitors cocktail ( PMSF 1 mM, DTT 1 mM, chymostatin 1μg/mL, leupeptin 

1 μg/mL, antiparine 1 μg/mL, pepstatin A 5 μg/mL, sodium fluoride 50 mM e sodium 

orthovanadate 1 mM (Sigma-Aldrich, Sintra, Portugal)). This cocktail was added to the 

lyses buffer immediately before its use.  

 Brain tissue was homogenized by ultrasounds (3 pulses of 10s), diving the samples 

in ice between pulses, in order to avoid the biological samples to overheat. Protein lisates 

were then centrifuged at 13000 rpm (15493 x g), for 15 minutes, at 4ºC. Supernatants (total 

extracts) were collected and stored at - 80°C. Protein quantification was determined 

according to the Bicinchoninic acid assay (BCA - Thermoscientific®). Samples were 

denatured at 37ºC for 60 minutes (GluT1) or at 98 ºC for 5 minutes  (Synaptophysin and 

Syntaxin 1) in denaturing solution 6x diluted (Tris-HCl, 0,5M, pH 6,8; SDS 10% (m/v); 

glycerol 30% (v/v), DTT 0,6M, bromophenol blue 0,01% (m/v)). Equal amounts of 

protein were loaded into the gels and separated by electrophoresis on sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using 10% gels. Then, 

proteins were transferred electrophoretically to polyvinylidene difluoride membrane 

(Millipore, Madrid, Spain), and blocked with 5% non fat dry milk in phosphate-buffered 

saline solution (PBS, in mM: 137 NaCl, 2.7 KCl, 4.3 Na2HPO4, 1.47 KH2PO4; pH 7.4) 

containing 0,1% Tween-20 (PBS-T) for 2 h at RT. 

 The membranes were probed with primary antibodies (Table 1) overnight at 4 

°C. Membranes were then incubated with alkaline phosphatase-conjugated IgG 

secondary (Table 1) prepared in PBS-T for 1h at RT. Finally, membranes were 
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visualized on an imaging system (Thyphoon FLA 9000, GE Healthcare) using an 

enhanced chemifluorescence detection reagent (ECF, GE Healthcare). To confirm equal 

protein loading and sample transfer, membranes were reprobed with mouse anti-β-actin 

1:5000 (Sigma-Aldrich) or mouse anti-tubulin 1:10000 (Sigma-Aldrich). Densitometric 

analyses were performed using the Image Quant 5.0 software (Molecular Dynamics, 

Inc., Sunnyvale. CA, USA) and results were expressed as percentage of control and 

presented as mean ± standard error (SEM). 

 

 

Table I - Primary and secondary antibodies used for Western Blot analysis. 

Antibody 

Molecular 

Weight (kDa) 

Quantity of 

Protein (μg) 

Dilution (μL) Reference 

Mouse anti-

Syntaxin 1 

37 20 1:5000 SynapticSystems 
(110 011) 

Mouse anti-

Synaptophisin 

38 10 1:1000 Sigma-Aldrich 
(S5768) 

Rabbit anti-

GluT1 

54 20 1:500 Millipore 
(07-1401) 

Mouse anti-

Tubulin 

52 - 1:10000 Sigma-Aldrich 
(T6199) 

Mouse anti-β-

actin 

42 - 1:5000 Sigma-Aldrich 
(A5316) 

Goat anti-

mouse 

- - 1:10000 Sigma-Aldrich 
(A3582) 

Goat anti-

rabbit 

- - 1:1000 GE Healthcare 
(NIF1317) 
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8. Statistical analyses 

 The results are expressed as mean ± SEM. Spleen and supra-renal glands weight, 

behavioral and neurochemical data were analyzed by t-test, where * p<0,05; ** p<0,01 e 

*** p<0,001.  

 The statistical analyses were performed using GraphPad Prism 6.0 software. 
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1. Mice emotionality at early METH-withdrawal 

1.1 Anxiety-like behavior of methamphetamine-injected mice probe by elevated-

plus maze 

 No anxiolytic-like behaviour was associated with the METH injection, because 

time spent (Figure 12 (A)) and number of entries into open arms (Figure 12(B)), by the 

METH group was not significantly different from the control group (p>0.05). 

Moreover, no significant differences among groups was observed in number of entries 

in the closed arms suggesting that the METH group did not show locomotor impairment 

(Figure 12 (C); p>0.05). 
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Figure 12 - Anxiety-like behaviour behaviour in mice injected with a single dose of METH 

(30mg/kg, i.p.) or saline (SAL) evaluated by elevated plus maze test. The figure shows the 

percentage of time spent on open arm (A), the percentage of entries into open arm (B) and 

number of entries in closed arms (C) by mice 72h post-injection. These behavioural parameters 

were recorded for 5 min. The results are expressed as mean ± S.E.M. of 8 animals per group. 
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1.2 Depressive-like behaviour of methamphetamine-injected mice 

a) Splash test 

 Mice anhedonic-like phenotype was assessed using the Splash test that allowed 

the measurement of grooming behavior for 5 minutes, 3 days post-injection. METH-

injected animals displayed a significantly decreased total grooming time when 

compared to control animals (Figure 13: p<0.05).  

  

 

 

 

 

 

  

Figure 13 - Anhedonic-like behaviour in mice injected with a single dose of METH 

(30mg/kg, i.p.) or saline (SAL) evaluated by the splash test. The figure shows the total 

grooming time of mice 72 h post-injection. These behavioural parameters were recorded for 5 

min. The results are expressed as mean ± S.E.M. of 7-8 animals per group. *p<0.05 versus 

saline group using unpaired t-test. 
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b) Forced-swim test 

 Mice despair-like behaviour was probed using forced swim-test for 6 minutes, 3 

days post-METH injection. METH-injected mice did not show a despair-like behavior 

as gauged by total immobility time as well as immobility time measured during the last 

4 minutes not being statistically different from those shown by their controls (Fig.14  A, 

B; p>0.05).  

 

 
. 
 
 
 
 
 
 
 
 

Figure 14 - Despair-like behaviour in mice injected with a single dose of METH (30mg/kg, 

i.p.) or saline (SAL) evaluated by the forced swim test. The figure shows the total immobility 

time (6 minutes) (A) and the immobility time during the last 4 minutes (B) of mice 72 h post-

injection. The results are expressed as mean ± S.E.M. of 8 animals per group.  
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2. Effect of Methamphetamine on body and spleen weight 

 The administration of a single neurotoxic dose of METH did not alter the 

animals’ body weight, 72h post- injection (Figure 15 A). 

 Mean spleen masses were not significantly different between groups (66,4 ±3,0 

and 72,7 ± 4,9 mg for control and METH, respectively; p>0.05). This difference 

remained not significantly different, even when corrected for individual body weight. 

(Figure 15(B,C), p>0.05). 
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Figure 15 - Body and spleen weight from mice injected with a single dose of METH 

(30mg/kg, i.p.) or saline (SAL). The figure shows mice body weight 0 and 72h post-METH 

(A) and relative spleen mass (spleen-to-body weight ratio) (B and C) 72h post-METH. Panel 

(B) represents scatter plot to highlight data dispersion regarding relative spleen mass. The 

results are expressed as mean ± S.E.M. of 8 animals per group. 
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3. Metabolic profiling of frontal cortex and hippocampus from 

METH-injected mice: metabolomics approach  

 Figures 16 and 17 show representative 1H-NMR spectra obtained from frontal 

cortices and hippocampi of mice 3 days post-METH or SAL injection. METH-treated 

mice showed a decrease in both n-acetylaspartate (NAA)/Cre and  lactate/alanine ratios 

(Figure 18(i,ii); p<0.01) on frontal cortex when compared to control mice, whereas no 

differences were seen on the hippocampus between groups regarding these metabolites 

(Figure 19 (i,ii); p>0.05), All the other analyzed metabolites were not significantly 

different between groups in both studied brain regions (Figs 18 (iii-viii), 19 (iii-viii); 

p>0.05).   

 

 

Figure 16 - A typical 800 MHz CPMG 1H NMR spectra of frontal cortex from mice 

exposed to METH/saline.  
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Figure 17- A typical 800 MHz CPMG 
1
H NMR spectra of hippocampus from mice exposed 

to METH/saline.  
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Figure 18 - 
1
H NMR spectral integration for frontal cortex metabolite quantification from 

mice injected with single dose of METH (30mg/kg, i.p.) or saline (SAL). Figure shows  (i) n-

acetyl-aspartate, (ii) lactate/alanine ratio,  (iii) glutamate, (iv) glutamine,  (v) GABA, (vi) 

GABA-glutamate ratio,  (vii) taurine and  (viii) inositol, The results are expressed as mean ± 

S.E.M. of 6-8 animals per group. **p<0.01 versus saline group using unpaired t-test.  
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Figure 19 - 
1
H NMR spectral integration for hippocampal metabolite quantification from 

mice injected with single dose of METH (30mg/kg, i.p.) or saline (SAL). Figure shows (i) 

lactate/alanine ratio, (ii) n-acetyl-aspartate/creatine ratio (iii) glutamate/creatine ratio, (iv) 

glutamine/creatine ratio, (v) GABA/creatine ratio, (vi) GABA-glutamate ratio,  (vii) 

taurine/creatine ratio and  (viii) inositol/creatine ratio, The results are expressed as mean ± 

S.E.M. of 7-8 animals per group. 
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4. Frontal cortical synaptic density in methamphetamine-injected 

mice 

 METH did not modify synaptophysin and syntaxin-1 levels (pre-synaptic 

markers) in the frontal cortex 3 days post-injection when compared to controls as seen 

in Figure 20 (p>0.05). 

 

                                     

 

 

 

 

Figure 20 - Frontal cortical synaptophysin (A) and syntaxin-1 (B) levels from METH-and 

saline (SAL)-injected mice (measured by Western blot).  All data are mean ± S.E.M, with 4-

6 animals per group. 
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5. Frontal cortical levels of glucose transporter 1 (GluT1) in 

methamphetamine-injected mice  

 METH did not modify both endothelial (55kDa) and astrocytic (45kDa) isoform 

Glut1 levels in the frontal cortex 3 days post-injection when compared to controls as 

seen in Figure 21 (p>0.05).  

                                          

                                       

 

 

 

 

 

Figure 21 - Frontal cortical endothelial (55 kDa) and astrocytic (45 kDa) isoform Glut1 

levels from METH-and saline (SAL)-injected mice (measured by Western blot).  All data 

are mean ± S.E.M, with 4-6 animals per group. 
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Discussion 

 Herein we present novel data showing that a single high METH dose triggered 

an early anhedonia-like behavior. This negative emotional state is underlined by 

impaired frontal cortical energy metabolism as gauged by decreased NAA/Cre and 

Lac/Ala ratios measured by 1H-NMR.  

 The METH regimen employed herein recapitulates the neurochemical and mood 

behavioural alterations seen in addicts after METH discontinuation (Krasnova and 

cadet, 2009; Silva et al., 2014; Rusyniak, 2013). The first objective of the current work 

was to further offer a comprehensive portrait of the negative emotional state of mice 

during early-METH withdrawal (72h post-injection).  To this end we probed the 

anxiety- anhedonic- and despair-like behavior in METH-treated mice. Firstly, EPM test 

showed that the METH group did not exhibit an anxiety-like trait as gauged by similar 

amount of time and number of entries into open arms when compared to control 

animals. Furthermore by the METH group was not significantly different from the 

control group (p>0.05).   

 Two tests were used to assess depressive-like behaviour in METH-treated mice: 

the splash test and FST. However, only the splash test reported significant differences 

between groups – in fact, METH-injected mice showed decreased total grooming time. 

This is indicative of decreased self-care which is a read-out for an anhedonic-like 

behavior.  This mimics apathy observed in depressed patients (Willner, 2005). This data 

further confirms the depressive-like behavior in mice evaluated 3 days post- similar 

METH dose by tail suspension test (Silva et al. 2014). However, the immobility time of 

METH-injected mice was not significantly different from control in the FST. This data 

further feeds existent controversy in the interpretation of this test: on the one hand, the 

immobility time has been classically interpreted as a behavioral correlate of negative 
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mood, representing a despair-like behaviour in the animal. However, there is some 

debate among the scientific community whether increased immobility demonstrates 

instead an adaptative learning i.e., the animal learned it cannot escape therefore it 

started to save energy until the experimenter removes it (Petit-Demouliere, Chenu, & 

Bourin, 2005). Also, this test is typically used to assess antidepressant efficacy, whereas 

TST is more sensitive in illustrating neurochemical abnormalities (Steru et al., 1985; 

Castagnne et al., 2010; Chatterjee et al., 2011). Overall, our findings are consistent with 

previous studies suggesting that rats experienced more depressive-like state than 

anxiety-like state during METH-early withdrawal using a self-administration model 

(Jang et al., 2013). 

 Spleen weight was controlled, as a stress indicator, since stress can result in a 

significant enlargement of the spleen, due to an increase in trafficking of CD11b+ 

myeloid cells from the bone marrow to the spleen (Engler et al., 2005). In the present 

study, no splenomegaly was reported, thereby, no stress was induced by the exposure to 

the drug. 

  The behavioral alterations prompted us to provide a metabolic explanation for 

this negative emotional state this negative. Thereby, a NMR-based metabolic mapping 

of METH-exposed mice allowed a general view over many brain metabolites during the 

early METH withdrawal. Using 1H-NMR techniques, we detected profound metabolic 

changes in the levels of NAA, and the Lactate/alanine ratio, specifically at the prefrontal 

cortex.  

 These behavioral alterations prompted us to provide a metabolic explanation for 

this negative emotional state. Thereby, we are newly reporting a 1H-NMR metabolomic 

fingerprint of both frontal cortex and hippocampus from mice experiencing early 
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METH- withdrawal. In fact, we disclosed metabolic changes in the levels of NAA/Cre, 

lactate/alanine ratio, at the prefrontal cortex.  

 NAA is one of the most concentrated brain metabolites and it usually produces 

one of the largest peaks in MRS scans (Moffett, Arun, Ariyannur, & Namboodiri, 

2013).  This metabolite is typically used as a surrogate marker of neuronal viability 

(Lan et al., 2008; Zhang et al., 2009). NAA alterations have been widely associated with 

several neurological and psychiatric disorders and substance-abuse conditions (Tsai & 

Coylet, 1990; Maddock & Buonocore, 2012). Moreover, NAA synthesis occurs 

primarily in the mitochondria (Patel and Clark, 1979) and reductions in its brain levels 

are paralleled by the reductions in ATP in several experimental paradigms illustrating 

brain energy metabolism impairment (Moffett et al., 2013). Therefore, decreased NAA 

levels seen herein are potentially consistent with compromised frontal cortex energetic 

in METH-treated mice. 

Lactate is a product of glucose metabolism, through glycolysis, and it cannot be 

accumulated in astrocytes (Brooks, 2009). Therefore, it is shuttled to neurons trough the 

ANLS, and converted to pyruvate. Since pyruvate cannot be measured by MRS 

spectroscopy, we used alanine instead in the present work. The decrease in frontal 

cortical lactate/alanine ratio in METH mice may be indicative of a perturbed neuron-

astrocyte metabolic coupling thus perturbing cortex energetics. However, this altered 

energy metabolism did no translate into hampered glutamate, glutamine and GABA 

(which is generated from glutamate) homeostasis. Our study offers a pioneer 

metabolomics analysis under a METH neurotoxic regimen. However, Bu et al. (2003) 

recently characterized metabolic rat brain alterations induced by subcutaneous injection 

of 2.5 mg/kg METH (twice-daily) for 7 days, using HR-MAS spectroscopy.   These 

authors showed a decrease in frontal cortical and hippocampal NAA levels at the last 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572261/#R58
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day of METH administration. Although the frontal cortical data is consistent with ours, 

the hippocampal data seems contradictory. Additionally, these authors also reported a 

depletion of glutamate, GABA, glutamine and taurine (oxidative stress marker) and an 

increase in inositol (glial marker) in both frontal cortex and hippocampus.  However, 

one has to bear in mind that animal species (mice vs. rat), METH regimen (neurotoxic 

vs. sensitizing protocol) and evaluated time-points (withdrawal vs. acute effect) are 

different across studies. Therefore, strict comparison between studies warrants caution. 

Nonetheless, one might propose that at 3 days post-injection there was a substantial 

recovery of the metabolic perturbation, in both frontal cortex and hippocampus, except 

for the NAA and lactate frontal cortical levels. Notably, a restoration of perturbed 

metabolism after a 2-days withdrawal of METH was previously described, including the 

return of serum creatinine, citrate, 2-ketoglutarate and urinary lactate to baseline levels 

(Zheng et al., 2014). 

 No alterations were reported on the hippocampus, thereby, we focused our 

protein analysis on the PFC. 

 The next step was to evaluate whether energy impairment would translate into 

synaptotoxicity in frontal cortex from METH-injected mice. Syntaxin 1, along with 

synaptobrevin and synaptosome-associated protein (SNAP)-25 form a Ca2+-dependent 

complex (SNARE complex) which precedes exocytosis and regulates the release of 

neurotransmitters from neurons (Edelmann et al., 1995). On the other hand, 

synaptophysin acts as a regulator of the SNARE complex (Hinz et al., 2001), and is also 

considered as a marker protein of presynaptic nerve endings (Thome et al., 2001; Grillo 

et al., 2005). 

http://www.jneurosci.org/content/32/48/17143.long#ref-35
http://www.jneurosci.org/content/32/48/17143.long#ref-79
http://www.jneurosci.org/content/32/48/17143.long#ref-32
http://www.jneurosci.org/content/32/48/17143.long#ref-32
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 Syntaxin 1 and synaptophysin levels were not significantly different between 

saline and METH groups.  While novel, this data is highly suggestive that there is no 

frontal cortical synaptotoxicity associated with METH at this time-point.    

 Recent data showing that 200M METH – METH levels found in blood samples 

from chronic METH users - decreased both glucose uptake and GluT1 levels in human 

astrocytes (Muneer et al. 2011) prompted us to analyze frontal cortical levels of GluT1 

Herein we demonstrated that METH failed to change both astrocytic (45kDa) and 

endothelial (55kDa) GluT1 isoforms.  However, one cannot rule out that glucose uptake 

could be playing a role on the defective neuron-astrocytic metabolic coupling seen 

herein.   
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Conclusion 

 The present study presents novel data showing that a single neurotoxic 

methamphetamine dose (30mg/kg), triggered an early anedhonic-like state accompanied 

by frontal cortical energy metabolism disruption.  

 Further studies are warranted to analyze the glucose uptake and lactate release 

using frontal cortical slices isolated from METH-treated mice. 
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