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Abstract 

   Tools have been used under very high temperature in recent decades. Therefore, coatings on 

tools are required to be thermally stable and excellent in oxidation-resistance. The introduction of 

Al into nitride coatings was considered as an effective way to improve the coating 

oxidation-resistance and thermal stability. Quaternary Zr-Cr-Al-N coatings were deposited with 

increasing Al contents by d.c. reactive magnetron sputtering. The coatings were annealed at 800 

and 900 
o
C for 1h in Ar + H2 atmosphere and exposed at 700 

o
C for 2h and 1200 

o
C for 1h in air, 

respectively. The hardness, Young’s modulus, adhesive/cohesive strength and residual stress of 

as-deposited and annealed coatings were characterized by nanoindentation, scratch test and 

curvature measurement method. The results showed that the coating hardness and Young’s 
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modulus increased after post-annealing at 800 
o
C or 900 

o
C; the adhesive/cohesive strength 

decreased after annealing due to the substrate softening. The residual stress decreased after 

annealing and the lowest stress status depended on the crystallinity degree of the coating. XRD 

patterns showed mainly Cr2O3 formed in the Al-free, and a mixture of oxides of ZrO2 and Al2O3 in 

the high Al coatings after 1200 
o
C/1h oxidation. N is still detected in the coatings, which indicates 

that the coatings are not fully oxidized being exposed to 700 
o
C for 2h. 

Keywords: Zr-Cr-Al-N coatings; Mechanical properties; Thermal annealing; Oxidation; 

Microstructures 

 

1. Introduction 

In recent decades, Cr-N coatings have been widely investigated for cutting tools due to their 

excellent wear-resistance, anti-corrosion, and strong adhesion to the metallic substrates [1]. The 

optimization of the hardness of binary Cr-N coatings, by grain size refinement and/or residual 

stress effect, has not been high enough and, therefore, a third element has been often incorporated 

into the single nitride for achieving harder coatings [2]. Cr-Zr-N ternary coatings exhibit higher 

hardness compared to Cr-N ones due to a strong solid solution hardening promoted by the larger 

atomic radius of Zr in relation to Cr [3]. However, their lower onset oxidation temperature is a 

matter of worrying [4]. Kim et al. found that Cr-Zr-N coatings began to oxidize at 500 
o
C in air 

and their oxidation resistance further degraded with increasing Zr content [5]. 

Such a low onset oxidation temperature cannot fully satisfy the requirements of modern cutting 

tools. For high temperature coatings, Al plays an important role in the coating oxidation 

performance [6] being the oxidation resistance of the hard films strongly influenced by Al content 

[7~9]. It is reported that the onset oxidation temperature raised from 500 
o
C up to ~800 

o
C with 
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the addition of Al into CrN coatings [7]. On another study, the same value of 800 
o
C was observed 

in high Al Zr-Al-N coating [8]. Till now, there are only a few studies about effects of Al on the 

mechanical properties of quaternary Zr-Cr-Al-N coatings [10]. In a previous publication, we 

reported that a columnar structure was typical in Zr-Cr-Al-N coatings [10]. The hardness, Young’s 

modulus, toughness and adhesive/cohesive strength of the coatings strongly depended on the Al 

content. Moreover, the coating mechanical properties were degraded for high Al contents. 

Nevertheless, the high temperature properties, including thermal stability and oxidation resistance, 

of Zr-Cr-Al-N coatings have not yet been studied requiring further investigation. 

In this work, Zr-Cr-Al-N coatings with increasing Al contents were deposited by d.c. reactive 

magnetron sputtering. Thermal annealing tests in protective atmosphere and thermal exposure in 

air were performed. The influence of Al content on the structure, microstructure and mechanical 

properties of the as-deposited and annealed coatings was analyzed. Furthermore, the oxidation 

resistance of the coatings was evaluated. 

2. Experimental Details 

Quaternary Zr-Cr-Al-N coatings were deposited in a d.c. reactive magnetron sputtering system 

working in unbalanced mode. Pure Al, Cr and Zr targets (380 mm x 175 mm) were used; Al target 

was opposite to Zr target. The detailed configuration of the deposition system can be found 

elsewhere [10]. Different substrate materials were used for different measurement purposes: 

polished 100Cr6 steel coupons (25 mm in diameter) for mechanical properties measurement, 

stainless steel discs (25 mm in diameter and 0.5 mm in thickness) for residual stress analysis, 

polycrystalline alumina slices (dimensions 12 x 10 x 0.5 mm) for high temperature oxidation test 

and (111) silicon wafers for chemical composition and thickness evaluation.  
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After being ultrasonically cleaned in acetone for 15 minutes and alcohol for 15 min, the 

substrates were mounted in a substrate holder, which revolved around the center axis during 

deposition. Before deposition, the chamber was evacuated to less than 2 x 10
-4

 Pa and, then, Ar+ 

ion sputter-etching was used to remove any surface contaminants under a bias voltage of - 400 V 

for 20 min. For enhancing the interfacial adhesion of the subsequently deposited nitrided coating, 

a Cr adhesive interlayer, about 200 nm in thickness, was first deposited. The Zr-Cr-Al-N coatings 

were deposited in a mixed gas flow of 35 sccm Ar and 48 sccm N2, under - 70 V substrate bias 

voltage for 180 min, with fixed power densities for Cr and Zr target set as 2.3 and 6.0 W/cm
2 

respectively. Al target power densities were 0, 0.8, 1.5, 2.3 or 3.0 W/cm
2
. After deposition, thermal 

annealing tests were conducted on the coating samples at 800 and 900 
o
C for 1 h in Ar + H2 

atmosphere. Thermogravimetric analysis was performed by exposing the samples to industrial air 

(99.995% purity) in a thermogravimetric analysis equipment (Setsys evolution 1750) where the 

temperature was increased from room temperature up to 1200 
o
C with a heating rate of 10 ºC/min 

and then holding the samples at 1200 
o
C for 1 hour. High temperature oxidation-resistance tests 

were carried out at 700 
o
C for 2h by putting the coating samples in alumina crucible in the tube 

furnace. 

The chemical composition of the coating was determined by energy dispersive X-ray (EDX) 

analysis. The thickness was obtained by profilometry. The phase structure was determined by 

X-ray diffraction (XRD) with Co Kα radiation (λ = 0.178897 nm) in grazing mode (2°). The 

surface morphology of the samples was observed in a Carl Zeiss Optical Microscope (OM) and a 

scanning electron microscope (SEM), respectively. Transmission electron microscopy (TEM) 

experiments were carried out on a microscope JEOL-2200FS working at 200 KV. The 
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cross-section of the coating samples was prepared by tripod thinning method followed by precise 

ion milling technique. 

The hardness (H) and Young’s modulus (E) of the coatings, before and after thermal annealing, 

were measured by the Oliver and Pharr method [11]. The measurements were performed using a 

nanoindenter (Micro Materials NanoTest) with a diamond Berkovich tip at 10 mN applied load. 

The indentation depth was always less than 10% of the coating thickness [10]. For each sample, 

12 measurements were performed. The adhesion/cohesion of the as-deposited and annealed 

samples was evaluated by scratch testing. The load was increased linearly from 0 N to ~70 N 

using a Rockwell C indenter with a 200 µm tip radius, a loading speed of 100 N/min and a scratch 

speed of 10 mm/min. The different failure modes were analyzed from the scratch tracks by optical 

microscopy. 

The residual stresses in the as-deposited and annealed coatings were determined by Stoney’s 

equation [12], being the curvature radii measured with an SP4 surface topography analyzer. 

During the measurement, only the central part of the sample was considered (17.5 mm length). In 

each sample, the curvature radii of horizontal and vertical directions were measured respectively 

and, in both directions, two profile scans were taken at two parallel lines separated by ~1 mm. The 

curvature radius value was averaged from these 4 measurements on the same sample. The detailed 

measurement process can be found in reference [13]. 

3. Results and discussion 

3.1 Coating characterization 

Table 1 shows the chemical composition and thickness of the coatings deposited with an 

increasing Al target power density. For simplicity, a designated name for each coating from its 
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chemical composition is given. From the chemical composition, it is clearly seen that Al content 

increases whereas Cr and N decrease with increasing Al target power density. The coating 

thickness is lower in the Al-free and ZrCrAl3N coatings, then experiences a sudden increase when 

Al content is raised to 6 at.%
 
or more, which is a result of the improvement of sputtering rate as 

the target working mode changes from “compound” to “metallic” [10]. As a consequence of the 

increase in the amount of sputtered target metallic atoms lower N content is reacted and the 

N/(Al+Zr+Cr) ratio decreased in the coating. 

A typical columnar structure is observed in the ZrCrAl3N coating from the bright field (BF) 

TEM cross-section images, as enhanced by the dot lines marked in Fig.1 (a). The SAD patterns 

revealed the diffraction planes from a single cubic phase. The diffraction rings can be assigned to 

(111), (200) and (220) planes corresponding to Cr(Zr,Al)N phase. From the high-resolution TEM 

(HRTEM) image in Fig.1 (b), a polycrystalline structure is shown for the coating. The Moiré 

fringes were caused by overlapping of sub-grains. The Fast Fourier Transformation (FFT) pattern 

in attached B demonstrates the single-crystal characteristics of the selected zone. The measured d 

spacing of the lattice fringes is 0.218nm, which is in between 0.207 nm of CrN (200) plane 

(JCPDS 11-0065) and 0.229 nm of ZrN (200) plane (JCPDS 35-0753). 

The XRD results of the as-deposited and annealed coatings are shown in Fig.2. For the Al-free 

coating and low Al coatings (ZrCrAl3N and ZrCrAl6N), in both deposited and 800
 o

C annealed 

states, fcc B1 (NaCl type) phases were detected, whose diffraction peaks are located in between 

the positions of CrN and ZrN phases (Fig. 2(a, b)). This is consistent with the TEM results. After 

800
 o
C annealing, the low crystalline structure was kept in the ZrCrAl22N coating, and ZrN phase 

was detected in the ZrCrAl27N coating. For 900 
o
C annealed samples, the precipitation of Cr 
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became apparent in the high Al coatings (ZrCrAl22N and ZrCrAl27N). The higher affinity of Zr 

for N than that of Cr [14] is in the origin of the precipitation of metallic Cr as a single phase. In 

fact, as the N content in these coatings is very low it will be combined preferentially with Zr. The 

excess of metallic elements in relation to the N available will favor the formation of metallic 

phases during the structural re-arrangement promoted by the thermal annealing. On the other hand, 

the cubic structure was retained in low Al coatings (Fig. 2 (c)). No wurtzite AlN phase was 

detected in the annealed coatings, which has been often reported to precipitate during thermal 

annealing in high Al content nitride coatings [1, 15]. Careful observation reveals that the shift of 

diffraction peaks is different between low and high Al coatings after thermal annealing. For 

instance, (111) peak central position is 41.26 
o
 and 40.34

 o
 for as-deposited ZrCrAl6N and 

ZrCrAl22N coatings, respectively, being shifted to 42.63
 o
 and 39.79

 o
, respectively, after 900 

o
C 

annealing. Therefore, peaks of annealed low Al coatings shifted to higher angles whereas those of 

high Al coatings shifted to lower angles close to the standard position of ZrN phase. In first case, 

the liberation of impurities entrapped in the crystal structure, including Ar, gives rise to a decrease 

of the lattice parameter. In the second case, the Cr precipitation from the fcc nitride structure 

leaves a more favorable ratio between Zr and N which, aided by the higher size of Zr atom in 

relation to Cr one, leads to higher interplanar distances after thermal annealing.  

The presence of Zr oxides in some of the spectra after thermal annealing is due to the 

contamination by residual oxygen in the annealing atmosphere. As XRD was performed in 

glancing mode, the presence of thin oxide layers is enhanced. 

The surface morphology of the annealed coatings was observed by optical microscope (not 

shown). After thermal annealing at 800 
o
C, the coating surface is rather smooth . However, when 
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annealing temperature was raised to 900 
o
C, wrinkling patterns could be found in ZrCrAl3N 

coating. EDS analysis showed that a little lower N content 42 at.% was detected in this annealed 

coating than in the as-deposited state. N content was also decreased to 38 at.% and 12 at.% in 

ZrCrN and ZrCrAl22N coatings respectively after 900 
o
C annealing . 

3.2 Mechanical properties 

The data of hardness, residual stress and Young’s modulus as a function of the Al content, as 

well as their change after thermal annealing, are presented in Fig.3 (a, b, c). In order to evaluate 

the ability of the coating to resist cracking [16], H
3
/E*

2
 ratio is calculated (H is the hardness, E* = 

E / (1-v
2
) is the effective Young’s modulus with Poisson’s rate, v = 0.25) and the results are shown 

in Fig. 3 (d). 

From Fig. 3(a), the hardness first increases and then decreases with the Al content in the 

coatings. Such a trend is related to the coating microstructural evolution, grain size refinement and 

solid solution effect [10]. Interestingly, a significant hardness enhancement is found in the 800 
o
C 

annealed coatings with low Al content, as compared to the as-deposited state, followed by a small 

decrease at 900 ºC. It is often reported that the hardness increases in Ti-Al-N coatings after 

thermal annealing, due to the formation of coherent cubic domains, while phase segregation and 

stabilization of TiN and w-AlN occurs from the metastable single phase, which induce hardness 

decrease after further thermal treatment at higher temperatures [17]. In present system, the 

existence of a metastable cubic single-phase in the 800
 o
C annealed coatings was proved by XRD 

(Fig. 2).  In other words, the decomposition did not take place (spinodal decomposition is not 

observed for CrAlN system [18]. However, if we consider atomic radii of Zr and Cr, it is possible 

that cubic ZrN phase precipitates at higher temperature; in such case the signature in XRD spectra 
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would be negligible. Small decrease in hardness when the annealing temperature was increased to 

900 
o
C is not a result of the formation of wurtzite phase, since XRD spectra at both temperatures 

are almost identical. The presence of surface oxides is considered the main cause of such hardness 

decrease [19], although the impact of defects annihilation on the age hardening effect should not 

also be ignored. 

The dependence of residual stress on the Al content and the thermal annealing temperature is 

shown in Fig. 3(b). As Al content increases, the residual stress in the as-deposited coatings first 

decreases, and then a little increase takes place when Al content is above 22 at.%. The variation of 

residual stress with the Al content is not only the result from the difference in coefficient of 

thermal expansion (CTE) between the coating and the substrate (αCrN=2.3 x 10 
-6

 K
-1

, αZrN=7.2 x 

10 
-6

 K
-1

, and αsteel ~12 x 10 
-6

 K
-1

[20]), but also from the different microstructural characterization. 

It is believed that a less compact columnar structure is beneficial to the stress relaxation for the 

high Al coatings. After thermal annealing, the residual stress experiences a significant decrease as 

compared to the as-deposited state. However, there is little detectable difference in the coating 

residual stress from the annealing temperature at 800 
o
C or 900 

o
C. It is known that thermal 

annealing is an effective way to relax the residual stress. During thermal annealing, diffusion of 

atoms is activated and then a rearrangement of atoms is induced. When thermal annealing is 

carried out on enough time, the atoms go into equilibrium state and defects are gradually 

annihilated, which remarkably decreases the internal stress in the coatings. Otherwise, the 

precipitation of solid solution can also reduce the dilatation of crystalline structure and thus to 

relax the coating stress. Due to low ratio of coating/substrate thicknesses in the present coating 

system [21], the effect of the coating thickness on residual stress is negligible. 
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The variation of Young’s modulus with the Al content in the annealed coatings mostly follows 

the hardness variation (Fig. 3(c)), whereas two different points are present: first one is a marked 

decrease in the Young’s modulus of the annealed Al-free coating compared to the as-deposited 

state, which should be the result from the formation of oxides during thermal annealing. The 

presence of surface oxides would impair the coating elasticity. Secondly, a higher Young’s 

modulus is found in the 800 
o
C annealed high Al coatings than that of 900 

o
C annealing. From the 

observation of a very pronounced columnar structure with large column size in the high Al 

coatings [10], it is not impossible that thermal annealing treatment has densified the coating and 

therefore enhanced the Young’s modulus. Herein, the effect of microstructural compactness on the 

modulus is stronger than that of surface oxides, and thus a higher modulus is detected in the 900 

o
C annealed high Al coatings. 

From Fig. 3 (d), it is clear that the annealed coating exhibits an increase in the H
3
/E*

2
 ratio as 

compared to the as-deposited one, indicating the improvement in the resistant of the coating to 

cracking or in the coating toughness after thermal annealing, which is commonly found in the 

annealed bulk metallic materials. In this work, the enhancement of H
3
/E*

2
 ratio is related to the 

coating microstructural compactness, hardness increase and stress relaxation after thermal 

annealing.  

Figure 4 shows the scratch tracks of the as-deposited and annealed coatings after scratching test. 

In the as-deposited state, Al-free coating, shows edge cracking at a load of 36 N being the 

substrate material exposed at 58 N (Fig. 4(a)). After 900 
o
C annealing, large area chipping takes 

place at only 20 N with full exposure of the substrate (Fig. 4(b)). A much better scratch test 

behavior was found when small amounts of Al are added to the coating. In the as-deposited 
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ZrCrAl3N coating, cohesive failures are not pronounced, with appearance of conformal cracking 

at 42 N (Fig. 4(c)) followed by edge cracking for higher loads. No adhesive failures were observed 

up to the maximum test load. After annealing at 800 ºC similar behavior could be registered, i.e. 

no adhesive failures and cohesive cracking starts to occur sporadically at load as low as 30 N (Fig. 

4(d)). Full exposure of the substrate can only be detected for 64 N in the 900 
o
C annealed coating 

(Fig. 4(e)). In high Al content coatings, large area chipping is found at 48 N (Fig. 4(f)) in the 

as-deposited state, which is detected for much lower loads (16 N) in the annealed samples (Fig. 

4(g)). The global worse critical loads behavior of annealed samples compared to as-deposited ones 

should be attributed to the softening of the substrate during thermal annealing. Considering the 

same applied load during the scratch testing, the plastic deformation of the substrate should be 

much higher in the annealed samples due to their lower yield strength. The coating will be 

submitted to a higher strain increasing the cracking probability. Therefore, for similar coating 

properties cracking and coating delamination should occur for lower applied loads, i.e. those 

leading to applied strain to the coatings similar to those in the as-deposited state for which those 

failures occur. Lin et al. reported similar results having observed that the same coating on soft 

steel substrate exhibited a lower critical load for coating failure than that on a hard one [22].  

Finally it should be remarked that, taking into account the above results for the H
3
/E*

2
 parameter, 

annealed coatings should exhibit increased toughness which would improve the coating 

adhesive/cohesive strength, factor which could compensate the referred effect of substrate 

softening.  

3.3 Onset oxidation behavior 

Figure 5 shows the TGA results of the coatings with different Al contents exposed to air till 
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1200 
o
C. All coatings start oxidization at about 600

 o
C, indicating that the addition of Cr can 

improve the oxidation resistance as compared to the binary ZrN coating, which exhibits an 

oxidation onset at ~500 
o
C [23, 24]. No significant differences are observed among the 3 studied 

coatings although the oxidation curve seems to be slightly steeper for the coatings with Al content. 

Al-free coating shows mass stabilization at a temperature close to 800 ºC, suggesting that the 

coatings was mostly consumed and Al2O3 substrate is completely inert. The weight gain in 

ZrCrAl22N coating was much higher than for the other two coatings which can be understood 

either by its much higher thickness (~ 4x higher) or its lower N content. During oxidation, N is 

liberated to atmosphere acting inversely in the weight gain, trend which should have less 

importance in this coating having lower N content. Unexpectedly, a marked loss in the mass gain 

is observed in this coating at ~1100 
o
C, which can be an outcome of the spallation of the surface 

oxides. Following to this zone, stabilization of the weight gain is observed, again suggesting the 

complete degradation of the coating. In Cr-N and Cr-Al-N coatings the onset oxidation 

temperature is close to 800
 o
C [7], while the temperature decreases to 600

 o
C for Zr-Cr-N coatings 

deposited with different Zr/Cr ratio [4]. This was also observed in the present work with the onset 

of oxidation at 600 ºC, even in the coatings with Al addition. Only for very high Al contents when 

an Al-rich nitride phase was preferentially formed [8], Zr-Al-N films can show an improved 

oxidation resistance (onset at 800 ºC). The oxidation products of the coatings after thermal 

exposure at 1200 
o
C were characterized by XRD and were observed by SEM, as shown in Fig.6. 

In Al-free and low Al coatings, mainly Cr2O3 and ZrO2 was formed (Fig. 6(a)). The surface is 

rather rough with defects, such as holes and cracks (Fig. 6(b)). The cross-sectional BSE images 

show that the two coatings are fully oxidized (Fig. 6(c-e)). The m-ZrO2 (monoclinic) phase 
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became dominating and no Cr2O3 was detected any more in the XRD results (Fig. 6(a)). The 

m-ZrO2 phase should be transformed to tetragonal structure at the temperature above ~1100 
o
C [24, 

25] and reverse transformation during cooling down. However, the coexistence of m- and t-ZrO2 

was still found after 1200 
o
C annealing. Franz et al [8] showed that the presence of Al can 

influence the m-to-t phase transformation, which can explain the higher relative amount of t-phase 

in the coating with the highest Al content. 

Obviously the coatings are less protective when the exposure temperature is higher than 

800~900
 o

C. The coating samples with Al addition were exposed to air at 700
 o

C for 2h to 

investigate the oxidation resistance. Although surface oxidation was evident, EDS analysis 

indicated that N could be still detected in the coatings; N content was about 11 at.% and 14 at.% 

for the ZrCrAl3N and ZrCrAl22N coatings, respectively. Thus, the coatings were not fully 

oxidized at 700
 o
C.  

4. Conclusion 

Quaternary Zr-Cr-Al-N coatings with the different Al contents were deposited by d.c. reactive 

magnetron sputtering. The coatings exhibited a columnar microstructure. The as-deposited Al-free 

and low Al coatings had an fcc NaCl-type B1 structure and the structure was still retained in the 

annealed states. The low crystalline degree in the high Al coatings were improved after 900 
o
C 

thermal annealing, and slight oxidization was detected in the Al-free and high Al coatings. 

The enhancement of hardness, Young’s modulus and H
3
/E*

2
 ratio, and the relaxation of residual 

stress were found in the annealed Al-contained coatings. The adhesive/cohesion strength was 

reduced in the Al-free and high Al coatings after thermal annealing. The combined effects of 

microstructural evolution, phase separation, oxides formation and substrate softening, etc were 
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responsible for the change of mechanical properties of the annealed coating systems. 

The onset oxidation temperature was about 600 
o
C, which was strongly determined by the 

oxidation of Zr-rich nitride phase. With the increase of Al content in the coatings, the main 

oxidation products changed from Cr2O3 to ZrO2 during exposure to 1200 
o
C. Oxides particles are 

formed and rather high N contents (~11 at.%) are still present in the coatings after being oxidized 

at 700
 o
C for 2h. The coatings are protective under such a temperature. 
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Figure captions  

Fig.1 Cross-section BF-TEM (a) and typical HRTEM image (b) of the as-deposited 

ZrCrAl3N coating. The corresponding SAD patterns are inserted in (a). The FFT 

spectra and IFFT image of the selected zone in (b) are attached in B and C, 

respectively. 

Fig.2 XRD patterns of the coatings as-deposited (a), annealed at 800 
o
C (b) and 900 

o
C (c). 

Fig.3. Hardness (a), residual stress (b), Young’s modulus (c) and H
3
/E*

2
 (d) of the 

as-deposited and annealed coatings. 

Fig.4. Typical track morphologies of the ZrCrN (a, b), ZrCrAl3N (c, d, e) and 

ZrCrAl27N (f, g) coatings before and after annealing. 

Fig.5. TGA curves of the ZrCrN, ZrCrAl3N and ZrCrAl22N coatings exposed to air 

from room temperature to 1200 
o
C. 

Fig.6. XRD patterns (a) and SEM images of the ZrCrN (b, c), ZrCrAl3N (d) and 

ZrCrAl22N (e) coatings exposed to air at 1200 
o
C for 1h. 
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Fig.1 Cross-section BF-TEM (a) and typical HRTEM image (b) of the as-deposited 

ZrCrAl3N coating. The corresponding SAD patterns are inserted in (a). The FFT 

spectra and IFFT image of the selected zone in (b) are attached in B and C, 

respectively. 
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Fig.2 XRD patterns of the coatings as-deposited (a), annealed at 800 
o
C (b) and 900 

o
C (c). 
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Fig.3. Hardness (a), residual stress (b), Young’s modulus (c) and H
3
/E*

2
 (d) of the 

as-deposited and annealed coatings. 
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Fig.4. Typical track morphologies of the ZrCrN (a, b), ZrCrAl3N (c, d, e) and 

ZrCrAl27N (f, g) coatings before and after annealing. 

 

58N 36N a 

200 μm 
As-deposited 

20N  
43N  

b 

200 μm 
900 

o
C annealed 

200 μm 

42N 53N c 

As-deposited 

40N 
d 

200 μm 800 
o
C annealed  

64N 57N 42N e 

200 μm 900 
o
C annealed 

 

f 

200 μm 

48N 21N 

As-deposited 

42N  
16N  g 

200 μm 
900 

o
C annealed 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. TGA curves of the ZrCrN, ZrCrAl3N and ZrCrAl22N coatings exposed to air 

from room temperature to 1200 
o
C.  
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Fig.6. XRD patterns (a) and SEM images of the ZrCrN (b, c), ZrCrAl3N (d) and 

ZrCrAl22N (e) coatings exposed to air at 1200 
o
C for 1h. 
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Table 1 Chemical composition (by EDX), thickness and designated name of the coatings 

deposited at different Al target power densities (Cr target was set as 2.3 W/cm
2
, Zr target as 

6.0 W/cm
2
) 

 

Al Target Power 

Density (W/cm
2 
) 

Chemical composition (at.%)* Designated name Thickness (µm) 

Zr Cr Al N 

0 

0.8 

1.5 

2.3 

3.0 

25 

24 

23 

27 

25 

25 

25 

23 

19 

18 

0 

3 

6 

22 

27 

50 

48 

48 

32 

30 

ZrCrN 

ZrCrAl3N 

ZrCrAl6N 

ZrCrAl22N 

ZrCrAl27N 

2.2 

2.4 

4.2 

8.2 

8.8 

* All values ±1%. 
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Highlights 

Zr-Cr-Al-N coatings with low Al content exhibit high thermal stability. 

Coating hardness and Young’s modulus are enhanced after 800 or 900
o
C annealing. 

Substrate softening affects the coating adhesive/cohesive strength. 

The Zr-Cr-Al-N coatings start to oxidize at 600 
o
C. 


