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Abstract 

Neurodegenerative movement disorders such as Parkinson´s disease or Huntington´s 

disease share the same progressive and relentless course with increasing motor disability 

coupled with neuropsyquiatric impairment and have been, over these last few decades, a 

passionate topic of experimental and clinical research due to their lack of therapeutic options. 

Restorative therapies have brought both enthusiasm with the prospect of its potential to 

restore brain damage and also disbelief for the less than compelling results from clinical trials. 

The aim of this review is to discuss the cell replacement therapies applied to both Parkinson´s 

and Huntington´s diseases since their beginning, following their natural sequence from animal 

studies into the early human trials, addressing fetal neural tissue transplantation and other 

more recent prominent cell sources. 

Nowadays, stem cells became at the forefront of cell therapy. Embryonic, neural and 

induced pluripotent stem cells were successfully able to generate a desired neuron phenotype 

and/or provide growth factors to the vulnerable or degenerating host cells allowing 

researchers to enter a new pre-clinical era. There are still many barriers to overcome before 

clinical application is possible, it must be assured that the stem cell source has an optimal 

differentiation potential with full integration and functional enhancement, bears measurable 

clinical benefits with minimum impact on hosts immune system and absence of tumor 

formation. The future prospects for stem cell therapy are overwhelming but steady and solid 

basic and pre-clinical progresses must be held before clinical application becomes eligible. 
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1. Introduction  

Research on chronic neurodegenerative disorders of the central nervous system (CNS) 

is a very important branch of medical science due to their increasing prevalence worldwide.  

Neurodegenerative movement disorders, such as Parkinson’s disease (PD) and 

Huntington’s disease (HD), share the property of neuronal damage caused by the 

accumulation of aggregation-prone proteins that have toxic effects, as is the case of alpha-

synuclein and mutant huntingtin, respectively.  

PD represents the movement disorder with the higher incidence and prevalence, 

affecting about 0.5 to 1% of the aging population, being the majority of cases of sporadic 

origin. HD is an uncommon hereditary autosomal dominant disorder caused by expanded 

polyglutamine repeats at the N-terminal of huntingtin. HD is the most studied genetic 

movement pathology.  

The estimated prevalence of HD is of 0.01%, but it varies depending on the 

geographical area. Presently, the causes and molecular mechanisms of these brain diseases are 

not completely understood. Furthermore, for both of these disorders there is still no cure or 

symptomatic relief with long lasting effects, being the neurodegenerative process irreversible 

and inevitable. 

The basal ganglia once thought solely as part of the “extrapiramidal” motor system, is 

now recognized as a brain area whose function relies on receiving and sending back signals to 

cortical areas, which also play an important and integrating role in the cognitive and 

emotional sphere. Therefore, we can not acknowledge PD and HD as only mere “movement” 

diseases as they represent complex and multifunctional neurodegenerative disorders. 

In this review we discuss the cell replacement therapies concerning these diseases as well 

as the various cell resources that are currently being investigated. For both of them, we will 
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address the early trials involving the grafting of fetal brain tissue, their best results and 

disappointments, which laid the foundations for stem cell research, as well as the scientific 

breakthroughs that were accomplished so far. 

 

2. Parkinson´s disease 

Parkinson´s disease (PD) was first described in 1817 by James Parkinson in his essay 

about the “Shaking palsy” as an involuntary tremulous motion, with lessened muscular power, 

in parts not in action and even when supported; with a propensity to bend the trunk forward, 

and to pass from walking to a running pace: the senses and intellects being uninjured 

(Parkinson 2002). 

Nowadays, PD is the second most common neurodegenerative disease, after 

Alzheimer´s disease, affecting between 0.3 to 1% of population in the range of 65 to 69 years 

old and being the estimated prevalence of 1 to 3% in people over 80 years old (Lau et al. 

2006). About 90% of the cases are of sporadic origin, known as idiopathic PD, being the 

remaining 5 to 10% caused by inheritable genetic mutations.  

The exact pathological mechanisms underneath PD are not completely understood. It 

is believed that a combination of environmental (exogenous toxins and inflammation among 

others) and genetic factors leads to mitochondrial dysfunction with oxidative stress increase, 

decreased activity of the ubiquitin-proteasome system and activation of glial cells leading to 

neuronal death (Lau et al. 2006).  

In this chronic degenerating illness there is known to be a progressive loss of 

dopaminergic and non-dopaminergic neurons particularly in the mesencephalon (figure 1). 

The degeneration of dopaminergic neurons in the substantia nigra (SN) results in severe loss 

of dopamine (DA) in the striatum with disorganization of the basal ganglia circuits thereby 



3 

 

playing a major role in PD´s cardinal symptoms – bradykinesia, resting tremor and rigidity. 

Current criteria also include gait disturbance with postural instability and freezing as main 

symptoms. 

 

Figure 1: Comparison between SN from a PD patient and a non-PD patient;  

Legend: A – SN from a non-PD patient; B – SN from a PD patient showing loss of pigmented dopamine 

neurons; C – Lewy body; Image from de Girolami et al. 1999;  

 

It is well known the existence of more-widespread neuronal changes that cause 

complex and variable symptoms in the cognitive and psychiatric spectrum as well as 

autonomic and sensory disturbances.  Another pathological hallmark of PD is the presence of 

Lewy bodies, intracellular fibrillar inclusions consisting of abnormal proteins, including alfa-

synuclein that can exist in both central and peripheral autonomic nervous systems. Current 

treatment approaches include symptomatic relief with DA precursor, L-DOPA (L-3,4-

dioxyphenylalanine) and DA receptor agonists, but beneficial effects tend to lessen with 

chronic use and severe non-motor and motor fluctuations (on-off, wearing-off, ...)  as well as 

diskynesias (abnormal involuntary choreiform or dystonic movements) appear as detrimental 

side effects. There are also other drugs which include monoaminoxidase inhibitors (selegiline, 

rasagiline) amantadine, catechol-O-methyl transferase inhibitors and anticholinergics, but 

older patients might be highly sensitive to them and symptoms like confusion, hallucinations, 

orthostatic hypotension and fatigue may emerge, making them inadequately effective in later 

PD stages. 
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Another current approach is surgical therapy. The first surgical procedures, based on 

surgical ablation of deep brain structures, such as Thalamotomy or Pallidothomy, are almost 

completely abandoned. Nowadays, Deep Brain Stimulation of the subthalamic nucleus is the 

preferred procedure but several other surgical targets are under investigation. 

 These treatment options, however, can neither detain nor reverse the degenerating 

course of the disease, which is why the extensive investigation is now turning to discovering 

newer and more effective therapeutic strategies, either pharmacological or cell replacement 

therapies based on stem cells, as well as developing vaccines and various surgical techniques 

for the management of PD. 

 

2.1.  The beginning of cell therapy in PD  

Selective lost of dopaminergic neurons is one of the key features of PD. Thus, cell 

therapy has been considered as a potential therapeutic approach in PD since the mid-1980s. 

For this therapy´s success, neurons must integrate into local host circuits, establish new 

synapses, synthesize, release and take up DA in a similar manner to healthy host cells. We 

will briefly address the studies performed in animal models and the trials involving the 

grafting of fetal brain tissue in human patients. 

 

       2.2.1. Transplantation of fetal dopaminergic neurons – what we have learned from 

animal models 

Several animal studies conducted in the late 70s and early 80s transplanted human 

fetal dopaminergic tissue to replace the lost of DA in PD rodent animal model based on the 

idea that it would induce long lasting clinical improvement. It is beyond the range of this 

analysis to describe them in detail as they have been previously reviewed (for review see 

Dunnet et al. 1990). 
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Pre-clinical experimental data have demonstrated that intrastriatal grafted DA neurons, 

obtained from human fetal ventral mesencephalon, display many of the morphological and 

functional characteristics of normal DA neurons: they reinnervate the dennervated striatum 

and form synaptic contacts being spontaneously active and releasing DA. Successful 

reinnervation provided by the grafts is accompanied by a significant amelioration of 

Parkinson-like symptoms in animal models (Goren et al. 2005; Dunnet et al. 1990). 

To reassure the survival of neuronal transplants several issues must be taken into 

consideration, such as the optimal donor age, or the number and main neuronal subtype 

present in the grafts, amongst others.  

Early studies in experimental animals established a crucial developmental time 

window in which immature DA neurons could be harvested and were able to survive a 

subsequent grafting. Animal studies also revealed that the transplantation technique 

influenced the donor age window. Mature donor tissue was found to be highly sensitive to 

mechanical trauma due to their long extended processes but, conversely, immature tissue was 

even more difficult to adopt a dopaminergic phenotype after grafting (Freeman et al. 2006). 

The vast majority of experiments usually employs embryos around 13-15 embryonic day 

(E13-15), but a recent paper reported better survival of dissociated grafts when donor age was 

E12 (Torres et al. 2007). These questions are essential once even when using optimal donor 

age tissue only around 5-20% of grafted dopaminergic neurons survive due to harvesting, 

dissection or transplantation procedures (Brundin et al. 2000a; Sortwell 2003). It is also 

important to remember that nigral grafts are only made up of 5–10% neurons destined to 

become dopaminergic neurons, being the remaining from other neuronal and glial cellular 

subtypes.  

Several attempts were done to enhance neuronal dopaminergic survival, including 

testing different grafting techniques, neurotrophic support, antioxidant therapies, increasing 
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graft vasculature, promoting caspase inhibition, Bcl-2 overexpression along with others, 

whose main purpose was to reduce cell oxidative stress (Sortwell 2003).  

A recent work has drawn attention to the existence of two major dopaminergic neuron 

subtypes that stain for tyrosine hydroxylase (TH) within transplants of fetal ventral 

mesencephalic tissue: the A9 neurons of the SN pars compacta and the A10 neurons of the 

Ventral Tegmental Area (VTA).  These TH positive cells can be identified based on their 

expression of a G-protein-regulated inward rectifier potassium channel subunit (Girk2) that 

marks A9 neurons or Calbindin that labels A10 neurons. The same work also illustrates that 

striatum´s dopaminergic innervation in rats derives almost exclusively from the A9 subtype, 

whereas the Calbindin-positive VTA neurons project to the frontal cortex and probably also 

other forebrain areas. These results are in agreement with the existence of axon regulation and 

target detection mechanisms that can guide the growing axons to their appropriate targets 

(Thompsom et al. 2005). These facts may imply that better outcomes may emerge when using 

neurons with the molecular properties of A9 subtype that reinnervate the striatum and also 

synthesize and release DA in the host brain.  

Nigrostriatal lesions in animal models create motor behaviors PD-like that can be 

ameliorated by transplantation of dopaminergic neurons. Some of the latter can be evaluated 

with motor performance tasks such as the amphetamine-induced rotation, the cylinder test and 

the stepping test in rodents (Breysse et al. 2007; Olsson et al. 1995). Breysse and colleagues 

reported that behavior tests outcomes were compromised when the dopaminergic lesion was 

extended to include also the medial and ventral striatum as well as the cortical and limbic 

dopaminergic projections (Breysse et al. 2007). Furthermore, the data implicates that there 

might be no valuable effects when transplantation occurs in advanced stages of the disease. 
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       2.1.2. Transplantation of human fetal dopaminergic neurons  –  clinical trials 

 The earliest transplantation attempts for PD patients involved the use of readily 

available cell sources such as autologous adrenal medullary cells, surprisingly it was devoid 

from the clinical benefits expected, if one takes into account the previous animal data. The 

clinical benefit could not be replicated in subsequent open-label trials and the procedure was 

associated with considerable morbidity related to the need for both intra-abdominal and 

intracranial operations with only a few surviving cells detected post-mortem. Hence, this 

procedure was abandoned (Olanow and Fahn 2006). 

Studies involving the grafting of human embryonic tissue started in the mid-1980s and 

the initial transplants were able to demonstrate the feasibility of performing this procedure as 

well as beneficial clinical effects on motor behaviour. Since then, about 400 patients have 

been transplanted with embryonic dopaminergic neurons in several clinical trials, which 

provided proof-of-principle that these cells survive grafting, restore DA release and 

ameliorate some PD motor features. The trials mentioned above have been reviewed 

extensively elsewhere (e.g. Hagell and Brundin 2001; Olanow and Fahn 2006).  

 Clinical outcomes (table 1) in the best of cases displayed striking symptomatic relief 

with a decrease of the “off” periods and also lessening of medication needs, with a clear 

impact on the quality of life of PD patients who had undergone grafting procedure (Hagell et 

al. 1999; Hauser et al. 1999; Brundin et al 2000b). In some patients the impact was so 

significant that they were able to return to work in full time or to leave completely the anti-

parkinsonian medication (Brundin et al. 2000b; Hagell et al. 1999). 

 The majority of studies focused mainly on reinnervating the striatum alone and their 

outcomes have not yet provided solid evidence favoring neural transplantation as a routine 

therapeutic measure for PD patients. To investigate the benefits of target and, based on 

previous animal data, Mendez and coworkers held a pilot study to demonstrate the feasibility 
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of reinnervating the SN and striatum using a double transplant strategy in humans. Their 

results (table 1) suggested that this double reinnervation could be crucial to improve clinical 

outcomes in PD patients, but this method still requires further investigation (Mendez et al. 

2002). 

 One other major concern of cell transplantation surpassed with positron emission 

tomography (PET) with uptake of [18F]-fluorodopa (FD was graft survival and function 

assessment. FD-PET scan is an in vivo study that allows measurement of the number of viable 

striatal DA terminals using pre-synaptic uptake. Usually PD patients display diminished FD 

uptake with increased motor impairment in the putamen and caudate nucleus. The use of FD-

PET scan provided evidence to support graft survival and function for as long as 10 years 

(Freed et al. 2001; Hauser et al. 1999; Piccini et al. 1999). Post-mortem neuropathological 

examinations from patients who have died added more evidence concerning graft survival and 

fiber outgrowth in the host brain (Freed et al 2001; Kordower et al. 1995; Mendez et al. 

2005). 

However encouraging, all previous open-label trials were unblinded, displaying 

variability in the processing protocols as well as on surgical methods. Moreover, there was a 

requirement for a more standardized, large and placebo controlled studies (table 2). For that 

purpose, two NIH-sponsored studies were performed in a double blind controlled-trial design 

(Freed et al 2001; Olanow et al. 2003). 

Freed and coauthors enrolled forty PD patients in a study where they either received 

tissue from two embryos in each putamen or sham surgery and where the source of the human 

embryonic mesencephalic tissue consisted of aborted embryos seven to eight weeks after 

conception.  The tissue was stored as solid tissue strands and maintained in culture for up to 

eight weeks prior to implantation. There was no postoperative immunossuppression given. 
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Table 1:  Results from four open-label trials concerning implantation of human fetal mesencephalic tissue in PD 

patients. 

Reference Hagell et al. 1999 Hauser et al. 1999 
Brundin et al. 

2000b 
Mendez et al. 

2002 
Number of patients 5 6 5 3 

Age (mean) 48.8 (43-53) 55.5 (39-63) 53 (41-68) 50 (48-59) 
PD stage Advanced Advanced Advanced Advanced 

Number of grafts 
and location 

Unilateral in the putamen in 
previously grafted patients 

Bilateral in the 
putamen 

Bilateral in the 
putamen and 

caudate 
nucleus 

Bilateral in the 
putamen and SN 

Number of donors 
Donors age 

4-8 donors 
6-8 weeks 

6-8 donors 
6.5-9 weeks 

7-9 donors 
5-7 weeks 

6 donors 
6-9 weeks 

Graft preparation Dissociated VM tissue 
Solid grafts VM 

tissue 
Dissociated 
VM tissue 

Dissociated VM 
tissue 

Immunossupression 
Cyclosporin, azathioprine 

and prednisolone* 
Cyclosporin 

6 months 
None 

Cyclosporin 
6 months 

Follow-up 18-28 months 24 months 18-24 months 3-13 months 
Viability assessment 

PET-FD - Pre/Post 
31%/52% 

+ 69% 
34%/55% 

+ 61% 
31%/48% 

+ 55% 
NA 

+ 84.9% 
Motor score (mean) – “off” - UPDRS 

Preoperative 32.4 (25-41) 58.8 41.7 (23-67) 97.3 (75-139)** 
Postoperative 33.2 (20-45) 35.4 25.1 (16-42) 61.3** 

L-DOPA dose (mean) 

Preoperative 640mg (200-950) 854mg (200-1200) 
825mg (225-

1500) 
65% and 45% 

decrease in two 
patients 

respectively; 1 
patients without 

dose change 

Postoperative 430mg (0-800) 717mg (250-1000) 455mg (0-900) 

Relevant events 

1 patient deteriorated motor 
score after grafting and 
multiple system atrophy 
was suspected; 1 patient 

died 25months  after 
second procedure due to 

massive intracerebral 
haemorrhage ipsilateral to 

the first graft 

2 patients died 18 
months after from 
unrelated causes 
and post-mortem 
analysis showed 

graft survival 

1 patient 
without 
UPDRS 

improvement 

1 patient with 
intracerebral 
haemorrhage 

ipsilateral to the 
graft probably 

due to 
hypertension 

Side-effects 1 cortical dementia 
1 asymptomatic 

cortical hemorrhage 
No major side 
effect detected 

No major side 
effect detected 

Dyskinesias Variable 
Increased “on” 
period without 

Variable NR 

Legend:  NR- not reported   * 18-24 months   **UPDRS total score   

 

The results were based on a subjective global rating scale (diaries) which has shown 

no statistically significant differences between treatment groups, even though in the group 

under sixty years old better results were described. The Unified Parkinson’s Disease Rating 

Scale (UPDRS) and the Schwab and England scale were used as secondary outcome measures 

and, in a similar manner, no statistically significant differences were found between groups; 
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nonetheless, the patients under sixty years old displayed better results. PET scans with FD 

performed before and twelve months after the procedure showed significant increase in 

radionucleotide uptake in the putamen among patients from the transplantation group with no 

significant changes compared to those submitted to sham surgery.  Post-mortem examination 

on two deceased patients from unrelated causes revealed modest neuronal survival and fiber 

outgrowth (Freed et al. 2001).  Despite modest clinical benefit held by younger patients in this 

trial, there was a failure to reach statistic results. Several of this trial´s features were severely 

criticized and considered responsible for the lack of results, such as the absence of 

immunossupression, the storage method or the fact that the tissue was used as solid grafts but 

also the rostro-caudal trajectory chosen instead of dorsoventral which was more frequently 

selected.  

 Olanow and colleagues, in a similar double-blind design, had thirty four PD patients 

randomized to receive bilateral grafting in the putamen of human embryonic mesencephalic 

tissue from one or four donor compared to sham surgery (table 2). The tissue contained 

dopaminergic neurons recovered from fragments of embryos aborted six to nine weeks after 

conception. All patients were treated with cyclosporin at a higher dose before the procedure 

and during six months after with a lower amount.  The primary outcome measure was the 

UPDRS motor score change. From the results, one interesting feature was that four donor´s 

transplanted patients demonstrated a trend to improve motor scores between six-nine months 

in comparison with what was reported in open-label trials, and worsened in the following 

months, showing in overall no significant differences. This deteriorating period matched the 

end of immunossupression which probably gave rise to graft rejection held by  host´s immune 

system (Olanow et al. 2003). PET studies established considerable increases in striatal FD 

metabolism in grafted regions, with more pronounced changes in the four donor group. Post-

mortem studies, from patients who died of unrelated causes, demonstrated robust graft 



11 

 

survival with normal-appearing reinnervation of the striatum, once more with pronounced 

effects in the four donor group (Olanow et al. 2003).  In this study transplantation failed to 

meet its primary outcome and provide significant clinical benefits despite autopsy and PET 

evidences of high numbers of implanted cells survival (Olanow et al. 2003).  

 

Table 2:  Results from two double-blind placebo controlled trials concerning implantation of human fetal 

mesencephalic tissue in PD patients. 

Reference Freed et al. 2001 Olanow et al. 2003 

Number of patients 
Grafted Placebo 1 donor  4 donor Placebo 

20 20 11 12 11 
Age (mean) 54.5 (34-75) 58.5 

PD stage Severe Advanced 
Number of grafts 

and location 
Bilateral on the putamen or sham 

surgery 
Bilateral on the putamen or sham  

surgery 
Number of donors 

Donors age 
4 donors 

7-8 weeks 
1 or 4 donor per side or placebo 

6-9 weeks 
Graft preparation Solid VM tissue Solid VM tissue 

Immunossupression None 
Cyclosporin 

6 months 
Follow-up 12 months 24 months 

PET-FD - Pre/Post 
NR 

+ 40% 
NR 
-2% 

NR * 

Motor score (mean) – “off” - UPDRS 
Preoperative 66** 58.5** 47.9 48.6 51.5 
Postoperative 66** 51** +3.5% -0.72% +9.4% 

L-DOPA dose (mean) 
Preoperative NR 1257mg 1427.7 1399mg 
Postoperative NR -20% -11% NR 

Relevant events 

2 patient died from unrelated causes, 1 
from an automobile accident and 1 
from myocardial infarction; post-

mortem analysis revealed graft survival 
and striatum reinnervation 

2 patients died from unrelated causes, 1 from 
myocardial infarction and 1 from drowning; 
post-mortem analysis revealed graft survival 

and striatum reinnervation 

Side-effects 1 subdural hematoma No major side effect detected 
Dyskinesias 15%  with “off” medication dyskinesia 56.5%  with “off” medication dyskinesia 

Legend: NR – not reported; * Increase in fluorodopa uptake on PET on one and four donor group was reported; 

** UPDRS total score  shown; UPDRS motor score  decreased 18%  for the transplantation group;   

 

Taken together, the results from the two double-blind placebo-controlled trials failed 

to meet their primary end point despite increased striatal FD uptake on PET scans and post-

mortem evidence of surviving transplanted neurons. An interesting difference is that Freed 

and coworkers reported motor benefits in a subpopulation of patients under sixty years old, 
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whereas Olanow and coauthors did not detect selective benefits in younger patients but noted 

significant improvements in those with milder disease (Olanow et al. 2003). 

There is no plausible explanation for why these double-blinded were not as successful 

as their predecessors open-label trials. We cannot exclude doctor/patient/caregiver bias in 

open label trials, but this can not provide the only explanation. Other protocol divergences 

may include the immunossupression, the technique of tissue preparation or surgical and 

patient selection methods.  

An additional concern to both studies was the development of graft-induced 

dyskinesias. Freed and coworkers reported 5 out of 33 grafted patients with these involuntary 

movements in the range of 2-3 years after surgery, whereas Olanow and colleagues reported 

the same problem in about 56% of grafted patients. Though in the latter there was an increase 

in the number of patients, Freed and coworkers reported the higher severity in graft-induced 

dyskinesias. In both cases, however, dyskinesias persisted after therapeutic discontinuation 

and were considered a major drawback in the transplantation field.  

 Twenty years have passed since the beginning of neuronal transplantation and many 

lessons have benn learned from pre-clinical and clinical trials. We must now and for the 

future recognize the importance of cellular developmental stage as well as the number, main 

phenotype and purity of cells needed for each procedure as well as optimize patient selection 

criteria and adopt standard protocols which allow comparison between studies.  

Despite the initial reported clinical benefit from neural grafting in PD patients, only 

about 400 patients have been transplanted worldwide, partly due to the shortage of embryonic 

donor tissue. Hence, there is a need for an alternative cell source with the ability to be 

manipulated in order to expand indefinitely, constituting an unlimited and homogenous 

standardized pool of cells. These cells should then be able to differentiate, extend axons, form 

synapses, produce and release DA in a regulated manner similarly to normal neurons. 
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        2.1.3. Graft-induced dyskinesias and immunossupression in clinical trials 

 Long-term treatment with L-DOPA causes the development of motor complications, 

known as dyskinesias and motor fluctuations, they are normally related to the “peak of dose” 

or “wearing off” phenomenons, respectively, and are often severely disabling. The 

development of severe “off”-medication dyskinesias was observed in nearly 15% patients 

after the first double-blinded clinical trial and reached 56% in the subsequent trial (Freed et al. 

2001; Olanow et al. 2003). In both cases dyskinesias affected only the grafted patients 

suggesting they were caused by the graft itself. 

Hagell and colleagues made a retrospective analysis but were not able to find the same 

phenomenon described in the double-blind trials (Hagell et al. 2002; Freed et al. 2001). 

 There are several hypotheses regarding the origin of this mechanism, they can be 

caused by an uneven pattern of reinnervation induced by the grafts, or by changes in its 

physiology due to immune rejection as well as insufficient or excessive DA released from the 

graft (Hagell and Cenci 2005).  

 Presently, investigators are putting their efforts in trying to mimic these graft induced 

dyskinesias in PD animal models, not only to learn their mechanism but also to find a way of 

avoiding them. However, there is so far no reports from studies in which these graft-induced 

“off” stereotyped movements were induced in rodents and very few studies involved animals 

who received L-DOPA treatment first and transplant afterwards, as occurs in humans. 

Maries and colleagues identified a new type of motor behavior - facial-forelimb 

stereotypy – in rats receiving single-site grafts in the ventrolateral striatum, the same was not 

reported in animal receiving implants in multiple sites or sham surgery, however they were 

still dependent on L-DOPA therapy (Maries et al. 2006). Two other groups revealed similar 

motor behaviors from rats that were first put on L-DOPA therapy and then received nigral 

implants and to whom was given amphetamine (Carlsson et al. 2006; Lane et al. 2005). 
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According to Lane and coworkers, the movements begun to appear several weeks after 

procedure, were more severe in animal with larger grafts, depended on DA release and were 

less severe in those animal that were not submitted to L-DOPA therapy before grafting (Lane 

et al. 2005).  

 In clinical trials it seemed that all patients who experienced graft-induced dyskinesias 

also displayed similar behavior during prior L-DOPA treatment, however, there is still no 

apparent relation between these events (Hagell et al. 2002). Interestingly, “off” dyskinesias 

were not observed in two patients who received fetal midbrain grafts as a cell suspension in 

the striatum or SN, respectively. These patients had a good clinical and imagiological 

outcome and did not develop motor complications (Mendez et al. 2005). Thus we should now 

focus more on animal models to offer an answer for the graft-induced dyskinesias, despite de 

overwhelming differences between basal ganglia anatomy among species.  

The human brain, once thought to be an immunologically privileged site, is now 

known as a place where there can be immune rejection, like elsewhere in the body, in both 

allografts and xenografts. However, the rejection of autografts is also possible. Glial cell 

activation and immunologic marker up-regulation, which might be detrimental to both graft 

survival and function, may result from major histocompatibility complex antigen expression 

differences between graft and host, leading to an inflammatory reaction (Olanow and Fahn 

2006). Despite the immune reaction, grafts are still able to survive in the absence of 

immunossuppressive therapy. 

There was no sustained immunological therapy in both double-blind clinical trials 

previously described (Freed et al. 2001; Olanow et al. 2003), which may have contributed to 

the negative results obtained. Furthermore, it can be implied that multiple donor tissue is 

partly to blame due or even that solid tissue grafts, used in the first study (Freed et al. 2001), 

could induce an immune response due its richness in major histocompatibility complex 
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antigen 1, known to be highly immunogenic. However, in both studies there was evidence of 

immune reactivity in the grafts. Indirect evidence of immune rejection can be presumed from 

modest dopaminergic neuronal survival obtained in the first double-blinded trial, in which no 

immunossuppressive treatment was used. In the second placebo-controlled trial 

immunosuppressive therapy was given for 6 months and the initial benefits were lost after its 

suspension (Olanow et al. 2003).  

 

       2.1.4. Recent data 

Kordower and coworkers reported recent data from a post-mortem analysis, regarding 

a patient who died 14 years after grafting. In this patient it was shown neuronal survival with 

positive immunostaining for dopaminergic neurons and classical morphology with extensive 

innervation of host´s striatum (Kordower at al. 2008). In a similar study from Li and 

coauthors, regarding two patients who had undergone grafting for 8-16 years before death, it 

was also reported long dopaminergic neuronal survival with dense fiber network in the grafts 

and surrounding striatum (Li et al. 2008). These findings were in agreement with previous 

port-mortem analysis (Kordower et al 1995; Mendez et al 2005). It was then proven that 

survival of grafted neurons can reach beyond a decade after transplantation.  

In both studies, nevertheless, there was an unexpected event, a few grafted cells 

displayed similar neurophatological changes as the ones detected in standard PD patients 

which were not shown in any previous post-mortem analysis. These grafted neurons had 

cytoplasmic inclusions of ubiquitinated alfa-synuclein which resembled Lewy bodies. The 

inclusions were positive for antibody recognizing alfa-synuclein phosphorylated at Ser129, 

similarly to Lewy bodies in regular PD.  Another interesting finding by Li and colleagues was 

that in the patient who received the left graft 16 year before death and the right graft 4 years 

later, there were 80% and 40%, respectively, TH cells with detectable amounts of alfa-
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synuclein, suggesting that the increase in alfa-synuclein aggregates are time and/or age 

dependent (Li et al. 2008).  

Altogether, these results reveal that typical PD pathological features can be found in 

human embryonic grafts and that young age is not a protective factor. Also they suggest that 

“responsible mechanisms” are still present in advanced stages of disease; whether they are 

transmitted cell-to-cell or from extracellular environment to healthy cells it is not known yet. 

The exact impact these aggregates have on neuronal function is still unclear and previous 

studies have shown that grafted neural function can be maintained for at least 10 years after 

grafting (Piccini et al. 1999). These data further suggest that regarding the future of cell 

therapy, investigators must also be able to prevent disease spreading into the new grafted 

cells. 

 

       2.1.5. Ethical concerns and future perspectives 

There are several ethical issues concerning the use of embryonic cell grafts in human 

patients. Despite the fact that tissue is derived from women who underwent abortion, there are 

other concerns regarding the number of fetuses required per patient due to their low 

dopaminergic neuron content as well as the purity level and reduced cell viability. The tissue 

preparation must also be prompt, as these cells are pos-mitotic and not able to expand or be 

kept in culture for more than a few days. For these reasons we must consider that the time 

window for neurosurgical procedure is very narrow. Due to inconsistent outcomes between 

grafted patients, low availability of donor cells and the existence of graft-induced dyskinesias 

one can presume that this method will never be a reliable treatment for PD patients Therefore, 

an alternative cell source is currently needed for true restorative treatment.  

Tthere are no currently ongoing trials concerning the use of fetal neural tissue, 

nonetheless; there is still a great interest in grafting trials. Data suggest that better outcomes 
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can be obtained from younger patients in less advanced stages of disease that still respond to 

L-DOPA therapy. However, grafting younger patients that can still benefit from medical 

therapy is troublesome.  

Another limiting factor was the modest neuronal survival observed after implantation 

procedure, which led to several attempts to enhance the pool of surviving dopaminergic 

neurons. Improvement of tissue collecting and grafting technique, calcium channel agonist 

(nimodipine, flunarizine) agents that counteract oxidative stress and its consequences 

(superoxide dismutase overexpression, lazaroids), caspase inhibitors and neurotrophic factors 

have shown to increase neuronal survival (Brundin et al. 2000a; Brundin et al. 2000b). 

Simultaneous transplantation in both SN pars compacta and striatum that could provide more 

extensive reinnervation was tested in both animals and humans with reported clinical 

improvement, tolerability and without graft induced dyskinesias (Mendez et al. 2002; Mendez 

et al. 2005).  

 Although restorative therapy has come a long way, there is still much to be done to 

allow cell therapy to be one of PD greatest allies.  

 

       2.1.6. Porcine neural xenotransplantation 

Studies involving xenotransplantation of porcine embryonic tissue started in the mid 

1980s, approximately at about the same time human embryonic tissue was starting to grab 

hold of interest.  Porcine neural cells, staged at embryonic day 26-27, were held as a suitable 

alternative cell for several reasons, the resemblance between human and pig brain size and 

development, the physiological similarity between the two neuronal tissues, the feasibility of 

generating a large number of animals for research, easily to breed in controlled conditions and 

collect (Shumacher et al. 2000). The porcine tissue can also be genetically modified. Despite 

these reasons, other facts remain as potential threatening blockages in this field of 
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investigation, which are the existence of an immuno-mediated rejection process and the likely 

hazard of human infection with porcine endogenous retroviruses (PERVs). 

The first studies were held on animal models and it soon became clear that 

xenografted tissue was rapidly rejected over a period from days to weeks and that the immune 

process was a mix of cellular and humoral host responses (Barker and Sayles 2006). 

Apart from these uncertainties surrounding potential immune rejection or PERVs 

infection, a small-scale clinical trial was conducted by Shumacher and coworkers in 2000. 

The trial involved 12 PD patients with unilateral striatal grafts of porcine ventral midbrain 

tissue in the form of cell suspension that were collected at embryonic day 25-28. Half of the 

patients received cyclosporin immunossuppression and the other half received tissue treated 

with a monoclonal antibody directed against major histocompatibility complex class I.  

One year later, the data obtained with PET scan did not show significant signal increase on 

the grafted side and motor scores were inconsistent between patients. It remained no doubts 

the grafts were well tolerated and that was no PERVs infection (Schumacher et al. 2000). 

A second trial with porcine embryonic tissue grafted in PD patients was held, 

however, the results still remain unpublished. Eighteen PD patients were involved, 10 of them 

received embryonic porcine tissue and 8 of them sham surgery. The trial showed modest 

motor score improvement in both groups after 18 months, but complete written data must be 

published before any more considerations are made (Barker and Sayles 2006). 

In the field of xenotransplantation, there is still a lot that can be done to assure the 

safety issues concerning immune reaction and retroviral infection. Genetically modified 

animals can be employed in order to decrease antigenicity and also suppress the risk of 

infection. Perhaps one day we will be able to see these unique cells no more as a threat and 

can start believing in their possible role in a future restorative therapy for PD patients. 
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   2.2.   The quest for the perfect cell – stem cell research 

 The quest for the perfect cell started years ago, as many ethical, safety and political 

concerns have held up the use of embryonic fetal cells, scientists sought for a new cell type, 

capable of unlimited self renewal and differentiation into multiple cell types or all cells of the 

body – the stem cell. However, in order to be able to optimize cell survival, integration and 

function, we must also understand CNS developmental biology and learn how a stem cell can 

turn into a neuron. In the following section we aim to briefly address the complex 

differentiation of dopaminergic neurons, the promising sources of stem cells and what has 

already been accomplished using these extraordinary new cells.  

 

  2.2.1. Development and differentiation of dopaminergic neurons 

There are nine dopaminergic neuronal subtypes differently located in the mammalian 

brain, classified from A8-A16, all TH positive and able to synthesize and release DA. The A9 

subtype from SN, as mentioned earlier, is the most affected in PD and their normal task is to 

innervate the putamen and caudate nucleus. So, there is a need to understand more about the 

A9 neuronal subtype, their specification, migration and maturation. Mesencephalic 

dopaminergic neurons, whose degeneration is a main feature of PD, are derived from 

precursors located in the ventral midline of the midbrain while other progenitors nearby give 

rise to motor or different interneuron subtypes (Hynes and Rosenthal 1999).  

During embryonic CNS development, neuronal fate is controlled by local inductive 

cues that control gene expression in precursor cells and give rise to neuronal specification 

(Jessel et al. 2000).  

There are two main signaling systems of the neural tube, the rostrocaudal (or antero-

posterior) responsible for dividing the CNS in forebrain, midbrain, hindbrain and spinal cord 

and the dorsoventral system (figure 2), whose key role is to establish cell type diversity in the 
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above mentioned subdivisions (Jessel et al. 2000). For the development of mesencephalic 

ventral neurons these patterns of signaling are both necessary. The major molecule involved 

in dorsoventral signaling is sonic hedgehog (Shh) and the anteroposterior pattern results from 

a more intricated interaction of genes that form the isthmic organizer. Shh is a ventral 

morphogen secreted by floor plate cells, responsible for inducing a dopaminergic phenotype, 

while the isthmic organizer is involved on the rise of midbrain-hindbrain structures (Hynes et 

al. 1995; Placzek and Briscoe 2005).  The isthmic organizer (figure 2) is located at the 

midbrain-hindbrain edging, its accurate location is controlled by the expression of two 

homeodomain transcription factors, the orthodenticle homologue 2 (Otx2) in the midbrain and 

gastrulation brain homeobox 2 (Gbx2) in the hindbrain (Arenas 2002).  

Two other important molecules, wingless related 1 (Wnt1) and fibroblast growth 

factor 8 (FGF8), are expressed at the same location (Castelo-Branco et al. 2003; Liu and 

Joyner 2001). When Shh and FGF8 are mutually present, dopaminergic neurons are specified 

establishing a midbrain identity in the early neuronal development (figure 2). The Wnt family 

consists in secreted glicoproteins that control cell proliferation and fate decision, as in the 

case of ventral dopaminergic neurons, Wnt 1 and 5 have shown to increase the amount of rat 

dopaminergic neurons throughout different mechanisms while Wnt-3a promoted the 

proliferation of progenitor cells expressing the orphan nuclear receptor-related factor 1 

(Nurr1) but without increasing the number of TH positive neurons (Castelo-Branco et al. 

2003). 

The neurons are generated in the dorsal segment of ventral mesencephalon from where 

they travel along the radial glial cells to reach the ventral component of the midbrain where 

they will form the VTA and SN (Kawano et al. 1995). 

Dopaminergic neurons are generated from the midline of ventral midbrain initially 

occupied by Shh-expressing glial-like floor plate cells. Therefore, this neuronal creation must 
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be preceded by a switch of floor-plate cells into neuronal precursors, however, how such a 

conversion occurs is yet unknown (Placzek and Briscoe 2005; Andersson et al. 2006). 

Other transcription factors that interfere with dopaminergic neuron determination have 

been identified. In the mouse, the expression of two Engrailed genes – En1 and En2 – at E8 is 

known to be mediated by FGF8 in the isthmic organizer. This En1 and En2 expression is 

essential as it induces continuous production of FGF8, allowing proper survival and neuronal 

development (Liu and Joyner 2001; Simon et al. 2001). Studies in mice with null mutations 

for either En1 or En2 have shown a paired action in neuronal dopaminergic survival by 

compensating for the loss of one another while double null mutated mice exhibited complete 

loss of TH positive midbrain neurons (Simon et al. 2001). Yet, little is known about how En1 

and En2 are involved in specification and survival of dopaminergic neurons.  

While the genes mentioned above are involved in the midbrain/hindbrain regional 

development, recent studies have identified genes required for neuronal subtype specification. 

Nurr 1, an orphan member of steroid/thyroid hormone receptor superfamily, is expressed at 

the ventral mesencephalon prior to the birth of dopaminergic neurons, at E 10.5. It was shown 

that Nurr 1 is expressed in developing dopamine neurons before the appearance of their 

characteristic phenotypic markers and that mice lacking Nurr1 failed to produce midbrain 

dopaminergic neurons showing TH immunoreactivity absence, displayed hypoactivity and 

died shortly after birth (Zetterstrom et al. 1997). These data suggest that Nurr 1 is decisive for 

midbrain dopaminergic differentiation. A second gene found to be important for final 

dopaminergic differentiation is the paired-like homeobox transcription factor-3 (Pitx3) which 

is expressed at E 11.5 in the mouse midbrain matching the appearance of mesencephalic 

dopaminergic neurons (Smidt et al. 1997). In both rodent and human brain Pitx3 is strictly 

expressed in mesencephalic dopaminergic neurons and its expression persists throughout 

adult life being severely impaired in PD patients and completely absent from 6-
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hydroxydopamine (6-OHDA) lesioned rats (Smidt et al. 1997). Mice lacking Pitx3 expression 

have shown to develop dopaminergic neurons in lower numbers and different location in the 

SN (Smidt et al. 2004). Thus, it seems that Pitx3 is not required for inducing cell fate, but 

instead, is a key member for terminal differentiation and final location (figure 2).  

Andersson and coworkers suggested that two other genes: LIM homeobox 

transcription factor 1 (Lmx1a) and the muscle segment homeobox transcription factor 1 

(Msx1) function as midbrain dopaminergic neuron determinants. Both Lmx1a and Msx1 are 

expressed in the midbrain when Shh signaling is present. Lmx1a is expressed before Msx1 

and first identified at E9, its expression is sufficient to induce dopaminergic differentiation 

from ventral midbrain neurons and continues in post-mitotic cells functioning as a specific 

activator of downstream genes, including Nurr 1. Altogether, the findings suggest that Lmx1a 

functions as a transcriptional activator. Msx1 is induced by Lmx1a and functions by 

suppressing alternative cell fates at the same time that restrains floor-plate characteristics. It 

induces panneural differentiation through the induction of proneural basic helix-loop-helix 

protein Ngn2 triggering glial-to-neural switch (Andersson et al. 2006). 

Another group of transcription factors is forkhead/winged helix transcription factors 

Foxa1 and Foxa2. They act in the specification of midbrain dopaminergic neurons by 

regulating Nurr1 expression, En1 in non mature neurons and Ngn2 which regulates the extent 

of neurogenesis in dopaminergic precursors. They also regulate the expression of aromatic-L-

amino acid decarboxilase and TH in mature neurons in late stages of differentiation (Ferri et 

al. 2007). 

In this quest for the perfect cell, full knowledge about intrinsic and external factors 

that influence the generation of a midbrain identity must be gathered in order to achieve stem-

cell derived dopaminergic neurons.  



 

Figure 2:  Schematic development of midbrain dopaminergic neurons.  
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started to apply those same protocols to hESC. There are nowadays three main strategies for 

neuronal induction, the use of embryoid body-based protocols, stromal feeder-mediated or 

default neural differentiation protocols (table 3 for different TH positive yields obtained after 

neural induction from mESC, pESC and hESC through the use of different methods).   

 In the year 2000, Lee and colleagues described a five step technique for mESC 

induction which relied on the expression of the same genes usually expressed in CNS stem 

cells and neurons in vivo (Lee et al. 2000). It consisted of (1) expanding undifferentiated 

mESC with generation of Embryoid Bodies (EBs) in suspension cultures; (2) plating the cells 

onto an adherent culture surface; (3) selection of nestin-positive cells; (4) further culture in 

the presence of additional factors (SHH, FGF8) for induction of TH positive cells and (5) 

final differentiation by withdrawing bFGF and adding ascorbic acid (AA). These neurons 

could be depolarized and release DA representing functionally active mature neurons. After 

the success of differentiating mESC, Zhang and coworkers demonstrated that the same 

outcome could be obtained from hESC (Zhang et al. 2001).  After the formation of EBs, this 

group added to the medium insulin, transferrin, progesterone, putrescine, sodium selenite and 

heparin in the presence of FGF-2. The use of immunofluorescence revealed expression of 

neural marker antigens such as nestin and Musashi-1 as well as the neuronal precursor protein 

polysialylated neuronal cell adhesion molecule (PSA-NCAM). After differentiation by 

removal of bFGF the precursors obtained were able to form all three major cell types in vitro, 

despite the small amount of TH positive cells achieved (Zhang et al. 2001).  

 More recently, Cho and coauthors reported a more efficient generation of DA neurons 

from hESC obtaining 60.2% TH positive neurons out of the total hESC derived-neurons (Cho 

et al. 2008). These new data regarding ESC threw away the idea that differences between 

species were behind the low numbers of DA neurons obtained and hESC reemerged as 

potential targets for regenerative medicine.  
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 Stromal feeder mediated neuronal induction of mESC was first described by Kawasaki 

and coworkers in the year 2000. The possibility of inducing ESC into neuronal precursors 

after co-culture with stromal cells is a property known as stromal-derived inducing activity 

(SDIA). These cells are frequently derived from connective tissue such as skull bone from 

which the PA6 cell line derives (Kawasaki et al. 2000). Other stromal cells commonly used 

are MS5 or S2 and all stromal subtypes can be genetically altered to overexpress neuron 

inducing genes such as Wnt1 (Perrier et al. 2004). Perrier and coauthors used a three step 

protocol which involved (1) culture of hESC on mitotically inactivated mouse embryonic 

fibroblasts; (2) neural induction by co-culture with S2, MS5 and MS5 stably overexpressing 

Wnt1 stromal cells in the presence of certain factors such as Shh, FGF8, brain derived 

neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), transforming 

growth factor type β3, dybutril cAMP and AA added at certain time points and (3) 

differentiation in the absence of Shh and FGF8. Another study used stromal PA6 cell line 

with similar efficiency (Brederlau et al. 2006; Zeng et al. 2004). The mechanism by which 

stromal cells promote neuronal induction is still unclear but it is thought that both secreted 

soluble factor and cell-to-cell contact play important roles (Kawasaki et al. 2000). An 

intriguing feature from PA6 cell line is that although they provide hESC neuronal induction 

they do not work in the same way with neural stem cells meaning this yet unknown 

mechanism is also specific for ESC (Roybon et al. 2005). A recent report regarding the use of 

co-culture with stromal cells demonstrated that treatment with fibroblast growth factor-20 

(FGF-20) improved neuronal survival with a fivefold increase in the yield of domapminergic 

neurons partly due to reduced cell death (Correia et al. 2007). There are several other 

differentiation protocols for ESC, some involve the combination of both co-culture and 

suspension culture methods (Takagi et al. 2005), other feeder cell types such as Sertoli cells 

(Yue et al. 2006), telomerase-immortalized midbrain astrocytes (Roy et al. 2006) or even 
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human amniotic membrane matrix (Ueno et al. 2006).  The genetic manipulation of ESC to 

overexpress certain transcription factors, such as Nurr1, is another method to obtain a 

dopaminergic fate (Chung et al. 2002; Kim et al. 2002).  

 

       2.2.2.2. Transplantation of dopaminergic neurons derived from ESC - outcomes 

 For the ultimate goal of developing clinical trials based on embryonic stem cell 

therapy first it must be demonstrated adequate in vivo cell survival and function as well as the 

absence of adverse effects or immune rejection. Some of the earliest encouraging results came 

from Barberi and coworkers that grafted mESC-derived neurons into the striatum of 

parkinsonian rats obtaining 80% reduction in amphetamine-induced rotation around 8 weeks 

after the procedure. Before this paper, Kim and colleagues working with mESC-derived 

dopaminergic neurons transplanted into parkinsonian rodents obtained functional recovery 

enhanced by Nurr1 overexpression in the ESC-derived cells (Kim et al. 2002). The same 

promising results have been harder to obtain with neurons derived from hESC. Ben-Hur and 

coauthors have shown survival of TH positive neurons derived from hESC in 

immunosuppressed rats but with unpretentious effects on drug-induced rotation behavior 

(Ben-Hur et al. 2004).  

A later study employing hESC-derived neurons from co-culture with PA6 stromal 

cells also demonstrated graft survival in the striatum of immunossuppressed parkinsonian rats, 

but without motor improvement and with only small numbers of surviving TH positive 

neurons. A serious concern came from teratoma formation seen in those animals where 

transplants have been submitted to a short hESC differentiation in vitro (Brederlau et al. 

2006). A recent work, showed generation of a high yield of dopaminergic, neurons reported 

significant behavioral improvement after transplantation into a PD rodent model with no 

tumor formation observed during a period of 12 weeks (Cho et al. 2008). One other paper 
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demonstrated significant and long lasting motor function recovery on parkinsonian rats with 

grafts obtained from hESC co-culture with telomerase-immortalized human fetal midbrain 

astrocytes in the presence of Shh and FGF8 (Roy et al. 2006). Despite the fact that a high 

number of TH positive neurons were found in the grafted rats 10 weeks after procedure the 

motor tasks suffered a rapid amelioration with complete recovery. Some other differences in 

terms of procedure can be noted, such as the method for creating the nigrostriatal lesion that 

was done by injecting 6-OHDA into the lateral ventricle instead of the brain parenchyma, 

which is the standard procedure in many of the previous works, but also the drug dosage 

employed to induce rotation was unusually high (Christophersen and Brundin 2007). 

In the meanwhile currently face the need for standard protocols with precise 

determination of optimal lesion processes, graft size and insertion site, as well as improved 

interpretation of the motor behavioral tests to better understand and establish comparisons 

between studies.  

Nowadays, important work is being done towards an increased survival of 

dopaminergic neurons derived from hESC.  

 

 

 
Table 3 : Different protocols to differentiate ESC from mouse, non-human primate and human sources into dopaminergic neurons. 

ESC 

source 
Culture conditions Soluble factors 

Genetic 

manipulation 

Protocol 

duration (d) 
TH

+
 neurons out of total Graft survival Reference 

mESC EBs formation bFGF, FGF8, Shh, AA / 24-37 d 
7% out of 72% TuJ

+ 
cells 

(5%) 
ND Lee et al. 2000 

mESC Co-culture with PA6 cells / / 14 d 16% of total cells 4% of total grafted cells Kawasaki et al. 2000 

mESC EBs formation bBGF, FGF8, Shh 
Nurr1 

overexpression 
ND 78% of total cells 3% of total grafted cells Kim et al. 2002 

mESC Co-culture with MS5 cells FGF8, Shh, AA / 14 d ND 
10-20% of total grafted 

cells 
Barberi et al. 2003 

mESC EBs formation 
bFGF, FGF8, Shh, AA, 

BDNF 

Pitx3 or Nurr1 

overexpression 
26-30 d 25% of TuJ

+
 cells 3.4% of total grafted cells Chung et al. 2005 

mESC Co-culture with PA6 cells bFGF, FGF8, Shh, AA 
Nurr1 

overexpression 
14 d 

90% out of 62% TuJ+ cells 

(56%) 
312 TH

+
/mm

3
 Kim et al. 2006 

mESC 

Co-culture with matrix layers 

of human amniotic 

membrane 

/ / 13 d 26% out of total ND Ueno et al. 2006 
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mESC / bFGF, FGF8, Shh 
Lmx1a 

overexpression 
ND TH+ cells in 87% colonies ND Andersson et al. 2006 

mESC EBs formation bFGF, Shh, FGF8, / 26-30 11% out of total ND Rodríguez-Gómes et al. 2007 

pESC Co-culture with PA6 cells 
bFGF, BDNF, 

neurotrophin 3 
/ 28 d 2.9-12.8% 2130 TH

+
 cells/graft Takagi at al. 2005 

pESC Co-culture with sertoli cells / / 21 d 24.6% of total cells ND Yue et al. 2006 

hESC EBs formation 

FGF2, insulin, transferrin, 

heparin, progesterone, 

putrescine 

/ > 14 d ND ND Zhang et al. 2001 

hESC Co-culture with PA6 cells / / 21 d TH+ cells in 60% colonies 9 TH
+
 cells/section Zeng et al. 2004 

hESC EBs formation bFGF, FGF8, Shh / ND 
67% TuJ+ cells (40% of 

total) 
A few TH

+
 cells Schultz et al. 2004 

hESC Spheres formation MEF, Noggin, bFGF, EGF / > 23 d 
0.56% of total cells (29% 

TuJ
+
 cells) 

389 TH cells (0.18% of 

grafted cells 
Ben-Hur et al. 2004 

hESC Co-culture with MS5 cells 
Shh, FGF-8, BDNF, GDNF, 

TGF-β3, dbcAMP, AA 
/ > 50 d 

19-39.5% of total cells 

(64% -79% TH
+
 out of 

30%-50% TuJ
+ 

cells) 

ND Perrier et al. 2004 

hESC EBs formation 
Transferrin, selenium, 

fibronectin, laminin 
/ 39 d 20% of total cells ND Park et al. 2004 

hESC EBs formation 
bFGF, FGF-8, Shh, BDNF, 

GDNF, AA 
/ 35-42 d 31.8% of total cells ND Yan et al. 2005 

hESC 
Co-culture with human 

amniotic membrane 
/ / 40-42 d 

12.4% of total cells (31% 

TH+ out of 40% TuJ
+ 

cells) 
ND Ueno et al. 2006 

hESC 
EBs formation with human 

fetal midbrain astrocytes 
bFGF, BDNF, GDNF / 24-36 d 75% TuJ+ cells 27 000  TH

+ 
neurons/mm

3
 Roy et al. 2006 

hESC Co-culture with PA6 cells / / 16-23 d 7.4% of total cells 10-50 TH
+
 cells/graft Brederlau et al. 2006 

hESC EBs formation bFGF, dbcAM / 21-42 d 56-81% of all colonies ND Iacovitti et al. 2007 

hESC Co-culture with PA6 cells bFGF, FGF-20 / 21 d 85% of TuJ
+
 cells ND Correia at al. 2007 

hESC Co-culture with MS5 cells 
Shh, FGF-8, BDNF, GDNF, 

TGF-β3, AA 

Wnt1 

overexpression 
42-49 d 23.6% of total cells 160 TH

+
 cells/graft Sonntag et al. 2007 

hESC EBs formation 
bFGF, FGF-8, Shh, BDNF, 

TGF-β3, GDNF, AA, Wnt3a 
/ 52 d 43% TuJ

+
 cells 1273 TH

+ 
cells/graft Yang et al. 2008 

hESC EBs formation bFGF / > 40 d 
60.2%  of total cells (86% 

TH
+ 

out of 77% TuJ
+
 cells) 

2.7% of the surviving h 

ESC derived cells 
Cho et al. 2008 

Legend: d – days; ND – not determined; TuJ1 is an antibody directed against the neuron-specific β-III tubulin which bounds cells with a 
clear neuronal morphology (TuJ+).   
 

Nowadays, important work is being done towards an increased survival of 

dopaminergic neurons derived from hESC.  

 Taken as a whole, the several studies have established the proof-of-concept that it is 

possible to derive dopaminergic neurons from ESC and investigators are now on the road for 

a large-scale generation of pure and functional dopaminergic neurons, envisaging its possible 

future clinical application.   
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       2.2.3. Neural stem cells 

The first crossroad in the attempt to create a stem cell based regenerative therapy is to 

be able to find a renewable source of dopaminergic neurons with midbrain identity. This new 

and unlimited cell source could minimize methodological and ethical concerns associated 

with the usage of fetal tissue or ESC.  Neural Stem Cells (NSC), neural progenitors or 

precursors exist in both developing and adult nervous system of all mammalian organisms 

and can comprise such a cell source (Gage 2000). NSC are capable of differentiating into all 

neural lineage cells in vivo and in vitro, as well as to give rise to other multipotent 

counterparts and can be isolated from two different neurogenic regions, the subgranular zone 

in the hippocampus and the subventricular zone near the ventricles (Doetch et al. 1999; Gage 

2000; Temple 2001). 

NSC can be grown in culture as free floating aggregates called neurospheres or be 

expanded as monolayers (Conti et al. 2005; Ostendfeld et al. 2002).  

 There are several works regarding dopaminergic differentiation from NSC due to 

genetic manipulation and researchers have shown that transcription factor Nurr1 plays an 

important role in regulating dopaminergic identity as it can directly activate TH promoter as 

well as other genes involved in DA uptake and storage. (Kim et al. 2003). 

In a recent study where Nurr1 overexpression was combined with Ngn2, TH-

expressing neurons were generated; nonetheless, other mesencephalic markers were found to 

be expressed. Ngn2 by itself increased neuronal differentiation without promoting the desired 

dopaminergic phenothype but, in co-transduction with Nurr1, synergistic effects were shown 

and up to 4% of the transduced cells became TH positive. Hovewer, there was no significant 

numerical difference between TH positive neurons with co-transduction of Nurr1 alone or in 

combination with Ngn2, the major difference resides in the fact that dual delivery TH cells 

displayed longer and more elaborated projections. Due to this experiment, the role of Ngn2 is 
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now clearer at the level of neuronal maturation (Andersson et al. 2007). Kim and coauthors 

used dual transgene delivery of either Nurr1-Ngn2 or Nurr1-Mash1 on neural progenitor cells 

from ventral midbrain or the striatum. After dual transduction with Nurr1-Ngn2 or Nurr1-

Mash1 on striatal neurons few numbers of dopaminergic neurons were obtained; when 

applied the same method was applied to ventral mesencephalic progenitors there were even 

fewer TH positive cells out of the total.  These data, despite of complex interpretation, suggest 

that NSC from different origins, even though cultured in the same conditions in vitro, give 

rise to the same controlled amount of neurons as if they were functioning in vivo (Kim et al. 

2006). Both studies demonstrated that NSC can be differentiated into TH positive neurons if 

added with certain midbrain determinants. A later study reported a more efficient NSC 

transduction following Nurr1 overexpression in combination with Mash1 and evidences the 

hypothesis that, in contrast to Mash1, Ngn2 expression may inhibit dopaminergic 

differentiation through repression of Nurr1-induced dopaminergic differentiation. It was 

hypothesized that even though Mash1 and Nurr1 appear to work together, they seem to have 

different roles, whereas Mash1 induces neural differentiation and maturation, Nurr1 mediates 

the acquisition of a dopaminergic fate. The effect mediated by Ngn2 was thought to be related 

with cell cycle exit and is reinforced by the similarity that exists in its late manifestation and 

apparent inhibitory action in the ventral midbrain during development. (Park et al. 2006). 

When mESC are under effect of Lmx1a overexpression, Shh and a nestin enhancer a 

high percentage of dopaminergic neurons bearing midbrain identity can be obtained; 

conversely, Lmx1a has not reported as playing a part in NSC dopaminergic differentiation 

(Andersson et al. 2006); 

In a recent study, Roybon and coworkers investigated the potential of Lmx1a, Msx1, 

Ngn2 and Pitx3 in rat derived neurospheres from embryonic day 14.5. Remarkably, none of 

those genes expressed by themselves or in dual combinations was enough to enhance 
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dopaminergic neural differentiation in rat derived NSC, which could indicate that at E14.5 

progenitor cells have lost their potential to become dopaminergic neurons (Roybon et al. 

2008). When Lmx1a and Nurr1 were co-expressed in NSC there was still no dopaminergic 

differentiation enhancement compared to Nurr1 alone (Roybon et al. 2008). Altogether, it 

seems that younger cells may become better sources for obtaining a dopaminergic phenotype 

from NSC and that multiple sequential expression of several transcription and/or soluble 

factors, which may include some yet not known to us, might be needed to obtain larger 

numbers of desired cell type. One other recent report from Parish and colleagues presented a 

new method for generating a larger quantity of dopaminergic neurons. They expanded mouse 

NSC with FGF2, differentiated with Shh and FGF8 and then transfected the cells with Wnt5a, 

a ventral midbrain soluble factor, obtaining a significant increase in the yield of TH positive 

neurons (Parish et al. 2008).  

An emerging theme in developmental neurobiology is the existence of a combination 

of different factors orquestrated in some yet unknown and crucial manner for the development 

and differentiation of all neural lineages subtypes.Therefore, before NSC can play a role in 

transplantation procedures development of differentiating strategies is needed, in order to 

make possible the  their brain implantation. 

 

        2.2.4. Induced pluripotent stem cells 

The cloning of Dolly established that adult cell nuclei can be reprogrammed into a 

previous undifferentiated stage under the action of molecules present in the oocyte (Wilmut et 

al. 1997). These findings led investigators in the search for the identity of such molecules so 

similar reprogramming could be done without nuclear transfer. In 2001, Tada and coauthors 

reproduced the same nuclear reprogramming of somatic cells using a fusion method of mature 

thymocytes with hESC which proved that the same transforming molecules existed on both 
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non-fertilized oocyte and ESC. With this major breakthrough, it became possible to dream 

about generating a patient-specific pluripotent cell line without the use of nuclear transfer.  

Byrne and colleagues recently described somatic cell nuclear transfer (SCNT) in 

nonhuman primate material using adult skin fibroblasts and oocytes. They obtained 

blastocysts with subsequent isolation of two primate ESC lines (Byrne et al. 2007). Although 

it was proven that SCNT is possible in primate material, ethical and practical issues attest that 

other approaches may be easier to apply to human material, such as uncovering the nature of 

such reprogramming molecules. There are two major groups of investigators leading this 

research field, the Yamanaka group and Yu and colleagues.   

The Yamanaka group employed mouse somatic cells and was able to find 4 factors 

sufficient for their reprogramming into undifferentiated pluripotent stem cells (termed 

induced pluripotent stem cells) which are very similar to mESC: Oct4; Sox2; c-Myc and Klf4 

(Takahashi and Yamanaka 2006). Other investigators verified and replicated the same results 

in mouse cells (Okita et al. 2007; Maherali et al. 2007) and rapidly there was a move on to 

human material (Takahashi et al. 2007; Park et al. 2008).  

The other group, Yu and coworkers, developed their research on human material 

providing evidence that hESC have the capacity to reprogram differentiated hematopoietic 

cell nuclei through cell-cell fusion (Yu et al. 2006). In 2007 the same group identified 4 

factors sufficient for somatic nuclei reprogramming into a pluripotent stage: Oct4; Sox2; 

Nanog and Lin28. Oct4 and Sox2 were presented as essential factors for the process while the 

remaining molecules appeared to have interest in increasing process efficiency. Reprogram by 

Oct4, Sox2, Nanog and Lin28 was not reported for mouse cells (Yu et al. 2007).  

Although mouse induced pluripotent stem cells (iPS) cells and mESC display high 

similarity regarding their morphology and proliferation they are also alike in terms of tumor 

formation. Is was observed that iPS cells can function as germline competent cells but tumor 
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formation in chimeric mice was high, probably due to c-Myc transgene reactivation in the 

somatic cells originated fom iPS cells (Okita et al. 2007; Maherali et al. 2007). Recently, a 

modified protocol allowed generation of iPS cells without c-Myc expression, even though 

with a lower efficiency in cell generation, demonstrated absence of tumor formation 

(Nakagawa et al. 2007).  

Human iPS cells fulfill the criteria proposed by Thomson and coauthors for embryonic 

stem cells with the exception that they are not derived from embryos. These iPS cells are 

extremely similar to hESC in terms of cell surface marker expression, karyotype, ability to 

differentiate into all the three primary germ layers in vitro as well as regarding teratoma 

formation. It was shown they can be produced either by expressing Oct4, Sox2, c-Myc and 

Klf4 or Oct4, Sox2, Nanog and Lin28.  

There is innumerous research ongoing and extensive literature showing Oct4, Sox2 

and Nanog are the main pluripotency regulators, but it is still unclear how they are able to 

manage it. From previous publications, the POU transcritption factor Oct4, expressed in early 

mouse embryogenesis, is fundamental for ESC derivation and pluripotency maintenance 

(Pesce et al. 1998). Similar to Oct4, Sox2 also plays a key role in ESC self-renewal and 

pluripotency maintenance and its expression must be kept within a critical range. Nanog, as 

Oct4, is considered a core transcription factor with rapid decrease as ESC differentiate, it is 

found in mammalian pluripotent and developing germ cells and its deletion causes early 

embryonic death (Mitsui et al. 2003). Its expression is now known not to be absolutely 

necessary for ESC pluripotency, as ESC maintain their self-renewal ability in its permanent 

absence (Chambers et al. 2007). The three factors above mentioned are held as key regulators 

of pluripotency as they are thought to be able to trigger or suppress many other genes; 

however, little is known about their interaction. The same uncertainty gathers around the roles 

of c-Myc, Klf4 and Lin28 in pluripotency maintenance and regulation.  
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Nowadays it is important that iPS cell research does not replace ESC investigation as 

they can complement each other and together they may have a  tremendous potential to 

achieve the must expected clinical benefit in the beginning of a truly regenerative medicine 

(figure 4).  

 

       2.2.5. Growth factor delivery 

 Many growth factors have been evaluated as potential neurotrophic agents, namely 

epidermal growth factor (EGF), BDNF, conserved dopamine neurotrophic factor (CDNF), 

ciliary neurothophic factor (CNTF) and the glial cell line derived neurotrophic factor 

subfamily which contains GDNF, nerturin (NTN), persephin and artemin/neuroblastin 

amongst others. In this following section we will focus mainly on GDNF as it is the most 

studied growth factor in terms of pre-clinical and clinical accomplishments in PD.  

GDNF is known for its neurotrophic activity displayed in dopaminergic neurons both 

in vivo as in vitro when retrogadely transported from the striatum to the nigra (Sauer et al. 

1995). 



 

Figure 4: Stem cell sources and differentiation.
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Several intracranial administration techniques have been tried over the years such as 

intraventricular, intrastriatal and intranigral. When implanting an intracerebroventricular 

catheter to administer GDNF, Nutt and colleagues observed that there was no symptomatic 

relief in PD patients and assumed it was probably due to the inability of GDNF to reach the 

target – putament and nigra (Nutt et al. 2003). In animal models, GDNF delivery into the 

lateral ventricle or striatal parenchyma was proven effective. When GDNF is delivered 

intranigrally at the site of toxin damage (6-OHDA) neuroprotection is observed in a time 

dependent manner (Kearns et al. 1997). After proven its efficiency and safeness, clinical 

studies started with a phase 1 clinical trial in which GDNF was directly delivered into the 

putamen of five PD patients. After one year there were no significant side effects reported and 

some clinical improvement was observed on motor scores. Medication induced dyskinesias 

were reduced by 64% (Gill et al. 2003). Nevertheless, there is some degree of uncertainty of 

how far will GDNF diffuse away from the catheter tip. Moreover, it remains an open 

possibility that the rostral portion of the putamen continues to degenerate if GDNF is unable 

to reach it. Besides the risks of catheter implantation, site infection, limited diffusion and the 

need for infusion system maintenance, there are also advantages regarding the optimal dose 

control or its proven value on improving the quality of life of PD patients. GDNF-releasing 

spheres emerged as a viable alternative to GDNF infusion. In one study biodegradable drug-

releasing microspheres stereotaxically implanted into the brain of parkinsonian rats were well 

tolerated, induced sprouting and preservation of dopaminergic fibers in the striatum with 

functional improvement on motor behavior tasks (Jollivet et al. 2004). Microspheres have the 

advantage to allow in vivo sustained release of GDNF (which is preferable to single high 

dose) with a lower risk of side effects and can also be implanted into several sites 

compensating for its low diffusion rate and non-constant drug release. Microspheres have 

already been validated for brain tumor treatment but still require technological optimization to 
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embrace larger volumes of brain tissue without detrimental effects on neighboring cells before 

clinical trials on PD patients become eligible.  

Due to the long and degenerating course of PD, an efficient mean of providing 

constant and local GDNF or GDNF production could offer patients many advantages over the 

single or repeated administrations systems, pumps or microspheres which eventually will 

need to be refilled or reinjected, respectively. The alternative GDNF source came in form of a 

virally mediated expression via adenovirus (Ad), Adeno-associated virus (AAV) or Lentivirus 

(LV) granting gene transfer into the dopaminergic cells. Recombinant Ad encoding GDNF 

delivered into rat striatum after unilateral 6-OHDA lesion offered neuronal protection and 

motor function recovery (Bilang-Bleuel et al. 1997). For random clinical use of viral vectors 

there are some parameters needed to be ensured, such as maximal safety, minor toxicity, 

genetic stability and absence of immunogenicity. Ad have been widely used for in vivo gene 

delivery for its ability to be transduced in both dividing and non-dividing cells with high 

expression effectiveness, but on the other hand,  its capacity for triggering an immune 

response shortens the probability of ever reaching widespread clinical use. For that reason, 

recombinant AAV were created and their lack of apparent neurotoxicity, long term expression 

and absence of immune reaction are some of their most interesting features. GDNF delivery 

through AAV vector has been tested in animal models of PD with the same degree of success 

of its predecessor Ad (Kirik et al. 2000b). Kordower and colleagues injected LV-GDNF one 

week after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in non-human primates 

rescuing nigrostriatal degeneration and recovering its function (Kordower et al. 2000). Other 

works were able to validate lentiviral vectors as a GDNF delivery system (Brizard et al. 

2006). LV vectors are HIV-derived and provide a broad and sustained transduction with lack 

of immune response in both rodents and non-human primates. Nevertheless, in some reports 

LV did not enhance the pool of dopaminergic neurons higher than AAV and bared the cost of 
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possible mutagenesis. By using different viral vectors, with their advantages and drawbacks, 

several works provided solid evidence that GDNF gene deliver is efficient in protecting the 

nigrostriatal system, especially when administered before the degeneration process.  

To overcome the need for viral vector direct brain injection alternative gene therapy 

methods were created to achieve cellular transduction in vitro prior to transplantation. The 

development of this ex vivo gene therapy involving engineered GDNF as a transgene was 

reported as a potential successful method to treat PD patients. In one study, bone marrow 

stromal cells expressing GDNF were intravenously transplantated into MPTP-lesioned mice. 

Motor behavioral improvement was reported along with the expression of GDNF (Park et al. 

2001). Åkerud and coauthors used a similar approach by producing GDNF-secreting NSC 

whose engraftment in the striatum of 6-OHDA lesioned mice prevented dopaminergic 

neuronal death and reduced behavioral impairment in experimental animals (Åkerud et al. 

2001). Genetically engineered GDNF-expressing astrocytes also offered marked protection of 

nigral dopaminergic neurons and partial protection of striatal dopaminergic fibers when 

transplanted into the nigra of a parkinsonian mouse model with 6-OHDA lesion, leading to 

favorable motor effects on mice behavior (Cunningham et al. 2002). Nonetheless, these 

engineered cells may suffer rejection due to immune host response. In order to surmount this 

problem, protection capsules were developed to contain the modified cells. Engineered baby 

hamster kidney cells that held the ability to produce GDNF, encapsulated in a polymer fiber, 

resulted in nigral dopaminergic neuronal protection with subsequent motor improvement 

when grafted closely to SN in a PD rat model (Tseng et al. 1997).  

It is yet unknown which GDNF delivery vehicle is the most effective and safe, 

whether is preferable a short or long term delivery method, how long the beneficial effects 

after treatment is withdrawn last and how can we sustain these favorable outcomes without 

inducting detrimental side effects. There are several many other questions related to gene 
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dosing, the possibility of insertional mutagenesis and other immune related issues. These, 

among others, are some of the questions investigators are now trying to answer. However, 

despite the uncertainty surrounding growth factor delivery, the encouraging results held at this 

point stimulated the beginnig of clinical trials. After an initial negative clinical trial with 

unfavorable side effects, followed by two other subsequent open label trials withholding more 

optimistic results, a double-blind placebo-controlled design with direct infusion of GDNF at a 

lower dose was held, although showing as no improvement of motor symptoms in PD patients 

(Nutt et al. 2003; Gill et al. 2003; Slevin et al. 2005; Lang et al. 2006). The lack of clinical 

efficacy and safety issues brought up from parallel studies regarding GDNF delivery, despite 

controversial and emotional debate, led to withdrawal of GDNF therapy from clinical tests.  

Other clinical approach now on a phase II trial involves NTN delivery into the 

striatum of PD patients via AAV delivery with already successful results regarding safety, 

tolerability and potential efficacy (Marks et al. 2008). Despite all that was said, growth factor 

delivery survived its major setbacks still being a flaming field of cell therapy and maybe, in a 

nearby future, this will become a true clinical option.    

 

3. Huntington´s Disease 

Huntington´s Disease (HD) had its first complete description in 1872 by George 

Huntington at The Medical and Surgical Reporter with a detailed description of a progressive 

movement disorder associated with neuropsychiatric and cognitive impairment. HD is an 

uncommon hereditary autossomal dominant disorder with complete penetrance caused by 

expanded polyglutamine repeats at the N-terminal of huntingtin protein (The Huntington´s 

Disease Collaborative Research Group 1993). Nowadays, HD is the most studied genetic 

movement pathology. Its estimated prevalence is of 5-10 per 100.000, varying accordingly to 
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the geographical area (Bradley et al. 2008). Onset typically occurs at middle age, between 30-

55 years, but can also arise less commonly in juveniles and in old age (Bradley et al. 2008). 

Due to its relentless progressive course, the outcome is unvaryingly fatal, within 

approximately 15-20 years of onset (Bradley et al. 2008).  

The clinical symptoms of HD comprehend involuntary movement disorders such as 

choreiform and sometimes athetotic limb or oro-facial movements, reduced coordination, 

motor impersistence, bradykinesia and gait disturbance. The uncontrollable movements or 

“chorea” once thought as the major hallmark of the disease are now understood as a part of 

HD´s behavioral profile. There are also psychiatric symptoms that may appear before the 

beginning of motor disturbances, such as affective disorders – depression, mania, hypomania 

- or violent behavior. Besides motor and psychiatric disability other important feature is the 

cognitive impairment with appearance of dementia and executive dysfunction over the years, 

revealing an intellectual decline. The course of the disease is both progressive and unremitting 

leading to an inexorably death (Bradley et al. 2008).   

Although identified for more than a decade, the exact function of the huntingtin 

protein is not yet fully understood due to complex cellular interactions and underlying 

pathological mechanisms, hence the answer to why this cellular destruction is so selective and 

sustained is currently unclear. Until we know how this mutated protein provokes neuronal 

death, there is no way to prevent, slow the course or even to stop the progressive disability.  

Despite all uncertainty surrounding the degenerative process, neuropathological 

studies have provided solid evidence of its existence and extension outward from the striatum. 

It was found that expanded and unstable “CAG repeats” within the huntingtin gene on the 

short arm of human chromosome 4 lead to progressive degeneration of basal ganglia, cerebral 

cortex, brainstem, spinal cord, thalamus and hypothalamus. Neuropathological findings show 
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progressive loss of small to medium spiny GABAergic projection neurons within the striatum 

(caudate nucleus and putamen) as well as degeneration of cortical and hipoccampal neurons, 

with progressive cell loss, gliosis and atrophy (Bradley et al. 2008). In the advanced disease 

cell loss and atrophy also involve widespread areas of the forebrain (figure 5). 

After the discovery of the HD´s mutation in 1993 and its mutated protein huntingtin, a 

preclinical test has been available for clinical practice as well as the possibility for pre-natal 

screening with all the complex ethical issues that the awareness of the presence of an 

inheritable disease entails. (The Huntington´s Disease Collaborative Research Group 1993).  

Once there is still no cure available at the present or means of halting the progressive 

disability, symptomatic relief is the primary goal to achieve in HD patients as well as genetic 

counseling and palliative care. There is some therapeutic potential in managing the movement 

disorder with low dose dopamine receptor antagonists such as classical or atypical 

neuroleptics and anti-dopaminergic drugs. The psychiatric symptoms appear to benefit from 

selective serotonin reuptake inhibitors. As more we learn about the toxicity mechanisms of 

mutant huntingtin, additional and novel strategies will sure become available. In the 

meantime, investigation is turning towards disease modifying and restorative therapies. 

The latter has the ultimate goal of promoting brain cells self-repair through supported 

neurogenesis while protecting vulnerable or dying nervous cells. As in PD, cell therapy may 

have the power to bring HD patients a better and brighter future.  
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Figure 5: Comparison between cerebral cortex from a HD patient with degeneration of the striatum and global 

atrophy (on the right side) and a non-HD patient (on the left side). From de Girolami et al. 1999;  

 

       3.1. The beginning of cell therapy in HD 

Cellular therapy has been a blossoming field of science with intensive clinical research 

and constant debate over the last few decades. Investigators have headed their main attention 

towards cell replacement therapy in neurodegenerative disorders. This particular field of 

science has been guided by pre-clinical studies in animal models with the ambition to achieve 

results that may lead to human clinical trials. After reaching considerable success concerning 

PD, and moving towards new cell sources, HD has been at the forefront of interest, not so 

much for its complex and challenging task of basal ganglia circuit repair but for the urgent 

need to be able to offer immediate and long term answers to HD patients. In order to cell 

therapy succeeds in HD, grafted tissue must survive transplantation, differentiate into 

GABAergic striatal cells and establish connections within host brain in a physiological 

manner.  

We will first describe the studies concerning the use of animal models that provided 

proof of principle for the beginning of clinical trials with fetal tissue and offered HD patients 

hope in a future healing treatment.   
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3.2. Animal models for the study of HD 

In a similar way to PD, the development of reliable pre-clinical studies rely firstly on 

developping an accurate transplantation technique and afterwards a lesion method that mimics 

HD symptoms in experimental models.  

Since HD genetic mutation was identified as an unstable expansion of trinucleotide 

CAG repeats, researchers drove their efforts to generate transgenic animal models to enable 

the study of molecular, pathophysiological and cellular mechanisms underlying the disease, in 

addition to test potential therapeutic approaches in an attempt to halt its progression. 

Studies in the mid 1970s started by using cellular excitotoxins to replicate the human 

malady and one of the initial choices was kainic acid administered directly into the striatum 

where it induced focal striatal cell loss. However, this toxin was found to be epileptogenic and 

was soon replaced first with ibotenic acid and afterwards with quinolinic acid due to their 

toxicity´s profile resemblance to the striatal cell loss found in HD (Schwarcz et al. 1979). 

These excitotoxic amino acids act not only in the motor function but also in the cognitive 

sphere of HD´s animal models and spare the cortical pathways to and from the striatum. 

Quinolinic acid became the toxin of choice due to its selectivity on neuronal loss within the 

striatum close resembling HD´s degenerating process (Dӧbrӧssy et al. 2009).However, these 

toxins could not mimic the slow and progressive feature of the human illness. Thus a second 

type of lesion model was used by peripheral delivery of metabolic toxins, such as 3-

nitropropioinic acid or malonate, which target more accurately striatal neurons. These 

molecules disrupt mitochondrial respiratory chain leading to neuronal loss with a high pattern 

of similarity to HD metabolic defects, providing neuropathological validity. Nonetheless, the 

excitotoxins provide more convenient and reproducible lesions then metabolic toxins as the 

latter require slow and chronic titration of drug dose and display interindividual variability 

(Palfi et al. 1996). After finding the genetic mutation, several researchers embraced the 
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production of genetically modified animal models using rodents as a base and giving rise to 

several lines. One of the first accomplished models involved the introduction of an exon 1 

fragment of the human gene with expanded CAG repeats, but several others followed 

(Mangiarini et al. 1996). From all the animal lines, the R6/2 line has been the most studied 

until now and its natural course of malady resembles the human disease with its main features 

of cognitive and motor impairment. The R6/2 model exhibit disease onset symptoms between 

9-11 weeks, displaying a complex motor behavior involving tremor, chorea, ataxia, with 

progressive decrease in body weight, death usually occurs between 10-13 weeks (Mangiarini 

et al. 1996). Subsequent studies on motor and cognitive behavior as well as neuropathological 

findings from R6/2 mice show that these animals display several features resembling HD first 

stages (Carter et al. 1999).  Nevertheless, the rapid disease progression of transgenic mice 

leaves insufficient time for observing progressive brain atrophy as well as for obtaining a 

detailed analysis on motor and cognitive behavior. Therefore, other transgenic models were 

produced bearing different human gene fragment insertion or full-length mutant huntingtin or 

even mouse gene with CAG repeats, among others. Each new model reveals different settings 

from HD cellular pathology and behavior profile (reviewed by Menalled et al. 2002). Another 

interesting mouse line is HD94, which contains a 94 CAG repeat terminal fragment of 

huntingtin gene under controlled expression. This animal model exhibits progressive motor 

impairment, cellular inclusions and other neuropathological features that strictly resembles 

HD. When gene expression is switched off, cellular inclusions retract and motor behavior is 

ameliorated (Yamamoto et al. 2000). The same paper provides further evidence on 

huntingtin´s toxicity profile, revealing the need for continuous gene expression to sustain 

disease symptoms and inclusions, thus helping to uncover uncover the possibility of a 

reversible HD pathology.  
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3.3. Striatal repair – what we have learned from animal models 

There are few reports on mouse embryonic neural tissue grafting in excitotoxic animal 

models of HD, however there is still sufficient amount of data that demonstrate cell survival 

and function with alleviation of behavioral features after striatal transplantation as a result of 

broad mutual connections with the host brain. Intrastriatal grafts receive afferent 

dopaminergic inputs from the nigra as well as from the cortex and thalamus and send their 

efferent outputs into the host brain, in great extent to the globus pallidus and in lesser extent 

to the entopeduncular nucleus. The results suggest that the connections mentioned above are 

responsible for functional integration of the grafts and symptom amelioration (Nakao et al. 

1999).  Isacson and coworkers in 1986 transplanted fetal striatal cell suspension either into the 

striatum or globus pallidus in rats bilaterally lesioned with iboteinic acid. They observed 

amelioration of learning ability and motor behavior. Better results were obtained after striatal 

grafting by the striatum grafts compared to the group who received transplants into the globus 

pallidus. Nonetheless, the latter showed similar significant improvements to the control group. 

These results demonstrate that functional recovery and neuronal replacement is possible in 

HD even after destruction of an important telencephalic structure (Isacson et al. 1986). Other 

experiments with excitotoxic lesions describe motor and cognitive improvements, being the 

last of great importance due to its complexity and need for a viable cortical-subcortical 

pathway net integrating the striatum (Dunnet et al. 1995). Nakao and colleagues investigated 

the effect of mouse embryonic grafts derived from lateral and medial ganglionic eminence in 

the globus pallidus activity in rats with quinolinic acid-induced striatal lesions. They found 

the transplants derived from the lateral ganglionic eminence, but not from the medial 

ganglionic eminence, were able to repair the striatopallidal pathway, attenuating altered motor 

behavior (Nakao et al. 1999). A recent work by Dunnet and coworkers assessed the 

amelioration of cognitive impairment in rats following quinolinic acid bilateral striatal lesion 
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and mouse embryonic tissue graft. They reported partial though considerable alleviation of 

cognitive deficits in an operant delayed alternation learning task and, since the latter is 

dependent on the integrity of the corticostriatal pathway, their results are in agreement with 

the hypothesis that embryonic grafts can restore corticostriatal circuits (Dunnet et al. 2006). 

Despite the existence of few reports on this particular area, there is still  considerable 

clinical, electrophysiological and neurochemical evidence indicating the feasibility of striatal 

grafting in HD animal models with functional benefits and repair of damaged neuronal 

circuits. Striatal cell grafting was largely applied after the use of excitotoxic lesion models, 

thus there are few studies describing cell transplantation in the transgenic mice model which 

is explained by the fact that few animal models show striatal cell death. The toxic lesions are 

restricted to a particular focus and despite reproducing certain features of HD, fail to replicate 

the true degenerative process of human disease. Another problem concerning toxin studies is 

the widespread pathology involving cortical, neostriatal and other basal ganglia areas in HD, 

and the uncertainty of their underlying symptoms, which may not be entirely alleviated by 

cell transplantation. The use of transgenic mice has provided relevant information regarding 

whether and how the disease influences graft survival and function. Dunnet and coauthors 

grafted dissociated cell suspensions prepared with striatal tissue from normal mouse embryos 

in the transgenic R6/2 mouse line. They observed good graft survival and a similar internal 

organization, as described in the excitotoxic model studies; however, despite the apparent 

integration, the behavioral impact of the grafts was modest and devoid of clinical noteworthy 

benefits (Dunnet et al. 1998). In another report, the transgenic R6/1 mice line was submitted 

to cortical grafts in the anterior cingulated cortex, revealing the existence of a specific delay 

of deficit onset; conversely, there was no significant postponement in the development of 

other important motor behavior features in the grafted rodents (van Dellen et al. 2001).  In the 

same experimental work a group of wild-type animals that underwent anterior cingulated 
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cortex resection were found to develop motor impairment closely resembling HD mice, 

revealing not only the importance og this brain region in this pathology but also the need for 

therapeutic measures to reach beyond the striatum (van Dellen et al 2001).  

Both animal models have benefits and disadvantages. The excitotoxic lesion model 

does not include the cortical pathology developed in the later HD stages, but mimics the 

motor behavior and the first phases of the disease at the time striatal degeneration begins to 

emerge. On the other hand, transgenic mice models are able to show more widespread 

pathology even though grafting benefits are yet not fully established. Notwithstanding the 

results observed in transgenic mice, cell transplantation in HD should not be abandoned.  

Indeed, striatal repair was already made possible in toxin animal models. Moreover, in the 

near future further improvements will provide the solid evidence in favor of the existence of 

the so called effective restorative therapy. Whether we must concentrate our efforts on 

repairing the striatum alone, hoping to affect the subsequent degenerative process, or repair 

the striatum simultaneously with other cortical/subcortical structures still remains uncertain. 

To answer these questions and based on the successful striatal brain grafting in rat HD 

models, as well as on the evidence for the clinical potential of human fetal brain grafting in 

PD, clinical trials with HD patients were set in motion.  

 

       3.4. Transplantation of human fetal tissue  –  clinical trials 

In order to develop clinical transplantation trials in HD patients, the first step is to 

create and validate standard procedures and technique protocols that may be able to ensure 

human fetal tissue accurate handling, as well as determine optimal donor age, safe 

transplantation methods and proper efficacy assessment. Fetal tissue optimal dissection has 

been a reason for concern as it is known that the striatum develops from lateral and medial 

ridges of the ganglionic eminence; therefore traditional striatal grafts used to comprise the 
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entire ganglionic eminence. Early studies suggested that the lateral ganglionic eminence 

contained the higher amount of striatal like-cells and hence the optimal source for 

transplantation in HD patients. Nonetheless, several striatal interneurons derive from medial 

ganglionic eminence and it appears that a combined proportion of these two compartments 

may contribute to higher and improved functional recovery (Watts et al. 1997). Other worries 

result from the possibility of tissue overgrowth with tumor formation and the need for long-

lasting immunossupression.  

Clinical trials in HD commenced early in 1990 with the reports from Cuba, 

Czechoslovakia and Mexico City. They involved grafting of human fetal tissue collected from 

within 1-2 hours of spontaneous abortions and reported no major complications from the 

implantation procedure. However, the tissue source in the former studies raised serious ethical 

concerns amongst the scientific community in a way that it became established that in 

subsequent studies only freely donated tissue from elective abortions could be used as a cell 

source (reviewed in Dunnet and Rosser 2007). 

Kopyov and coauthors in 1998 engraved the first report on clinical safety in three 

moderately advanced HD patients who underwent bilateral grafts from 5-8 donors in the 

caudate nucleus and the putamen (table 4). One year after the procedure, graft survival was 

observed showing no significant side effects from the surgery or the immunosupression given, 

and there was no noticed general state deterioration. This work provided proof of principle 

that fetal tissue grafting can be performed in HD patients with safety (Kopyov et al 1998a). 

The same research group, with reference to a small number of HD patients and maintaining 

the initial trial design, revealed neuropsychological and motor benefits with increased scores 

on measuring tasks, as well as resonance imaging studies showing graft survival and neuronal 

differentiation (Kopyov et al. 1998b; Philpott et al. 1997). Freeman and coauthors reported 

the first autopsy case from Kopyov´s initial clinical trial, a patient who died 18 months after 
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grafting due to non-related causes and whose neurophatological findings confirmed graft 

survival with differentiation into mature striatal-like cells. There was no histological evidence 

of immune rejection despite the fact that immunossupression was maintained only within the 

first 6 months, and even though the integration on host circuits was limited, the grafts were 

not affected by the disease process (Freeman et al. 2000). In the year 2007, additional clinical 

trial results were made public from two other patients who died 79 and 74 months, 

respectively, after procedure. One patient developed bilateral subdural hematomas two 

months after transplantation requiring surgical intervention after which he abandoned the 

follow up study.  The second subject did not suffer from complications in the postoperative 

period and even though reporting improved ambulation the assessment scores continued to 

show deterioration as in the classic HD. In both patients, autopsy study showed surviving 

grafts as well as striatal neuronal differentiation and viability, nonetheless there was poor 

integration in the host striatum (Keene at al. 2007).  

From the same trial, one other paper was published concerning autopsy findings in a 

patient who died 121 months after transplantation. This patient received ten intrastriatal 

human fetal transplants and a co-graft from autologous sural nerve, after which was reported 

as clinically stable for 2 years, and after that time the patient showed clinical worsening in 

motor and non-motor features. Five years after the patient appeared to aggravate motor 

behavior markedly on the right side of the body, the MRI study which showed a 3.1 cm cyst 

in the left putamen and a similar sized nodular mass in the right putamen. Neuropathological 

findings revealed survival of grafted tissue and multiple mass lesions as a result of tissue 

overgrowth. Even though other masses were found, the largest one was in close proximity 

with the sural nerve co-graft. Once again there was a confirmation of long-graft survival and 

proper differentiation into mature neuronal cells, however, the price paid for these long 



51 

 

lasting grafts may have been high and once more, there was scarce evidence of integration 

and connectivity with the host brain (Keene at al. 2009).  

A second major clinical trial was performed by Bachoud-Lévi and colleagues. In this 

human embryonic cells were grafted in five HD patients that underwent bilateral striatal 

surgery in two sessions with 1 year interval (table 4). Three patients have shown either 

increased or steady metabolic activity throughout the striatum by PET-scan analysis 

suggesting graft survival and function as well as stable or improved cognitive and motor 

behavior scores. Opposite results were seen in the remaining two patients, one without any 

positive response and the other showing deterioration after an acute fever, raising the 

possibility of graft rejection (Bachoud-Lévi et al. 2000; Gaura et al. 2004). The same research 

group reported a follow up study of the same five patients 6 years after procedure whereas 

they found a clinical improvement plateau after the first 2 years with progressive motor 

decline afterwards. Surprisingly chorea and cognitive performance did not worsen. The two 

patients lacking clinical benefits in the previous study showed progressive decline similarly to 

the control group (Bachoud-Lévi et al. 2006).  Altogether, these results provide useful 

information concerning neuronal transplantation in HD as a period of remission and stability 

were found but still without permanent results.  

In one other study from Hauser and coworkers, embryonic tissue from 2-8 fetuses was 

grafted into each side of the striatum of seven HD patients in a two staged procedure (table 4). 

In the follow up study six patients showed scarce improvement on motor scores, while the 

remaining suffered a significant decline after an incident causing bilateral subdural 

hemorrhage and from which he never again returned to the baseline. After a 12 month period, 

no significant clinical benefit was seen and, in the overall, three subjects developed subdural 

hemorrhages two of which required surgical drainage. This problem was thought to be related 

with a more advanced stage of the disease in comparison to other clinical trials. The results 



52 

 

suggested a higher morbidity risk for transplantation on HD patients with increased level of 

degeneration of the basal ganglia and cerebral atrophy (Hauser et al. 2002).  

In the year 2002 another report came to public, from Rosser and coauthors, using 

unilateral graft of human fetal tissue into the striatum of four mild to moderate staged HD 

patients (table 4). The subjects received a triple immunosuppressive therapy during 6 months 

associated with reversible disturbances of routine blood tests and no other adverse event was 

reported (Rosser et al. 2002). Once again fetal grafting safety and feasibility was 

demonstrated in HD patients.  

A recent study reporting two patients with moderate HD who received bilateral fetal 

striatal grafts aimed to study synaptic metabolism and activity with PET scan assessment with 

11C-raclopride (RAC), a D2 receptor binding, over a five year designed follow up study (table 

4). In one patient long clinical improvement and increased striatal receptor D2 binding was 

observed suggesting long-term survival and function of the graft. Nevertheless, in contrast, 

the second patient continued to deteriorate as in HD non-grafted controls, presumably as a 

result of infectious complications following a fall; moreover the lack of clinical or metabolic 

positive results indicate that the graft failed to survive or differentiate (Reuter et al. 2008). It 

is difficult to draw any conclusions based on such small number of patients and further 

studies with PET RAC in a bigger cohort of patients regarding a blind study design are 

needed (Reuter et al. 2008).   

Due to ethical and practical concerns regarding transplantation of fetal tissue and 

despite proven safety and feasibility, in a similar approach as in PD, porcine fetal tissue was 

grafted in a phase I trial on twelve HD patients. Though safety was assured, there was no graft 

survival detected or functional improvement despite immunosupression therapies (Fink et al. 

2000). Even though long follow up results or autopsy findings were not yet published, it may 
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be of interest to compare this approach to allografting in correlation with disease progression, 

immune rejection and graft integration, as the latter represents the major goal for the success 

of cell transplantation.  

Table 4: Results from clinical trials concerning implantation of human fetal tissue in HD patients 

Reference 
Kopyov et al. 

1998 

Bachoud-
Lévi et al. 

2000 

Hauser et al. 
2002 

Rosser et al. 
2002 

 
Reuter et al. 2008 

 
Number of patients 

 
3 

 
5 

 
7 

 
4 

Grafted Control 
2 8 

Age 37 (25-48) 51 (43-61) 50.1 (28-64) NR 52.5 48.6 

Number of grafts 
and location 

Bilateral on 
the putamen 
and caudate 

nucleus 

Bilateral on 
the putamen 
and caudate 

nucleus 

Bilateral on 
the putamen 

Unilateral on 
the putamen 
and caudate 

nucleus 

Bilateral on the putamen 
and caudate nucleus or 

none 

Number of donors 
Donors age 

5-8 
8-10 weeks 

2-4 
7.5-9 weeks 

2-8 
8-9 weeks 

1 
8.5-12 weeks 

2-3 
9-10 weeks 

Graft preparation 
Dissected 

LGE 
Dissected 

WGE 
Dissected 

LLGE 
Dissected WGE 

Dissected WGE 

Immunossupression NR 
Cyclosporin 

6 months 
Cyclosporin 

6 months 

Cyclosporine, 
azathioprine, 

prednisolone 6-
12 months 

Cyclosporin 
3-12 months 

Follow-up 12 months 24 months 12 months 6-60 months 36 months 
UHDRS motor score 

Preoperative 
Postoperative 

42.3 
24 

47.6 
49.6 

32.9 
29.7 

44 
30 

51 
26 

30.7 
48.4 

Imaging 

MRI 
demonstrated 
appropriate 
growth with 
no tumor or 

cyst 
formation 

PET scan 
with 

increased or 
stable 

metabolism 
in three 

patients and 
decreased in 
two patients 

PET scan 
with 

decreased 
metabolism 

 

MRI showed 
no signs of 

tissue 
overgrowth 

PET scan showed 
increased metabolism in 
1 patient during the first 

6 months with a 
decrease afterwards 
similar to the second 

patient and the control 
group 

Side effects 
No major side 
effect detected 

Mild 
psychiatric 

2 patients 
developed 3 

subdural 
haematomas 

None 

 
None 

Relevant events None reported 
None 

reported 

1 patient 
died from 
sudden 
cardiac 

arrhythmia 

None 

 
 

None 

Legend: LGE – lateral ganglionic eminence; LLGE – lateral half of the lateral ganglionic eminence; NR – not 

reported; UHDRS - Unified Huntington’s Disease Rating Scale; WGE – whole ganglionic eminence;  
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The transplantation field regarding fetal tissue in HD has provided proof of principle 

that it can be a safe method when applied within a certain timing and that it can function 

during a defined period. However, there is a limited amount of fetal tissue for transplantation 

and relevant ethical issues concerning this human cell source. One other interesting matter is 

the unethical need for sham surgery to measure the placebo effect, as well as the need for 

patient randomization and proper blinded placebo-controlled studies. There are still many 

unanswered questions as how much striatum can be replaced with cell transplantation and 

whether striatal grafting only can have a major impact on disease progression, since HD 

degeneration also occurs elsewhere. Whether some improvements can be made by 

determining optimal donor age and number of fetuses, refining cell preparation or 

implantation techniques, or even by developing better assessment tools to evaluate efficacy, 

the battle for cell transplantation is now being held with the new stem cell sources emerging.  

 

       3.5. Stem cell therapy and growth factor delivery in HD 

As mentioned above, the future for restorative therapies may lie within stem cell 

research as these cells hold the ability to self renewal as well as to differentiate in some 

(NSC) or all cell lines of the body (ESC, iPS cells). Researchers are now trying to answer 

some of the questions surrounding stem cell therapy, as how can we produce neurons with a 

striatal-like phenotype and whether they can survive transplantation and function to restore 

lost function.  

 

3.5.1. Embryonic stem cells 

Cell therapy has now become a viable possibility for HD patients as clinical trials have 

shown feasibility and encouraging data regarding motor benefits, nonetheless the challenge 
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met its difficulties regarding the limited availability of fetal cells as well as the ethical 

concerns they imply. Nowadays, to overcome such problems, new cell sources are being put 

up to the test, including ESC. These cells derive from the inner mass of the human blastocyst 

prior to implantation (see above for more detailed information). Animal studies have already 

shown that ESC can turn into specific cell lines of a desired type by manipulation of culture 

conditions and exposing the cells to extrinsic signals in a similar way to the early stages of 

neural patterning. Nevertheless, in contrast to what happens with PD where there have been 

major breakthroughs, until this date there have been few reports on clear demonstration of the 

possibility to differentiate ESC into a striatal phenotype. Aubry and coworkers designed a 

multistep in vitro protocol for human ESC (hESC) regarding the derivation of striatal 

progenitors. They begun by expanding hESC within a supplemented media followed by co-

culture with bone marrow-derived stromal feeder cells after which growth factors were added 

(Shh, DKK1 – a Wnt pathway inhibitor and BDNF).  They obtained approximately 22% 

MAP2 (terminal striatal differentiation marker) positive postmitotic neurons, 53% of which 

expressed DARPP32 (key striatal marker). The cells were transplanted into the right striatum 

of quinolinic acid lesioned rats and showed a three month survival with a significant yield of 

DARPP32 positive cells (21%). However, despite promising results, human xenografts were 

found to overgrow in the rat brain over time and these results have shown to be in agreement 

with similar data obtained from other reports regarding hESC (Roy et al. 2006). Apart from 

the disappointing results, this report opened the door to the world of hESC therapy in HD 

(Aubry et al. 2008).  

 

       3.5.2. Neural stem cells 

One other source for cell replacement therapy is the NSC. These cells exist in both 

developing and adult nervous system of all mammalian organisms and even though displaying 
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a more restrict fate than ESC, they have the potential to give rise to the major cell types in the 

CNS with a decreased risk of tumor formation (see above for more detailed information). 

While previous studies on HD models have focused on establishing cell survival, stable 

integration and absence of tumor formation, McBride and coauthors investigated the 

neuroanatomical and behavioral effects of NSC grafting into the striatum of quinolinic acid 

lesion models and observed significantly enhanced motor performances as well as cell 

integration and differentiation into the host striatum with extensive migration of transplanted 

cells to nuclei that normally receive striatal projections (Svendsen et al 1996; Lundberg et al 

1997; McBride et al. 2004). More recently it has been suggested that NSC injected 

intravenously may have the ability to migrate and integrate ischemic brain undergoing 

proliferation due to mitotic signals (Chu et al. 2004). These findings suggest that the invasive 

technique of stereotaxic surgery may no longer be necessary and based on these same results 

Lee and coworkers injected NSC intravenously in an adult rat model of HD to investigate the 

feasibility and the benefits of such delivery method. This report has shown that NSC migrate 

into the striatum, reduced striatal atrophy, differentiated into neurons and glia and induced 

functional improvement in the quinolinic acid lesion model (Lee et al. 2005). Despite the 

reported success of NSC surgical or intravenously engrafment in the quinolinic acid lesion 

model, it is widely known that the latter does not reproduce the entire human pathogenic 

process. Intrastriatal lesions created by amino acids may interfere with engraftment and/or 

NSC migration due to signaling messages and further experiments using the transgenic model 

are warranted as they may have the potential to provide an additional optimal way to 

investigate the ability of NSC regenerate damaged cells and/or to offer behavior benefits in 

HD. 

Johann and colleagues investigated the graft development in different hosts, 

comparing the quinolinic acid lesion model with the transgenic R6/2 line and also 
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determining the weight of the delay between lesion and graft procedure as well as the method 

of tissue preparation. They found a correlation between graft preparation and transplantation 

timing, NSC showed improved survival when transplanted as intact spheres rather than single 

cell suspensions at an early stage after excitotoxic lesion, avoiding detrimental host´s acute 

glial reaction. The transplantation of intact spheres circumvents the mechanical trauma which 

may lead to better outcomes. When comparing the two HD models, they found it hard to 

study the R6/2 trangenic line due to early death and lack of neuronal degeneration. Even 

though donor cells seemed to survive in a similar way to quinolinic acid model long term 

survival could not be assessed since these animals tend to die after 12-15 weeks (Johann et al. 

2007). 

Experiments with NSC into the striatum lesioned by quinolinic acid have shown that 

growth conditions in vitro are a crucial factor to influence graft survival in vivo and that 

environmental enrichment and behavioral experience also play important roles concerning 

neuronal plasticity and functional recovery (see for a review Dӧbrӧssy and Dunnet 2001).  

The potential of NSC regarding cell replacement therapy in HD is still very unclear, 

raising more questions than answers at the present moment. There is an urging need for 

improved animal models that mimic more closely the disease´s features and simultaneously 

offer a similar and fully neurodegenerative process. The path to clinical trials using NSC 

depends on obtaining safe and reliable results from enhanced representative HD´s animal 

models 

 

       3.5.3. Growth factor delivery 

Delivering of growth factors into the brain aims to protect neurons against damage and 

cell death, thereby yielding a neuroprotective effect. Trophic factors are large proteins that do 
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not readily cross the blood-brain barrier and thus must be delivered directly into the brain, via 

viral carriers or via stem cell transplantation (see above for more detailed information on 

growth factors and viral vectors).  

Three growth factors yield a particularly interest regarding HD therapy namely BDNF, 

CNTF and GDNF. BDNF was found to play a role in the survival and activity of medium-

sized spiny striatal neurons, the main cells that degenerate in HD, but there are also evidence 

of reduced endogenous neurotrophic support being involved in the development of the 

disease, thereby making BDNF a potential therapeutic target (Zuccato et al. 2001). The 

majority of BDNF is produced in cortical neurons that project into the striatum. Data suggest 

that wild-type huntingtin, but not the mutated form, stimulates BDNF production by acting on 

its gene transcription and axonal transport, which favors the hypothesis that the reduction in 

BDNF production reaching the striatum might cause the preferential susceptibility of these 

neurons to cell death in HD (for review see Cattaneo et al. 2005). Striatal damage or BDNF 

transport blockade was found to increase the level of BDNF, suggesting that its upregulation 

may constitute a protective mechanism against neurodegeneration that might be used in HD 

treatment (Canals et al 2001). Using embryonic striatal neurons growing in culture Nakao and 

coauthors found that BDNF enhanced survival and morphological differentiation (Nakao et al. 

1995).  Zuccato and coworkers evaluated the levels of BDNF transcription at different disease 

stages in the R6/2 mice demonstrating a correlation between BDNF reduction and disease 

progression (Zuccato et al. 2005). Based on these facts, Bemelmans and colleagues injected 

intrastriatal BDNF encoding adenovirus in rats and after two weeks lesioned the animals with 

quinolinic acid. One month after the lesion histological studies revealed neuronal protection 

with 55% smaller lesions and increased survival of striatal GABAergic neurons in the animals 

that received BDNF (Bemelmans et al. 1999). Kells and coauthors obtained similar results 

with adeno-associated viral gene delivery of BDNF in a quinolinic acid rodent model of HD 
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(Kells et al. 2004). Alternative approaches developed in parallel with viral delivery of BDNF 

involved growth factor secreting engineered cells. The first studies with BDNF cell delivery 

revealed only modest or even discouraging results, but subsequent attempts reported better 

accomplishments due to probably lower and safer doses of BDNF released. An interesting 

study from Ryu and coauthors where human neural stem cells were grafted into the adult rat 

striatum one week prior to the administration of 3-nitropropionic acid (an irreversible 

inhibitor of succinate dehydrogenase on mitochondrial complex II) that showed significant 

motor improvement and reduced striatal damage in the animals that received BDNF secreting 

cells compared to those that received sham surgery or were transplanted only 12 hours before 

the lesion treatment (Ryu et al. 2004). Even though BDNF has shown promising results in 

animal models in terms of viral or cell deliver, there is still a lot to overcome regarding the 

release method, the lack of gene expression control or the possible vector toxicity, as well as 

the invasiveness of the procedure. New research aims to regulate gene expression and 

increase BDNF endogenous levels.  

 CNTF is a neuroprotective cytokine found to offer significant protection against 

neurodegeneration in the neurotoxic rodent model of HD whether stereotaxically or lentiviral 

delivered into the striatal neurons with reduction of motor impairment (Anderson et al. 1996; 

de Almeida et al. 2001). Cellular delivery of CNTF in rodent and nonhuman primate models 

of HD also revealed a positive trophic influence on striatal neurons as well as on critical non 

striatal regions (Emerich et al. 2004; Emerich et al. 1997). In another other study, baby 

hamster kidney cells previously engineered to secrete CNTF were implanted bilaterally into 

the striata and offered neuronal protection against degeneration with restoration of cognitive 

and motor functions in a primate model of HD (Mittoux et al 2000). After the proven efficacy 

in animal models, a phase-I study was held to evaluate the safety of CNTF administration in 

HD patients. Six patients with mild HD received one capsule of baby hamster kidney cell line 
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engineered to produce CNTF exchangeable every 6 months during a two year period. The 

results demonstrated safety and feasibility with tolerance to the procedure, but the capsules 

retrieved contained a variable number of surviving cells which raised the need for further 

technique improvements (Bloch et al. 2004).  Indeed, CNTF may likely an advantageous 

neuroprotective agent, but additional assessment on its effect and impact on HD patients is 

needed, as well as an optimization of technical procedures, among others.  

GDNF is present in the striatum and its expression can be selectively regulated by 

excitotoxic insults which promote its release from astrocytes. After being delivered to rodent 

models of HD through viral vectors, GDNF was found to protect striatal GABAergic 

projection neurons from toxic lesion and improve motor behavior (Kells et al. 2004; McBride 

et al 2006). Genetically modified neural stem cells and fibroblasts where used for GDNF 

deliver administered before quinolinic acid toxine lesion, resulting in protection of striatal 

neurons and motor behavior improvement in a rodent model of HD (Pérez-Navarro et al. 

1996; Pineda et al. 2007).  

 Most reports regarding growth factor deliver feasibility and efficacy through grafted 

engineered cells or viral vectors provided crucial information to reinforce the idea of the 

potential of this method to grant protection to striatal cells. Despite promising results in HD 

animal models, there are still ethical concerns regarding the type of cell source and the 

possibility of an outspread from an uncontrolled viral vector. There was, however, a phase I 

clinical trial held, but unfortunately without any significant clinical improvement reported, 

which added even more complexity to the already intricate issue of growth factor delivery in 

neurodegenerative diseases (Bloch et al. 2004).  
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4. Concluding remarks 

Research on neurodegenerative disorders, due to their magnitude worldwide, is a rapidly 

growing field in Neuroscience. In the last decades we observed major breakthroughs in cell 

therapy and neurodegenerative research areas. Investigation on the cellular sources for cell 

replacement strategies in the brain has gained significant importance after the recent 

development of stem cell-based neuronal therapies, including the control of their 

differentiation potential. The aim is to obtain a specific neuronal cell fate to repair the lost 

cells and regain their function. Several cell-based therapeutic approaches which seemed 

promising on animal models of PD and HD have not managed similar success in human 

patients. Despite its shadowy future, fetal transplantation in HD and PD patients was the key 

that opened the door to what seems to be a novel and dazzling world of restorative therapy. 

Stem cell therapy, in particular, still did not manage to gather enough conditions for their 

eligibility for clinical trials. New cellular, molecular and pharmacological approaches may 

contribute to improve the neuronal survival of grafted cells and thus the treatment of these 

debilitating brain diseases. 

This new and overwhelming world still carries great uncertainties within itself. Still, there 

is hope that in nearby future stem cells can fulfill their clinical promise.  
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Pitx3, paired-like homeobox transcription factor-3; PSA-NCAM,  neuronal precursor protein polysialylated 

neuronal cell adhesion molecule; SCNT, somatic cell nuclear transfer; SDIA, stromal-derived inducing activity; 

Shh, sonic hedgehog; SN, substantia nigra; TH, tyrosine hydroxylase; UHDRS, Unified Huntington’s Disease 

Rating Scale; UPDRS, The Unified Parkinson’s Disease Rating Scale; VTA, ventral tegmental area; WGE, 

whole ganglionic eminence; Wnt1, wingless related 1;  
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