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Abstract 

Gullies are devices that connect the surface system to the sewer allowing the drainage of water during a 

rainfall event. During severe flooding, the sewer might become pressurized and water may gush out of 

the sewer onto the surface, in what is termed reverse flow. Experimental and numerical studies of 

gullies are rare because of the high computational time and the experimental facilities costs. In this 

paper we aim to characterize the average velocity inside a gully at the centre profile and discuss the 

qualitative air-entrainment structure for both drainage and reverse flow conditions. The experimental 

facility termed the Multiple-Linking-Element experiment (MLE) is located at the University of Coimbra. 

OpenFOAM
TM 

v.1.7.1 is used with the Large Eddy Simulation (LES) Smagorinsky model to simulate 

turbulence. Numerical and experimental results show reverse flow with a strong jet at the centre and an 

anticlockwise vortex on the left side of the gully box, and drainage flow with a large clockwise vortex 

located above and slightly to the left of the bottom outlet. Reverse flow shows few traces of air-

entrainment, unlike drainage flow that exhibits large quantities of air-entrainment caused by a hydraulic 

jump formed on the surface flow. 

Keywords: Computational Fluid Dynamics (CFD), Large Eddy Simulation (LES), gully, reverse flow, 

drainage flow 

 

 



  

 

 

1. Introduction 

Without any doubts climate change is one of the biggest challenges that communities face today while 

seeking to move towards more flood resilient cities [1]. One way to mitigate flooding is through the 

design of sewer systems in Sustainable Drainage Systems (SuDS). SuDS can be modelled through 

numerical hydraulic models. However flood modelling is often faced with the concern of how to model 

and reproduce the hydraulic behaviour of devices that connect the surface system to the sewer system 

such as manholes and gullies[2]. Gullies allow the water to be drained from the surface to the sewer 

system in “normal” conditions, or during exceptional events, they can become pressurized and water 

may flow in the opposite direction, which is commonly termed reverse flow. Understanding the flow 

through these structures in both directions is very important and shall be studied herein. 

Numerical and experimental studies on gullies are rare mostly because of the difficulty in performing 

calibration/validation (long computational time) and cost of the experimental facilities. There are 

however some numerical studies on gullies using Computational Fluid Dynamic (CFD) models; these 

tend to have limited applicability because the gullies and manhole structures tend to vary across 

countries. Đjorđević et al. [3], [4] and Galambos [5] used the three-dimensional (3D) OpenFoam to 

model a UK gully (which is in fact a single structure manhole-gully) with a qualitative validation of the 

model. Carvalho et al. [6]used an In-house two dimensional vertical plane (2DV) model to do a numerical 

study on Portuguese gullies, and later Carvalho et al. [7] used 2D OpenFoam to model and study gullies 

under drainage and reverse flow. The above studies agreed on the ability of the CFD models to predict 

the complex air-water interfaces of the flow. 

The hydraulic capacity of gullies has been experimentally studied and reported in several manuals which 

are normally used during design stage [8]. Gómez and Russo [9] studied in more detail the hydraulic 

efficiency of transverse grates and proposed some expressions to define their hydraulic efficiency.  

Lopes et al. [10] and Djorjdevic et al. [4] were the first to model reverse flow using CFD models. The 

former characterized the jet arising from the reverse flow and the latter focused on recirculation zones 

formed downstream of the gully. To date there are no formal studies on comparing numerical and 

experimental data of reverse flow or drainage flow inside the gully. To the authors knowledge, there are 

only three facilities that at the present time can study reverse flow in full scale; one is located at the 

University of Sheffield [4], the second is at the Kyoto University [11], and third is at the University of 

Coimbra where this study was conducted. The latter is termed the Multiple-Linking-Element experiment 

(MLE)[10]. 

The objective of this work is to numerically and experimentally characterize the 2D average velocity 

vertical plane inside a gully at the centre profile and discuss the qualitative air-entrainment structure for 

both drainage and reverse flow conditions. The experimental installation is presented in Section 2 along 

with the numerical model used (OpenFOAM[12]). Section 3 describes the methodology to collect the 

data from the experimental installation and setting up of the numerical model. Section 4 presents the 

calibration and validation. The numerical and experimental velocity results are presented in Section 5, 

followed by the discussion and comparison of the results in Section 6. Section 7 concludes the study. 



  

 

 

2. Models 

2.1 Experimental Model 

The MLE experimental set-up was built inside a multipurpose flume channel at the University of Coimbra 

(UC) which is equipped with a SCADA system (Supervision, Control and Data Acquisition) that allows for 

the operation and monitoring of flow rates. The experiment is comprised of a rectangular channel, a 

gully and a connecting pipe (Figure 1). The channel is sloped at 1 % with 0.5 m bottom width and 0.5 m 

depth with 8 m long acrylic walls. The gully is an acrylic box 0.6 m long, 0.3 m depth and 0.3 m width; 

these are the measurements usually found in Portuguese drainage systems. The reservoir upstream of 

the experiment is supplied by a pumping system in a closed circuit. The channel downstream outlet is a 

free outfall. When modelling reverse flow, a gate is placed upstream of the gully as well as an inlet pipe 

of 0.08 m internal diameter that supplies the gully bottom inflow. Due to space limitations, a 90 degree 

bend is placed underneath the gully connection. When modelling drainage flow the gate is removed and 

the pipe disconnected from the gully leaving the bottom exit as a free outfall.  In both cases there is no 

grate covering the gully. This could be the case of grate removal due to operational use [13] or 

projection of the grate during extreme reverse flow such as urban geysers [10]. 

Instantaneous velocity data set were collected using a Nortek AS
®
 10MHz Acoustic Doppler Velocimeter 

(ADV). 30 sec videos for each surcharged and drainage flow were recorded using a Panasonic DMC-FS16 

camera with 14 Mega Pixels fixed on a tripod in order to visualise qualitatively the air-entrainment.  

 

2.2 Numerical Model 

The OpenFOAM
TM 

toolbox v1.7.1 with the solver interFoam (in which the Volume-of-Fluid technique is 

used to track the free-surface [14]) was used to run the simulations in both directions. The algorithm 

PISO was chosen because it is more efficient in time-dependent calculations comparatively with SIMPLE 

(and its variants)[15]. 

Large-Eddy Simulation (LES) and Reynolds Average Simulation (RAS) are two of the usable turbulence 

models in OpenFOAM
TM 

toolbox v1.7.1 with widespread applicability [16], [17] and [18]. The LES 

Smagorinsky turbulence model proposed by Smagorinsky [19] was adopted herein based on the authors’ 

earlier results applying RAS (see Lopes et al. [20] and section 6.2). The LES model selected in OpenFOAM 

contains two input parameter constants Cε and Ck which can be related with the original Smagorinsky 

constant Cs [21] used to calculate the eddy-viscosity coefficient. This model resolves large scales of the 

flow field solution with better fidelity than the Reynolds-Average Simulation (RAS) but, on the other 

hand, leads to higher computational cost for most hydraulic engineering problems. 

Four different boundary conditions (BC) are used in the numerical model divided into two types in 

OpenFOAM terminology: patch and wall. Each boundary condition is defined in accordance with their 

functionality: the inlet BC allows inflow at a constant velocity definition (patch); the outlet BC allows 

outflow and the relative pressure is set to 0 (patch); the atmosphere BC (patch) sets the atmospheric 



  

 

 

pressure (whereby the relative pressure is set to 0); the wall BC is set with the condition of no slip thus 

the velocity is set to 0 next to the wall (wall). When solving the reverse flow (Tr) the bottom and left BC 

are set respectively as an inlet and a wall BC, whereas when solving the drainage flow (Td) they are set 

as an outlet and an inlet BC, respectively (Figure 2). 

 

3. Methodology 

3.1 Experimental Methodology 

In order to validate numerical model and experimentally characterize the average velocity inside the 

gully at the centre profile for both drainage and reverse flow conditions, first a set of flow rates was 

defined and secondly a spatial grid was chosen from which velocities were measured (Figure 3). The 

spatial grid was defined with 0.03 m spacing in order to accurately characterize the large vortices 

structures inside the gully box (Figure 3). The bottom of the grid is 0.05 m above the base of the gully 

box, which is well above the minimum (of 0.02 m) required to avoid boundary effects [22] and [23]. For 

reverse flow the first two columns away from the centre are displaced 0.04 from the centre and thus 

only 0.02 m from the next column. In total 171 and 162 points per experimental run were collected for 

the drainage and reverse flow tests respectively. The methodology to extract the results will now be 

further discussed. 

In total, six tests were setup to study reverse and drainage flow experiments (Table 1). Three flow rates 

were defined for studying the reverse flow (Tr): 4, 5 and 6 l/s with Reynolds numbers (Re) between 

6x10
4
 to 10x10

4
. The upper limit was constrained by the maximum flow rate allowed by the experiment. 

Lower values than 4 l/s would produce very small average velocities within the gully box. In case of 

drainage flow the following flow rates were defined as (Td): 15, 22 and 32 l/s with Reynolds numbers 

between 8x10
4
 and 10x10

4
. The adopted upper limit was set because the incoming flow was mostly 

flowing over the gully. Lower values than 15 l/s would bring large amounts of air into the gully rendering 

the ADV measurements useless. 

 

The two data quality indicators normally associated with acoustic Doppler data are the correlation (COR) 

and the signal to noise ratio (SNR) [24]. The COR parameter reported by the instrument is a measured of 

the similarity of two pulse echoes being measured by the ADV. The SNR also provided by the instrument 

is calculated using the signal amplitude and background noise level. Both parameters should be 

maximized during measurements [25]. Nortek [26] suggests that SNR>5dB is required for collecting 

mean flow data and that SNR>15dB is necessary for collecting turbulence data. Wahl [27] claims that 

samples with COR<70 can provide good data, mainly when both SNR and turbulence are high. In 

addition, COR values as low as about 30 can be used for mean velocity measurements [28]. Spikes in the 

water velocity signals recorded using ADVs may be caused by phase shift ambiguities (i.e., phase shift 

from successive coherent acoustic return lies outside the range between −180 and 180). In addiSon, 

throughout the flow velocity measurements, aeration effects and high turbulent intensities might cause 



  

 

 

spikes. In this work, the presence of spikes in the water velocity time series was detected by means of 

the phase-space thresholding method (PSTM) proposed by Goring and Nikora [29]. 

As mentioned earlier, instantaneous velocities were measured with an Acoustic Doppler Velocimeter 

(ADV) probe. The frequency and sampling period were set to 1 Hz and 180 s respectively. In the case of 

drainage flow the frequency was set to 25Hz because of the low signal correlation values obtained with 

1Hz frequency. In any case low correlation values were still unavoidable in some points, particularly near 

the jet in reverse flow because of the very high turbulence readings, and in drainage flow were 

exceptional larger air-entrainment occurred during low flows. 

3.2 Numerical Methodology 

A regular non-uniform mesh with variable grid spacing from 0.01 m to 0.04 m was used for both 

drainage and reverse flow numerical models. Finer mesh is applied at the gully box and inlet, and 

coarser mesh at the channel inlet and outlet. The mesh is adapted from Martins et al. [13] and 

generated using blockMesh utility in OpenFOAM
TM

 (Figure 2). Both reverse and drainage flow are 

modelled with the same grid for the sake of simplicity without retracting from the results accuracy. 

Indeed a qualitative comparison was done against numerical simulations with the inclusion of a 90 

degree bend underneath the gully connection but did not show a clear improvement.  

ParaView
TM

 was used to extract the instantaneous velocities used to obtain the average velocity at all 

points in the centre spatial grid defined earlier (Figure 3) taken from the OpenFOAM
TM

 output results. 

4. Calibration and Validation 

4.1 Steady State Check  

Numerical models are sensitive to geometry, initial conditions and model parameters. In order to check 

that the numerical simulations indeed converged into steady state conditions from which average 

velocity fields could be extracted, all models were run for 20 s. The authors previous experience with 

similar numerical applications on the same installation showed that the last 5 s were enough to produce 

consistent average velocities [30] and [6].Steady state conditions were verified through the analysis of 

the fraction of water during the simulations. Figures 4 and 5 show the percentage of water inside the 

numerical domain with time. For reverse flow the steady state is achieved after 15 s whereas for 

drainage flow it occurs after 5 s; in both cases the absolute errors for the last 5 s remain always below 

0.5%. 

4.2 LES parameters 

In classical Smagorinsky model the Smagorinsky constant needs to be calibrated to fit the observed data 

[31]. In order to set the parameters Cε and Ck in the LES model, the 4 l/s experiment for reverse flow 

was selected for calibration. Several values were tested around the pre-defined OpenFOAM
TM  

values of 

Cε=1.05 and Ck=0.07 (Cs=0.13). To decide on the best set of parameters, the absolute errors as the 

difference between the maximum velocity (Vmax) and the average velocity fields at the left (Vavl) and 

right (Vavr) side of the gully were calculated, and three measures of fit were estimated, namely the: 



  

 

 

PBIAS Coefficient [32] - the Index of agreement I.d [33] and the Coefficient of determination R
2
 [34].The 

closer the PBIAS is to 0, the more accurate is the model. The upper limit of the Index of agreement is 1.0 

and indicates perfect model performance. R
2
 ranges from −1.0 to 1.0; a value of 1.0 implies that a linear 

equation describes the relationship between experimental and numerical results perfectly. Table 2 

summarises the results obtained for the calibration. Cε=1.05 and Ck=0.03 were selected as the best 

parameters having in mind the measures of fit but also the computational time (e.g. when compared 

with the solution with Cε=1.15 and Ck=0.07, which has a smaller Vmax error but a higher PBIAS and 

computational time). Table 3 summarises the results obtained for the validation. Herein is interesting to 

note that in terms of I.d and R
2 

the calibrated run (Tr.1) and Td.1 have the best values, but not in terms 

of PBIAS; Td.2 has the best PBIAS, although it also shows the worst R
2
. Overall the results remain good 

across the different tests; particularly Td.3 which has the highest discharge, whereby some 

disagreement in the results is often expected as the discharges differs from the calibrated value. 

5. Results 

5.1 Experimental 

5.1.1 ADV signal quality  

Figures 6 and 7 show the correlation parameter (COR) values for each experiment (Section 3.1), 

whereby in the legend white areas represent points where the signal was either excluded due to high 

turbulence readings (reverse flow) or because the probe was not fully submerged (drainage flow). 

Therefore white areas in the gray scale legend do not display cells with COR=100 but are rather points 

where the signal could not be obtained. In terms of SNR, all the recorded signals showed values larger 

than 5 dB.  

5.1.2 Average velocities 

Figures 8 and 9 show the average velocity fields measured with the ADV probe for the reverse and 

drainage flow using the grid defined in Figure 3. As discussed in section 3.1 the points along the centre 

of the jet for reverse flow were eliminated (discarded), as well as some points near the surface for 

drainage flow. 

5.1.3 Air-entrainment 

Figures 10 and 11 show images of the air-water flow randomly selected from the videos described in 

section 3.1., for reverse and drainage flow respectively. The pictures show a zoom of the gully box and 

part of the surface sloped channel. A horizontal bar which serves as structural element and a measuring 

tape are also visible. 

5.2 Numerical  

Figures 12 and 13 show the average velocity fields obtained with the numerical model for the reverse 

and drainage flow using the grid defined in Figure 3. Only the points retained in section 5.1.1 were 

plotted for comparison. 



  

 

 

6. Discussion 

6.1 Qualitative air entrainment assessment and ADV signal quality 

Two distinct cases are studied in this paper; first, reverse flow, a relatively rare occurrence when sewer 

systems become surcharged and a second termed drainage flow, the regular or the normal expected 

behaviour of a gully during a rainfall event. These two cases exhibit a distinct behaviour in the MLE 

experimental installation. The reverse flow shows virtually no trace of air-entrainment, with some 

exception for occasional occurrences for 5 l/s and 6 l/s (Figure 10). The latter showed some air bubbles 

entrainment next to the upstream wall occupying at the most a length of 0.20 m away from the 

upstream wall inside the gully (Figure 10 c.1) and c.2)). This is in agreement with the ADV signal 

correlation values which are good everywhere except at the jet centre, with a local deterioration where 

the air-bubbles appear for 6 l/s (Figure6c)). 

The drainage flow unlike the previous case exhibits large quantities of air-entrainment, which are mainly 

due to the hydraulic jump formed above the gully, particularly when it is located next to the 

downstream wall of the gully. For 15 and 22 l/s (Figure 11 a) and b)) the entrained air-bubbles are 

carried downwards in the vortex highlighted in Figure 13; a small percentage of the air-bubbles remain 

trapped inside this large vortex, while the majority is discharged through the bottom orifice. For the 

largest discharge rate, 32 l/s, the hydraulic jump occurs further downstream than at lower flow rates, 

resulting in less air-entrainment. Again the ADV signal correlation helps to identify where the large 

portions of air can be found; for example for 22 l/s, Figure 7b) clearly identifies that air is entraining 

from the upper right corner (with no valid readings on those points, represented by the white areas).  

It should be noted that while the mechanism of air-entrainment found in drainage flow is likely to occur 

in full scale systems, for reverse flow that is not the case. Indeed for reverse flow there may be other 

sources of air-entrainment (e.g. trapped air bubbles in sewer pipes upstream) which are not considered 

in the MLE experimental facility. Thus for reverse flow the extrapolation of the air-entrainment 

assessment cannot be directly applied to real scale systems.  

6.2 Average velocity profiles (numerical and experimental) 

In general the numerical and experimental results show good agreement for all tests. The surcharge 

flow is characterized by a strong jet at the centre, almost vertical, that generates an anticlockwise vortex 

on the left side of the gully box with centre around the coordinates (20, 20). On the right side the 

velocities are very small (Figures 8 and 12). With the increase of flow rate the velocities increase. The 

centre of the vortex is in good agreement by the two models, however next to the jet location and 

particularly near to the top of the gully box, the numerical model tends to produce higher velocity 

vectors than the experimental results (Figures 8 c) and 12 c)). Also the experimental model seems to 

show higher velocities around the vortex than the numerical model. 

The drainage flow is composed of a large clockwise vortex initially located above and slightly to the left 

of the bottom outlet for 15 l/s and then gradually moving up with the increase of flow rate to 32 l/s. The 

experimental and numerical models locate the vortex centre around coordinates (22,8) and (25,15) for 



  

 

 

15 l/s and around coordinates (25,12) and (25,15) for 32 l/s (Figures 9 and 13). Apart from a slight 

disagreement on the location of the centre, in terms of predicting the large vortex structure the 

agreement between the two models is very good. 

In order to clearly mark the differences between the velocity fields obtained with the experimental and 

the numerical model, Figures 14 and 15 superimpose the results following the numbering presented in 

Figure 3 for the horizontal (Vx) and vertical velocity (Vz) components. 

Except for the points next to the jet, the calibration dataset presented in Figure 14 a) shows an almost 

perfect match between the two results. Figure 14 shows that the calibration of the LES parameters was 

indeed effective in obtaining a good fit. The model still shows a good performance as the flow rate 

increases in the reverse flow case, however compared to the calibration data set the agreement 

diminishes particularly in the vicinity of the jet (Figure 14 c)) and in several points in Vx where there are 

some significant velocity differences. Looking to the drainage cases the results are quite robust as a good 

agreement holds for the three tests, except perhaps for Vx in Figure 15 b where the differences become 

more visible. In any case the best agreement found in the drainage flow tests may arise from the large 

velocity gradients and higher turbulence that occur in reverse flow near the jet (Figure 14 a) and c)) 

which are more difficult to model numerically, whereas this is not the case for drainage flow where 

these gradients remain smoother across the gully box (Figure 15).  

To some extent differences in the velocity fields between numerical and experimental results could be 

explained by the turbulence model not being able to fully replicate the high turbulence next to the jet in 

reverse flow and the localized areas where substantial air-entrainment occurs in drainage flow. Indeed it 

has been pointed out by some authors that LES Smagorinsky turbulence model might actually need an 

independent set of coefficients Cε and Ck (to calculate Cs) depending on the test [35][36].  It is also well 

known that air plays an important role in energy dissipation [37] and thus could also affect the velocity 

fields within the gully. Alike other multiphase solvers, interFoam solver is not able to reproduce well the 

flow behaviour when the air concentration exceeds values of 15 to 20 % [38][39]. It is thus expectable 

that a combination of these factors may affect the simulations and to some extent explain the 

differences found between numerical and experimental results. Future work will be looking into 

methods to include air-entrainment modelling into OpenFOAM. 

 

7. Conclusions 

This paper presented numerical and experimental results of drainage and reverse flow in a gully. The 

average velocity inside a gully at the centre profile was characterized numerically and experimentally, 

and the qualitative air-entrainment structure for both drainage and reverse flow conditions were 

discussed based on experimental results. The turbulence closure adopted was the Large-Eddy 

Simulation (LES) Smagorinsky model available in OpenFOAM
TM 

toolbox v1.7.1. The average velocity 

results from the six different tests showed a good agreement between numerical and experimental 

outputs. 



  

 

 

The MLE facility allowed the study of both drainage and reverse flow. The velocity fields were measured 

using an Acoustic Doppler Velocimeter (ADV) and the qualitative assessment of the air-entrainment was 

supported on video recordings. The ADV spike noise was removed and the signal was filtered based on 

correlation coefficients that measured the coherence of the signal. With the calibration of the two 

parameters of the LES model (in OpenFOAM), namely Cε and Ck, a good agreement between numerical 

and experimental results was found. 

The surcharge flow was characterized by a strong jet at the centre responsible for generating an 

anticlockwise vortex on the left side of the gully box. The location of the vortex and the velocity field in 

the numerical and experimental model were in good agreement. Nonetheless near the jet the numerical 

model values tend to be higher than the experimental values measured. The drainage flow was 

characterized by large clockwise vortex, clearly identified in both models. The location of the vortex, on 

the other hand, was slightly offset when experimental and numerical results were compared. 

Nonetheless in terms of the velocity values the agreement between the two models is considered good. 

The qualitative air-entrainment assessment showed two distinct behaviours. The first was observed 

during drainage flow which showed large quantities of air-entrainment in the gully box. The main 

entrainment mechanism identified was the hydraulic jump that developed next to the downstream wall 

of the gully. A small percentage of the entrained air remained trapped inside the large vortex while the 

large percentage is discharged through the bottom outlet. The second was observed during reverse flow 

which showed virtually no traces of air-entrainment. While the former is likely to occur in real systems, 

the latter draws from a limitation of the current MLE experimental facility which in its current 

configuration cannot replicate air-entrainment originating from upstream/downstream sewer pipes.  

In this study the grate covering the gully was not considered. This could be the case of grate removal 

due to operational use, or due to extreme reverse flow such as urban geysers. It is foreseeable that its 

inclusion will affect the hydraulic behaviour of the gully in both reverse and drainage flow as the grate 

will change the boundary conditions of the gully box. Future research is likely to include the study of 

reverse and drainage flow with a grate covering the gully. Furthermore we will be looking into methods 

to include air-entrainment modelling into OpenFOAM and to measure it experimentally in order to study 

the behaviour of the air-water mixture. 
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Fig. 1 Sketch of the MLE experimental 

Installation used for studying reverse flow in the 

Gully (0.6x0.3x0.3 m); for drainage flow the 

bottom pipe (0.08 m) is disconnected and the 

gate removed. 
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and the left wall by an Inlet condition. 

 

 

Fig. 3 2D view of the grid used with 0.03 m spacing to measure the instantaneous velocities in the 

experimental and numerical model for reverse flow. The two columns either side of the centre are 

displaced by 0.04 m from the centre and thus only 0.02 m from the next column. For drainage flow 

spacing between points is kept constant and equal to 0.03 m. 

 



  

 

 

  

Fig. 4 Steady state convergence check for the 

reverse flow numerical model 

Fig. 5 Steady state convergence check for the 

reverse flow numerical model  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

a)  a)  

b)  b)  

c)  c)  

Fig. 6 Spatial distribution of the ADV signal 

correlation coefficients (COR) in the reverse flow 

experimental model for 4 (a), 5 (b) and 6 (c) l/s. 

Note that due to the gray scale used, white areas 

do not have COR=100 but are rather excluded 

because of high turbulence readings. 

Fig. 7 Spatial distribution of the ADV signal 

correlation coefficients (COR) in the drainage flow 

experimental model for 15 (a), 22 (b) and 32 (c) l/s. 

Note that due to the gray scale used, white areas 

do not have COR=100 but are rather excluded 

because of incomplete submersion of the probe. 

 

 

 



  

 

 

 

a)  
 

a)   

b)   b)   

c)   c)   

Fig. 8 Average velocity vector field measured with 

the ADV for reverse flow for 4(a), 5(b) and 6(c) l/s. 

Fig. 9 Average velocity vector field measured 

with the ADV for drainage flow for 15(a), 22(b) 

and 32(c) l/s. 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

a.1) t=15s 

 

b.1) t=30s 

 

c.1) t=24s 

 

a.2) t=21s 

 

b.2) t=9s 

 

c.2) t=15s 

Fig. 10 Images of the air-water flow for reverse flow for 4(a), 5(b) and 6(c) l/s for two random instants 

in time. 

 

 

 

 

 

 



  

 

 

 

a.1) t=15s 

 

b.1) t= 9s 

 

c.1) t=18s 

 

a.2) t=30s 

 

b.2) t= 27s 

 

c.2) t=30s 

Fig. 11 Images of the air-water flow for drainage flow for 15(a), 22(b) and 32(c) l/s for two random 

instants in time. 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

a)   a)  

b)   b)  

c)   c)  

Fig. 12 Average velocity vector field obtained with 

the numerical model for reverse flow for 4(a), 5(b) 

and 6(c) l/s. 

Fig. 13 Average velocity vector field obtained with 

the numerical model for drainage flow for 15(a), 

22(b) and 32(c) l/s. 

 

 



  

 

 

  

a) a) 

  

b) b) 

  

c) c) 

Fig. 14 Comparison of the numerical and Fig. 15 Comparison of the numerical and 



  

 

 

experimental average velocity vector field for 

reverse flow for 4(a), 5(b) and 6(c) l/s. 

experimental average velocity vector field for 

drainage flow for 15(a), 22(b) and 32(c) l/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Table 1 Summary of the flow conditions run in the MLE experimental installation for studying reverse 

(Tr) and drainage flow (Td).   

Test 

ID 

Q(l/s) U(m/s) H(m) Fr Re Frequency 

(Hz) 

Sampling 

Period (s) 

Tr.1 4 0.80 0.760 0.90 6x10
4
   

Tr.2 5 0.99 0.830 1.12 8x10
4
 1 180 

Tr.3 6 1.19 0.910 1.34 10x10
4
   

Td.1 15 0.99 0.030 1.80 8x10
4
   

Td.2 22 1.18 0.037 1.94 9x10
4
 25 180 

Td.3 32 1.36 0.047 2.00 10x10
4
   

 

Table 2 Summary of the calibration results of the 4 l/s reverse (Tr) numerical model, including LES 

parameters (Cε, Ck), maximum velocity (Vmax) and average velocity fields at the left (Vavl) and the right 

(Vavr) side of the Gully, absolute errors, computational time (Time), and measures of Fit.  

LES Parameters Numerical Velocities (cm/s) Abs Errors (cm/s) Time  Measures of Fit 

Cε Ck Vavl Vavr Vmax Vavl Vavr Vmax (s) PBIAS I.d R
2
 

0.93 0.0943 7.43 5.06 57.61 -2.88 0.08 -2.13 155416 -0.07 0.89 0.76 

1.05 0.03 10.18 6.43 54.50 -0.13 1.44 -5.24 95522 -0.15 0.90 0.85 

1.05 0.055 8.27 6.33 58.58 -2.04 1.35 -1.16 81845 -0.16 0.90 0.85 

1.05 0.07 8.61 5.98 57.72 -1.70 0.99 -2.02 76547 -0.16 0.89 0.79 

1.15 0.07 9.83 7.24 55.24 -0.48 2.25 -4.50 116063 -0.19 0.91 0.85 

1.25 0.07 7.84 6.96 53.58 -2.48 1.97 -6.15 113671 -0.13 0.89 0.65 

1.25 0.055 7.89 6.66 56.97 -2.42 1.67 -2.76 157704 -0.16 0.89 0.74 

Experimental 10.31 4.99 59.74 -- -- -- -- -- -- -- 

 

Table 3 Summary of the calibration/validation results of the of the reverse (Tr) and drainage (Td) 

numerical model tests with corresponding measures of fit.  



  

 

 

Test  Q Measures of Fit 

ID (l/s) PBIAS I.d R
2
 

Tr.1 (c) 4 -0.15 0.90 0.85 

Tr.2 5 -0.15 0.68 0.67 

Tr.3 6 -0.15 0.60 0.62 

Td.1 15 -0.16 0.90 0.85 

Td.2 22 0.01 0.78 0.62 

Td.3 32 -0.12 0.89 0.84 

Note: (c) = calibration run. 

 

 

 

Highlights 

• We model experimentally and numerically a gully box. 

• We simulate turbulence with LES Smagorinsky using the OpenFoam toolbox. 

• Reverse flow shows strong jet at the centre and an anticlockwise vortex on the left side. 

• Drainage flow shows a clockwise vortex above and to the left of the bottom outlet. 

• Drainage flow exhibits large quantities of air-entrainment caused by a hydraulic jump. 

 

 


