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1. Introduction 
The working principle of impedance ceramic metal oxide humidity sensor consists on 

the impedance changes that the sensing material experiments, when the sensor 

surface is exposed to a certain moisture concentration. Consequently, the 

performance of a ceramic sensor will be influenced by the porous microstructure and 

by the surface reactivity with the humidity: so if the sensitivity of these sensors 

depends on the microstructure, then the fabrication process becomes a strategic tool 

to improve the sensors response.  

Relative Humidity (RH) is a parameter which can be used to specify moisture 

concentration (defined the ratio, at a given temperature, between the actual vapour 

pressure and the saturated vapour pressure). Various mechanisms have been 

proposed to explain the variations of electrical response and associated conduction 

mechanisms with humidity [1, 2]. Moseley et al. [3] have presented an extensive 

survey on the electrical behaviour of several semiconducting oxides, characterized 

their responses and proposed adequate interpretative models. The conduction 

mechanism can be either ionic either electronic type: in the ionic mechanism, the 

impedance of the sensor decreases with an increase of RH due to physisorption and 

capillary condensation of water molecules on the surface of the material [1]; in the 

electronic type, water molecules act as electron donors gas and chemisorption 

increases or decreases the electronic conductivity depending on whether the material 

is an n or p-type semiconductor [1]. In synthesis, electrical response of a porous 

ceramic, at different environmental humidity concentrations, is related to the water 

adsorption mechanism on the oxide surface [4, 5]. In our case, since  and  

are both n-type semiconductors, the sensitivity to humidity results mainly from 

electronic conduction with some ionic contribution. In the past, the authors studied 

the electrical response with humidity of a sensor with 48.92/51.08 volume percentage 

of , respectively, sintered in air at 700ºC [6]. That sensor exhibited almost 

linear response to humidity, see Figure 1: at a low operation frequency, impedance 

changes by more than two orders of magnitude, in the full RH range, suggesting 

good sensitivity to RH. In the literature there can be found references to works based 

on the use of the  pair for sensors fabrication: Xhu et al. [7] presented 

results for  nanocomposites response to benzene, while Chaudhari et al. [8] 

reported on the use of  nanocrystalline doped with a low concentration of Pt 
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for hydrogen sensing. More recently Zanetti et al. [9] studied the use of  

nanopowders for humidity sensing, while varying content. 

Without any doubt, it is recognized by literature reports that if some of the positions 

initially occupied by the atoms of one of the metals are now occupied by atoms of 

another metal, material electrical response to humidity is altered (the electronegativity 

of the occupying metal atoms may be used to regulate the sensitivity). So doping a 

composite material with additional semiconducting metal oxides, will induce, in the 

final sensors structure, additional substitutions of metal atoms, from the initial 

composition, by metal atoms of the dopant, and consequently changes in the sensor 

electrical response to moisture will be observed. 

In the present paper, authors report the specific behaviour found for composite 

sensors based on the  pair doped with  and . Sensors impedance 

dependency on RH, temperature and frequency is discussed, and a non-classical 

electrical model that applies to every sensor, for all relative humidity and temperature, 

is presented. 

 

2. Electrical conduction and polarization due to water adsorption 
Electrical conduction and polarization in a humidity sensor are prominently described 

in terms of the adsorbed water on the metal oxide surface but additionally by the 

capillary water that condensates within the pores [10, 11]: it should be stated that 

both these processes are favoured by the existence of a porous structure. Two types 

of water molecules adsorption take place: in the beginning chemisorption, followed by 

physisorption. The water vapour molecules are chemisorbed through a dissociative 

mechanism [12, 13]. For the case of 2TiO  and of , two surface hydroxyls per 

water molecule are formed: the hydroxyl group adsorbing on the surface metal ions 

and the proton forming a second hydroxyl with an adjacent surface −2O  ion [14]. On 

the other hand for  and for , only one hydroxyl group adsorbing on a surface 

metal ion, is formed. 

Thus the initial chemisorbed layer is tightly attached to the surface grains. Once 

formed, which takes place for lower surface coverage’s (around 20 to 30%), it is no 

further affected by exposure to humidity (desorption of the chemisorbed layer only 

takes by applying high temperatures to the metal oxide composite). As relative 

humidity (RH) increases, an additional layer of water molecules starts to be formed, 
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on the chemisorbed one. Many more physisorbed layers will be joined as humidity 

gets higher [15]. These layers are easily removed by decreasing the humidity. With 

more than one layer of physisorbed water molecules, water starts to condense into 

the capillary pores. The pore is filled or unfilled according to its radius and the 

thickness of the physisorbed layer, which depends on the magnitude of the relative 

humidity, in accordance to Kelvin equation [16].Typically, three regimes for the 

electrical conduction can be assumed [12,13, 17,18]: 1) with only a small coverage of 

water of the chemisorbed hydroxyl groups, proton +H  hopping dominates; 2) with a 

fractional coverage of water, less than one physisorbed monolayer, hydronium +OH 3  

diffusion on hydroxyl groups dominates; 3) when water is abundant proton +H  

transfer process is dominant. Simultaneously, the sensor capacitance, due to electric 

polarization, is also conditioned by the movement of charges under the applied 

alternating electric field: in fact electric polarization is caused by the oscillation or 

reorientation of charges induced by the variation of the applied field. For the 

chemisorbed water molecules, as they are bound to the surface by two hydrogen 

bonds, they are not so free to reorient, following the external electric field, as those 

which are physisorbed, which are only singly bonded. Then the polarization, and 

consequently, the capacitance of the sensor will increase as less tightened are the 

water molecules with their neighbours, which happens as RH increases [19, 20]. 

Adding up to molecules orientation, there is also the contribution to the polarization 

due to mobile charges accumulated at the grain-grain barrier [17, 21].  

In addition, the semiconducting character of our ceramic sensors, as also to be 

accounted for, in which the electrical conduction takes place through electron and 

hole transport from one grain to the next, over grain-grain barrier. The 

semiconducting behaviour can be described in terms of the band-like theory. For an 

n-type semiconducting sensor exposed to rising humidity concentration, the 

impedance decreases due to the above referred conduction modes: proton hopping, 

electronic and ionic diffusion and transport mechanisms and polarisation 

mechanisms.  

 

3. Experimental 
The bulk sensors were fabricated from as received , ,  and  dry-

powders from FLUKA, all with a purity of 99% and a medium grain size lower than 45 
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nm. First, the  and the  powders were mixed in the mole volume ratio 

percentages of 48.92:51.08%. Then similar mole volume ratio percentages of  

and , 7% in the present case, were added to form Sensor A and sensor B, 

respectively (two of each designated type of sensors were produced and later 

characterised morphologically and electrically). After they were moulded (mould 

dimensions: 8 mm long, 6 mm wide and 1 mm height) the sensors were successively 

subjected to uniaxial and isostatic pressing, at the pressures of 10 MPa and 200 MPa, 

respectively. The green samples were then sintered in air for 120 minutes at the 

temperature of 700ºC, with rising and falling temperatures rates of 20 ºC/min 

approximately.  

The phase composition of both sensors was examined using the X-Ray Diffraction 

(XRD) on a Philips X’Pert, PW 3040/00, diffractometer. The measurements were 

performed by the Bragg-Brentano method using Co radiation (Kα=1. 78897 Å) in 

angle 2θ interval from 20 to 60 degrees with a step of 0.04 degrees and a scanning 

time of 0.5 sec in point. 

Porosity distribution analysis of the sensors, based on the intrusion/extrusion curves, 

were performed using a Micrometrics porosity meter, model Poresizer 9320, starting 

with sensors degasification, followed by mercury intrusion pressured analysis starting 

at 0.5 up to 30000 Psia. The sensors microstructure was characterised using a 

Philips Scanning Electron Microscope (SEM), model XL 30 TMP, operated at 30 kV.  

The electrical characterisation of the sensors was performed in a chamber, with a 

volume of approximately 6.5 litters, the temperature of which was electronically 

controlled better than 1ºC in different constant atmospheres with constant relative 

humidity (RH) varying from 5% to 35%, with increments of 5%, and then from 40% to 

90%, with increments of 10%. The sensors were tested for the different prepared 

mixtures, at the temperatures of 30 and 40ºC. The different relative humidities were 

obtained by mixing, in the chosen ratio, water saturated air, obtained by bubbling 

synthetic air through water in a bubbler, with dry synthetic air. Volumetric flow rates of 

both saturated wet and dry air were controlled by independent mass flow controllers, 

and then joined together in a mixer before passing tangentially over the surface of 

the sensors placed inside the test chamber. All the electrical measurements were 

performed with the samples submitted to a 5 l/h flow of a given mixture kept for at 

least 90 minutes, at a constant temperature. For that purpose, a pair of gold 
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electrodes was chemically evaporated through a mask onto the surface of each 

sensor, and heated afterwards up to 700ºC, for 15 minutes. The dependence of the 

electrical impedance of the samples on temperature and RH was investigated using 

complex impedance spectroscopy. Impedance spectra were obtained in the range 

100 Hz to 10 MHz, with a peak voltage of 0.5 V, by means of an Impedance/Gain-

Phase analyser from Hewlett-Packard (model HP4294A). 

 

4. Results and Discussion 
4.1. Microstructure 
As already stated for each type of  doped sensors, two samples were 

prepared and characterised: the ones designated as sensor A, were doped with  

and the ones designated as sensor B, were doped with . The morphological data 

here presented and discussed reflect the observations for both sensors of each 

composition which were very similar, and so only one of each type is reproduced.  

Concerning the structural characterization of sensors, the XRD diffraction patterns 

are presented in Figure 2. As can be concluded the sensors present different phases 

arrangements. As can be concluded, both sensors present the rutile  phase. 

These results are in agreement with previous studies [22, 23] showing a typically 

anatase to rutile transformation of the ceramic after sintering. Nevertheless the final 

structure of both sensors depends on the nature of the dopant. Doping with  

leads to the formation of a new phase, the copper tungstate , during sintering. 

This result confirms the low solubility of both  and  into  based materials 

[24]. The addition of  (2+) through the use of  additive marked enhancement 

the anatase to rutile transformation, sensor A. As reported elsewhere the substitution 

of  by lower valence  result of an increased of oxygen vacancies [25] reducing 

the lattice constraint and facilitates the reconstructive phase transformation of titania. 

The pore size distribution curves, obtained by the mercury intrusion method, are 

presented in Figure 3. For sensor A, a bimodal distribution is visible: a first region 

suitable for capillary condensation, between 0.3 and 0.1 µm, a second above 2 µm: 

nevertheless in the latter mentioned region, it should be mentioned that it could be 

split in two dominant areas, the first containing the pores between, 1.5 and 13 µm 

and the second containing the pores above 100 µm. For sensor B a trimodal 
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distribution is observed: a first region suitable for capillary condensation, between 0.5 

and 0.2 µm, a second one between 13 and 2 µm, and the last one above 100 µm.  

Typically, the pores with size above 100 μm simply serve as passage for the water 

vapour, and capillary condensation of water vapour majorly occurs in the mesopore 

range. Comparing both sensors porosimetry, the main differences arise from the 

region concerning pores below 1 µm: sensor A, exhibits a much larger contribution of 

pores in that region, which are additionally lower in dimension, when compared with 

the ones present in sensor B. 

SEM micrographs of the both sensors are presented in Figure 4. While For sensor A 

large agglomerates of quasi-spherical grains, of average dimensions around 100-300 

nm are visible, in sensor B not only some small agglomerates of quasi-spherical 

grains are visible (grains which exhibit an average dimension lower than 400-100 nm), 

as also some cylindrical shaped grains of reaching more that 1µm in length are 

present.  

In resume both X-ray diffraction, porosimetry and SEM allowed to observe that there 

are major structural differences between both type of sensors: the change in the 

dopant clearly introduces changes between sensors A and B observable morphology, 

which will much probably induce differences in sensors electrical response to 

moisture. 

 

4.2. Recorded spectra of the sensors and interpretation 
As already stated for each type of doped sensors, two samples were 

prepared and tested (the ones designated as sensor A, doped with  and the ones 

designated as sensor B, doped ) and the data here presented and discussed 

reflect the observations for both sensors of each composition (in all the graphs, the 

data showed are for each point the average value of all the sets of measures taken 

for both sensors of each composition). 

Since the first work by Bauerle [26], complex impedance spectroscopy has been 

largely used to characterise electrical response of ceramics [27]. In Figures 5 through 

to 7, Nyquist plots obtained for both doped sensors, at 30 and 40ºC, for the full tested 

RH range, are shown. Complex impedance data integrity validation was ensured by 

the Hewlett-Packard equipment, once it has inbuilt Kramer-Krönig transformations. 

As explained in the previous section, water molecules start to be adsorbed on the 

surface via a dissociative chemisorption process. Electrons are accumulated at the 
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sensor surface and consequently, the resistance of the sensing element decreases 

with RH increase. As water layers continue to be formed on the material surface, the 

activation energy decreases and ions start to participate in the conduction as carriers. 

With the increase of water layers pores start to get filled, and protons can then hop 

between adjacent water molecules via a Grotthuss chain reaction. 

The impedance spectra illuminate the different phenomena of electrical conduction 

and polarization that occur in these materials in the presence of water molecules. A 

semicircle is typical of a relaxation mechanism. In our case there are contributions of 

the interaction of water molecules with the grains and grain boundaries at the surface 

[6, 28]. A straight line is due to electrical diffusion. In our case, diffusion seems also 

to be present in the overall electrical, particularly for the  doped sensor, and more 

than one contribution can be assumed: one from the layer deposited on the surface, 

another from the water enclosed inside the pores, and one last one from the interface 

between the water and the electrodes.  

For both sensors, and at all the tested temperatures, the impedance area under the 

Nyquist plots decreases with the increase of RH.The described behaviour, observed 

in Figures 5, 6 and 7, and regarding the overall sensor impedance, which diminishes 

with RH increase, is confirmed by looking at Figure 8, where the modulus of the 

sensor A impedance, at 100 Hz and 1 kHz, for all the test temperatures and for the 

full RH range is represented, and at Figure 9, where the sensor B impedance 

modulus are compared for the full RH range, at the temperatures of 30, and 40ºC 

and at the frequencies of 1 kHz and 10 kHz. 

Also by looking at figures 5 through 7 two additional and relevant evidences must be 

pointed out: 1) as mentioned earlier, for sensor A a straight line seems to be present 

at the lower frequencies in the lower RH range, confirming the contribution of 

diffusion mechanisms to the overall electrical response of this sensor, see figures 5 

and 6; 2) for sensor B, a “switch” type behaviour seems to be dominant: in fact not 

only this sensor shows lower sensitivity to moisture, when compared with sensor A, 

in the lower RH range, as also an abrupt change of the overall sensor impedance is 

observed, when RH is raised from 30 to 35%. Besides, as RH is further increased 

above 35% sensor B impedance stays almost unchangeable.  

Authors, however, are not totally surprised with the evidences above described: as 

anticipated, and in accordance with the differences found in the sensors structure, 

the impedance spectra have very different shape and visible contributions. Moreover, 
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the reasons for the differences are, in the authors opinion, totally connected with the 

differences in the sensors structure: a larger number of capillary pores favour the 

moisture sensitivity, which is the case of sensor A, and not the case of sensor B, so, 

when only a small quantity of capillary pores is available, as soon as they are all filled 

with water, no longer the sensor electrical response, as is the case for sensor B, is 

affected by moisture concentration increment. Authors also believe that the sudden 

change in the overall impedance of this sensor which is observable when RH is 

raised from 30 to 35% might be connected to the a rapid change in diffusion 

contribution that takes place inside the pores that get filled with water: at the 

beginning, and for the smaller water coverage rations, a possible small contribution 

can be assumed, which suddenly and as the pores get entirely filled, seems to 

negligible. Besides, sensor B X-ray diffraction showed the presence of a  

phase after sintering, know to exhibit a greater chemical stability (not only in this 

compound the 2p-band is far below the Fermi energy, and consequently its 

contribution to conduction at low temperature seems negligible as in transition metal 

compounds the mobility of charge carriers is very low at low temperature due to the 

narrowness of the d-band [29]), which also contributes to the observed overall 

electrical response and reduced sensitivity to moisture changes, when compared with 

sensor A. 

Both sensors present sensitivity to humidity changes. The  doped sensor, in 

particular, exhibits sensitivity in the entire RH range: however, when compared with 

the undoped sensor (figure 1), the overall sensitivity is lower (only around one order 

of magnitude variation, while the undoped one, presented almost 3 orders of 

magnitude). By the contrary, the  doped sensor, sensor B, only exhibits some 

sensitivity in the lower humidity range, and even lower than the shown by sensor A: 

besides, it’s operation is more similar to a switch which threshold corresponds to the 

change between the lower and higher humidity range, and takes place around 30% 

RH. 

Nevertheless, and generally speaking, both sensors impedance decrease, when 

submitted to an RH increase from 10 up to 90%, which is typical of an n-type 

behaviour and, as the authors assume, due to a decrease of the band bending. The 

band bending is due to the already referred conduction modes: proton hopping, 

electronic and ionic diffusion and transport mechanisms and polarisation 

mechanisms. Nevertheless, and as assumed previously by the authors, sensors 
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electrical response to moisture are well differenced and in accordance with the 

variances documented for their respective structure, in direct relation with the dopant 

used. 
 

4.3. Electrical circuit model of the sensors 
AC equivalent circuits for humidity sensors, which represent the effect of moisture on 

the electrical conduction and polarization of the material, have been proposed by 

several authors [27, 31, 32]. In general, for a given data set, there exists more than 

one equivalent circuit which gives a reasonable fitting. The choice between these 

circuits has to be based both in simplicity and consistency with the known physical 

and chemical processes which take place in the system [26]. Typically, the different 

mechanisms contributing to a sensor overall electrical response to moisture, are 

accepted to be modelled by a serial association of a set of smaller circuits, each one 

representing a particular contribution/effect, see Figure 10. 

However authors believe that, since the different phenomena know to be present with 

our sensors, and consequently the diverse electrical conduction mechanisms 

contributing to the overall electrical response, arise from diverse locals of the sensor 

structure which take place simultaneously, i.e., in parallel, a different approach might 

be taken. So, instead of the traditional serial model circuit, a parallel one is being 

tested, see Figure 11. 

With this approach authors believe that a more suitable match between the physical 

and chemical reactions that take place at each instant, observable by looking at the 

electrical response of the sensor, which is the sum of several contributions, and the 

equivalent model circuit, is achieved. In fact, if some contribution for the overall 

electrical response of the sensor is not present for some humidity range, which would 

then be represented by an open circuit equivalence, in the case of the electrical 

model circuit where all contributions are serial connected, an open circuit situation 

would be created, originating an overall model circuit impedance of infinite value, 

which would be absolutely mean less and unreal. By the contrary, if the contributions 

are connected in parallel, the non-existence of a certain contribution will not create 

the same type of contradiction: in reality, an open circuit situation due to a non-

existent contribution for a certain RH range, does not create any ambiguous form of 

the equivalent model circuit, simply because it just not contributes as the remaining 

ones still due, due to the parallel connection. 
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All the obtained complex impedance plots were modelled by the equivalent circuit 

shown in Figure 11.  represents the geometrical capacitance (contribution of the 

bulk properties), the parallel // represents the bulky granular contribution and the 

parallel //  the grain boundary contribution for the overall sensor conduction 

process: let’s recall that for a general R//C circuit it’s impedance is given by 

222222// 11 RCw
RCwj

RCw
RZ CR +

−
+

= )  (1) 

Charge diffusion through the adsorbed water, enlarged by the contributions of 

capillary pores and other inhomogeneity’s, is represented by a Constant Phase 

Element, CPE, described by [33] 

( ( )2sin2cos1 ππ njnwAZ n
CPE −= −−   (2)

 
In fact in the filled pores, the mechanism is under diffusion control, as it is assumed 

that the kinetics of the charge transfer at the water surface layer-filled pores 

interfaces is much faster than the diffusion of +OH 3  ions inside the pores [33]. 

Surface roughness has also been considered as an important contributing factor [34]. 

Another diffusion contribution also takes place on the electrodes, when they become 

covered by water. 

For both above referred diffusion mechanisms, the interfacial character of their 

impedance makes it partly capacitive as well resistive in nature.  has to do with 

the contribution of the pores, due to diffusion phenomena taking place inside the 

water filled pores, and  is related to the electrodes-water layer interface 

diffusion phenomena that take place at that interface. Both of them contribute to the 

overall conduction changes observed in the sensors.  

However, for the case of the sensors doped with  the grain and grain boundary 

contributions seem to be the dominant conduction mechanisms: truly and by looking 

at the Nyquist plots, no straight line is apparently observable, which are typical of the 

diffusion mechanisms. That does not mean that they are not present at all, only that 

there contribution is not the dominant one. 

In Figures 12 and 13 are represented examples of obtained impedance spectra and 

their respective fit curves, for both sensors and diverse RH and working temperatures, 

T: the superposition between experimental and simulation curves is quite good, 

which confirm the usability and validity of chosen electrical circuit model under this 

new approach. 
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In tables 1 and 2 are the best fit parameters for the new proposed electrical 

equivalent circuit, corresponding to the experimental fitted Nyquist plots presented in 

figures 12 and 13, which were reached after several attempts. In those tables Ael and 

nel represent the two parameters of the impedance , while Apo and npo represent 

the two parameters of the impedance , both described using equation (2). In 

those fitted parameters, it can also be observed the differences between the sensors 

electrical response contributions that are present, according to the author’s opinion. 

In fact for sensor A, parameters reflect the contribution of not only the grains and 

grain boundaries, as also the ones originated by diffusion in the pores that get filled 

with water and by diffusion on the electrodes interfaces that get covered by water: the 

overall of the last two referred contributions, both decrease with RH increase, 

reflecting the observation previously reported by the authors, in which and at low RH, 

in the Nyquist plots for this sensor a straight line was visible, while for higher RH 

humidity’s they become less relevant to the overall sensor electrical response, once it 

is no longer visible in the plots. 

By the contrary for sensor B, no evident diffusion contributions seem to be present, 

since no straight line is visible in the Nyquist plots: and once again the parameters 

reflect that, since the diffusion contribution due to the pores that get filled with water 

is very low, when compared with the observed for sensor A, while the diffusion 

contribution from the electrodes interface that get covered with water is almost 

unchangeable. Authors however are aware that further simulation work as still to be 

done with other sensors and respective Nyquist plots before making general use of 

this type of model circuit. 

 

5. Conclusions 
The composites sensors, with 48.92/51.08 respective volume percentages, 

doped with  (sensor A) and with  (sensor B) were prepared by a classical 

route, at a sintering temperature of 700ºC. The obtained experimental results confirm 

that doping is a way of changing materials overall electrical response The complex 

impedance was measured at different RHs, in the range of 5% - 90%. Both sensors 

exhibit sensitivity to RH, particularly sensor A, however lower than the previously 

reported for the undoped sensor: a different dopant proportion might present 

enhanced sensitivity. By the contrary, sensor B, presents only RH sensitivity in the 

lower RH range: besides is behaviour is more similar to a switch, when alternating 
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humidity operation interval between low and high range. Diverse transport 

mechanisms, such as electron conduction, ion diffusion and proton hopping, 

contribute to the sensors electrical response to RH. A non-traditional equivalent 

electrical circuit, modelling the sensors response to RH, is presented which allows to 

better understand the diverse charge transport mechanisms and their relation with 

sensors morphology. 
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Table 1 – fit parameters for presented Nyquist plots of sensor A 

RH(%) / T(ºC) R1 (Ω) C1 (F) R2 (Ω) C2 (F) Cgeo (F) Ael (Ω-1) nel Apo (Ω-1) npo 

80 / 30 4.49E+5 1.10E-10 5.15E+5 4.84E-12 5.18E-13 1.24E-9 9.74E-1 2.46E-8 3.95E-1

30 / 30 2.22E+6 2.82E-12 1.00E+6 2.78E-11 4.52E-12 2.78E-8 3.23E-1 1.99E-9 1 

20 / 40 3.00E+6 9.79E-12 8.00E+5 2.83E-12 3.17E-12 3.28E-7 8.79E-3 2.57E-11 1 

 

 
Table 2 – fit parameters for presented Nyquist plots of sensor B 

RH(%) / T(ºC) R1 (Ω) C1 (F) R2 (Ω) C2 (F) Cgeo (F) Ael (Ω-1) nel Apo (Ω-1) npo 

80 / 30 1.48E+4 1.11E-11 1.24E+3 6.22E-11 3.92E-12 3.52E-9 5.96E-1 5.53E-5 9.04E-3

30 / 30 1.41E+3 2.60E-12 3.13E+4 6.79E-12 1.18E-12 1.41E-9 6.64E-1 1.50E-5 1.19E-1

20 / 40 1.63E+3 2.08E-9 2.91E+4 1.09E-12 1.09E-12 3.33E-10 7.89E-1 1.39E-4 7.13E-1
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Figure 1 - Humidity electrical response of an Ti/W composite oxide bulk sensor at 

25ºC (48.92 and 51.08% (w/w) of Ti and of W atoms): i) and ii) Nyquist plot (red, 

green, dark blue, orange, rose, brown light blue, stand for 15, 32, 36, 43, 66, 92 and 

100% RH); iii) and iv) Impedance modulus at 100Hz and 1kHz, respectively (adapted 

from [6]). 

 

Figure 2 - X- ray diffraction patterns of sensors: i) sensor A (TiO2-WO3 doped with 

ZnO); ii) sensor B (TiO2-WO3 doped with CuO). 

 

Figure 3 - Log differential intrusion as a function of pore diameter: for both sensors A 

and B (sensor A – blue. Sensor B - brown): i) micro pores range; ii ) nano pores 

range. 

 

Figure 4 - SEM microscopies: i) ZnO doped sensor; ii) CuO doped sensor. 

 

Figure 5 - Nyquist plot for sensor A at 30ºC, in the lower and higher humidity range, i) 

and ii) respectively (dark blue, black, orange, dark green, brown, rose, purple, grey, 

red, and light blue, and light green stand for 10, 20, 30, 40, 50, 60, 70, 80 and 90% 

RH, in turn). 

 

Figure 6 - Nyquist plot for sensor A at 40ºC, in the lower and higher humidity range, i) 

and ii) respectively (dark blue, black, orange, dark green, brown, rose, purple, grey, 

red, and light blue, and light green stand for 10, 20, 30, 40, 50, 60, 70, 80 and 90% 

RH, in turn).  
 

Figure 7 - Nyquist plot for sensor b at 30 and 40ºC, i) and ii) respectively (dark blue, 

black, orange, dark green, brown, rose, purple, grey, red and light blue, stand for 5, 

15, 25, 30, 35, 40, 50, 70, 80 and 90% RH, in turn). 

 

Figure 8 - Impedance change with RH, at 100 and 1 kHz, for sensor A, i) and ii), 

respectively, for all test temperatures (red 30ºC and blue 40ºC). 

 

Figure 9 - Impedance change with RH, at 100 and 1 kHz, for sensor B, i) and ii), 

respectively, for all test temperatures (red 30ºC and blue 40ºC). 



Page 19 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

21 
 

 

Figure 10 - Typical approach for modelling sensors electrical response to gases 

using model circuits (adapted from [30])  
 

Figure 11 - Current equivalent circuit for the sensors. 

 

Figure 12 - Nyquist plots and best fitting for Sensor A, at 30ºC and 80% RH, at 30ºC 

and 30% RH and at 40ºC and 20% RH respectively i), ii), and iii) (red obtained 

spectra, blue fitted spectra). 

 

Figure 13 - Nyquist plots and best fitting for Sensor B, at 30ºC and 80% RH, at 30ºC 

and 30% RH and  at 40ºC and 20% RH respectively i), ii), and iii) (red obtained 

spectra, blue fitted spectra). 
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Figure 1 - Humidity electrical response of an Ti/W composite oxide bulk sensor at 

25ºC (48.92 and 51.08% (w/w) of Ti and of W atoms): i) and ii) Nyquist plot (red, 

green, dark blue, orange, rose, brown light blue, stand for 15, 32, 36, 43, 66, 92 and 

100% RH); iii) and iv) Impedance modulus at 100Hz and 1kHz, respectively (adapted 

from [6]). 
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Figure 2 - X- ray diffraction patterns of sensors: i) sensor A (TiO2-WO3 doped with 

ZnO); ii) sensor B (TiO2-WO3 doped with CuO). 
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Figure 3 - Log differential intrusion as a function of pore diameter: for both sensors A 

and B (sensor A – blue. Sensor B - brown): i) micro pores range; ii ) nano pores 

range. 
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Figure 4 - SEM microscopies: i) ZnO doped sensor; ii) CuO doped sensor. 
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Figure 5 - Nyquist plot for sensor A at 30ºC, in the lower and higher humidity range, i) 

and ii) respectively (dark blue, black, orange, dark green, brown, rose, purple, grey, 

red, and light blue, and light green stand for 10, 20, 30, 40, 50, 60, 70, 80 and 90% 

RH, in turn). 
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Figure 6 - Nyquist plot for sensor A at 40ºC, in the lower and higher humidity range, i) 

and ii) respectively (dark blue, black, orange, dark green, brown, rose, purple, grey, 

red, and light blue, and light green stand for 10, 20, 30, 40, 50, 60, 70, 80 and 90% 

RH, in turn).  
 

 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

0.0E+00 2.0E+06 4.0E+06 6.0E+06

‐Im
 (O

hm
)

Re (Ohm)

 

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

0.0E+00 1.0E+06 2.0E+06

‐I
m
 (O

hm
)

Re (Ohm)

 

 

 

 

 

 

 

 

 

 

i) 

ii)



Page 26 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

28 
 

Figure 7 - Nyquist plot for sensor b at 30 and 40ºC, i) and ii) respectively (dark blue, 

black, orange, dark green, brown, rose, purple, grey, red and light blue, stand for 5, 

15, 25, 30, 35, 40, 50, 70, 80 and 90% RH, in turn). 
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Figure 8 - Impedance change with RH, at 100 and 1 kHz, for sensor A, i) and ii), 

respectively, for all test temperatures (red 30ºC and blue 40ºC). 
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Figure 9 - Impedance change with RH, at 100 and 1 kHz, for sensor B, i) and ii), 

respectively, for all test temperatures (red 30ºC and blue 40ºC). 
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Figure 10 - Typical approach for modelling sensors electrical response to gases 

using model circuits (adapted from [30])  
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Figure 11 - Current equivalent circuit for the sensors. 
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Figure 12 - Nyquist plots and best fitting for Sensor A, at 30ºC and 80% RH, at 30ºC 

and 30% RH and at 40ºC and 20% RH respectively i), ii), and iii) (red obtained 

spectra, blue fitted spectra).  
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Figure 13 - Nyquist plots and best fitting for Sensor B, at 30ºC and 80% RH, at 30ºC 

and 30% RH and  at 40ºC and 20% RH respectively i), ii), and iii) (red obtained 

spectra, blue fitted spectra). 
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Abstract 
For impedance type sensors based on semiconducting metal oxides, the overall 

conduction mechanisms strongly influence the magnitude and the direction of the 

sensor signal variation. For humidity in particular, the electronic/ionic charge transfer 

reactions that take place at the semiconductor surface can be used to monitor and 

control it. Along recent years, various mechanisms have been proposed to explain 

the variations of electrical response to humidity. With the study of composite 

materials we expect to obtain a better sensitivity of these sensors, when compared 

with the ones made out of only one metal oxide. This could be due to the fact that 

some of the positions initially occupied by the atoms of one of the metals are now 

occupied by atoms of the other metal: if a single covalent/ionic adsorption is decisive 

in the observed changes in the materials conductivity, then the electronegativity of 

the occupying metal atoms may be used to regulate the sensitivity. In this paper, 

ܱܶ݅ଶ: ܹܱଷ composite oxide bulk sensors, using 48.92 and 51.08% (w/w) of Titanium 

and of Tungsten atoms respectively, doped with the same proportions of Cooper and 

Zinc oxides (7%), were prepared by a conventional sintering method, and their 

dependence of their complex impedance spectra, measured in the range 100 Hz - 10 

MHz, on the relative humidity (RH), operating temperature and on the measuring 

frequency is shown and explained.  
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HIGHLIGHTS 
 

• Composite  were doped with  or  and fabricated via a 

traditional forming and sintering process. 

• The sensors structure was characterised using several techniques. 

• The sensors electrical response to moisture was characterised by 

impedance spectroscopy. 

• The sensors response was explained using the diverse electrical 

phenomena know to be present and the observed structure. 

• We report a non-traditional approach to electrical circuit modelling of 

sensors overall response to moisture. 

 

 

 

 




