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ABSTRACT 

Silica aerogels have extremely high surface area, high porosity and very low density, showing 

suitable characteristic for several potential applications such as thermal and acoustic 

insulators, radiation detectors and cometary dust trappers. However, due to their high 

fragility, the processing and handling of native silica aerogels is not possible without making 

severe damage on them. This has led to the development of silica aerogel composites with 

high strength and improved mechanical properties by adding surface modifiers and 

compounding with appropriate polymers. To date, attempts to strengthen the mechanical 

properties of aerogels have been accompanied by significant increase in the bulk density 

along with long processing time as well as risky and expensive supercritical drying 

conditions. In this work, I will describe our research to overcome these problems by one pot 

and streamline synthesis of tri-methacrylate crosslinked silica aerogels containing different 

underlying silica structures. This approach led to the development of strong aerogels within 

hours with different silica nanostructures and having different material properties. The 

strongest aerogels achieved more than one order of magnitude improvement in the 

compression strength with only doubling the density and negligible increase in their thermal 

conductivity. We also developed strong ambient pressure dried (APD) silica aerogel-like 

monoliths with controlled shrinkage, and avoiding high risk and costly supercritical drying by 

replacing it by low cost subcritical drying conditions. In this approach, we were also able to 

optimize and model the aerogels’ main properties by using a statistical experimental design 

methodology and develop APD aerogels with similar properties as their supercritically dried 

counterparts. In terms of material properties, our developed aerogel and aerogel-like 

monoliths were perfectly suitable for their intended space applications.  

We also developed a first approach to control the molecular weight of the polymer that 

reinforce the silica aerogels by surface initiated reversible addition-fragmentation chain 
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transfer (SI-RAFT) polymerization. With this method, a correlation between the molecular 

weight of the polymer and different aerogel properties was established. Therefore, with such 

versatile approach we prepared strong silica aerogel composites that to some extent retain 

their other main physical properties.   
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Resumo 

Os aerogéis de sílica exibem área de superfície extremamente elevada, alta porosidade e muita 

baixa massa volúmica bulk, potenciando o seu uso em várias aplicações, tais como em 

isoladores térmicos e acústicos, detetores de radiação e captadores de poeiras cósmicas. 

Contudo, devido à sua baixa densidade e elevada fragilidade, o processamento e 

manuseamento dos aerogéis de sílica nativos não é possível sem os danificar 

significativamente. Isto impulsionou o desenvolvimento de aerogéis de sílica compósitos, 

com elevada resistência e propriedades mecânicas melhoradas, por adição de modificadores 

de superfície e/ou polímeros apropriados. Até à data, as tentativas que foram feitas para 

melhorar as propriedades mecânicas dos aerogéis de sílica foram acompanhadas por um 

aumento significativo da massa volúmica bulk e do tempo de processamento, assim como da 

utilização de condições supercríticas para secagem, as quais são arriscadas e de 

implementação dispendiosa.  

Nesta dissertação, é descrito o trabalho de investigação por nós realizado para ultrapassar 

estes problemas. Para isso, usou-se um processo de síntese simples, em um passo, de aerogéis 

de sílica contendo diferentes estruturas de sílica subjacentes e reticulados com trimetacrilato. 

Esta estratégia conduziu à preparação de aerogéis resistentes em apenas algumas horas, com 

nanoestruturas de sílica e propriedades diferenciadas. Os aerogéis mais fortes exibiram mais 

de uma ordem de grandeza de melhoria na resistência à compressão, com apenas a duplicação 

da densidade e aumento desprezável da sua condutividade térmica.    

Também foram desenvolvidos aerogéis monolíticos e resistentes recorrendo secagem à 

pressão ambiente (APD), e evitando assim o passo de secagem supercrítica, mais perigoso e 

caro do que a secagem subcrítica. Nesta abordagem, foi possível otimizar e modelar as 

principais propriedades dos aerogéis usando uma metodologia estatística de planeamento de 

experiências e desenvolver aerogéis secos por APD com propriedades semelhantes às dos 
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seus homólogos secos em condições supercríticas. Em termos de propriedades, os aerogéis 

preparados por ambas os processos de secagem mostraram-se adequados para as aplicações 

espaciais em vista. 

Desenvolvemos ainda uma primeira aproximação para controlar o peso molecular do 

polímero que reforça a rede dos aerogéis de sílica, recorrendo a polimerização por  surface 

initiated reversible addition-fragmentation chain transfer (SI-RAFT). Com este método, 

estabeleceu-se a correlação entre o peso molecular do polímero e diferentes propriedades do 

aerogel. Assim, com esta estratégia versátil preparámos aerogéis de sílica compósitos 

resistentes mecanicamente e retendo, em certa extensão, as suas propriedades físicas 

relevantes. 
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Chapter I. Introduction 

General introduction, objectives, goals and thesis structure/chapter classification 

I. 1 Introduction 

Silica aerogels are materials with unique properties such as high specific surface area (500–

1200 m2/g), high porosity (80–99.8%), low density (∼0.003-0.5 g/cm3), low thermal 

conductivity (0.005-0.1 W/mK), ultra-low dielectric constant (k = 1.0–2.0) and low index of 

refraction (∼1.05) [1, 2]. Due to their unusual characteristics, much attention has been given 

to silica aerogels in recent years for their use in several technological applications including 

Cherenkov radiators in particle physics experiments [3] and thermal insulation materials for 

skylights and windows [4]. Silica aerogels have also been used for making heat storage 

devices used in windows defrosting and as acoustic barrier materials [5]. Other aerogels have 

been demonstrated good performance for battery electrodes [6], catalyst supports [7], oxygen 

and humidity sensors [8] and adsorbents for environmental clean-up [9] due to their large 

internal surface areas and facile changing of their surface chemistry. The low values of 

thermal conductivity and the very low density make silica aerogels attractive materials for a 

number of aerospace applications. One example involves insulation around the battery packs 

in the Mars Sojourner Rover for protection of electronic units [10]. More robust and flexible 

aerogels are being considered to insulate extra-vehicular activity (EVA) suits for future 

manned missions to Mars [11]. Aerogel composites are the only materials that come close to 

meet the requirements for EVA suit insulation [12]. Robust aerogel composites are also 

considered as insulation materials of inflatable decelerators for entry, descent, and landing 

(EDL) applications for future space missions on Mars [13]. 
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It should be noted that aerogel applications in space are not all limited to thermal insulation. 

Indeed, silica aerogels can also be applied to collect aerosol particles [14], to protect space 

mirrors or to design tank baffles [15, 16]. However, these applications of silica aerogels have 

been restricted because of their extreme fragility and poor mechanical properties and 

hygroscopic nature [17]. Therefore, with the purpose of expanding the application range of 

aerogels, while fully retaining their outstanding properties, mechanically robust aerogels are 

needed.  

Different methods have been explored to improve the mechanical properties of silica 

aerogels such as structural reinforcement using flexible silica precursors in silica gel 

backbone [18-21], conformal coating of silica backbone via surface cross-linking with a 

polymer [22-26], dispersing carbon nanofibers in the initial sol of silica aerogel [27]. In 

principle, to improve flexibility or elastic recovery in silica aerogels, it is required either to 

include organic linking groups in the underlying silica structure or to promote cross-linking of 

the skeletal gel network through surface silanol groups by reacting them with 

monomers/polymers.  

Since the silica aerogels consist of silica particles that are connected to each other via only 

Si-O-Si stiff bonds, the compounding of the silica aerogel with polymer leads to an increase 

of the connection points between the silica particles, with the formation of strong extra –(C-

C-) covalent bonds between these particles [28]. Therefore, such methodology leads to an 

increase of the strength of the reinforced silica aerogels over native silica aerogels [29]. Thus, 

the objective of such compounding with organic polymers is to provide an aerogel with good 

compressive strength to be able to adapt to the design of components and to absorb the energy 

involved in shock compressions [14, 15, 30, 31]. However, manufactured aerogels are not 

strong enough to be reshaped and must be casted to the final forms during synthesis and 

processing [32]. But, it has been proven that elasticity/flexibility can be significantly 
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enhanced in non-cross-linked aerogels by altering the chemical nature of the silica backbone. 

For example, for TMOS/BTMSH-derived aerogels of densities bellow 0.06 g cm-3, it was 

possible to bend by 50° the material without breaking it [33]. Additionally, Kramer et al. [34] 

demonstrated that an addition of up to 20% (w/w) poly(dimethylsiloxane) in (TEOS)-derived 

aerogels resulted in rubbery behaviour with up to 30% recoverable compressive strain. Shea 

and Loy [35] have developed hybrid aerogels from bridged polysilsesquioxanes, using 

building blocks comprised of organic bridging groups attached to two or more trialkoxysilyl 

groups via nonhydrolyzable carbon–silicon bonds. All of these methods proved to be different 

ways of tuning mechanical properties to the application requirements.  

As it is indicated by Fricke et al. [36] and Pekala et al. [37], due to the trade off between 

mechanical properties (e.g. Young’s modulus or maximum strength) of silica aerogels with 

their density, the most straightforward methods of mechanical reinforcing of silica aerogels 

result in an increase of the density and therefore an increase in thermal conductivity [38-40]. 

This is caused by the increase of the total amount of material used for the production of the 

gel matrix, due to the need of increasing the total number of connection points within the 

silica aerogel. The most recent achievements involve the preparation of aerogels with 

significant improvement in their maximum compression strength at break with only doubling 

the density and thermal conductivity [29].  

General physical and chemical issues involved in the synthesis of silica gels were explained 

in books [41, 42]. Additionally, many reviews on aerogels, with particular focus on silica 

aerogels, have already been published [1, 43-47], which give a more specific and complete 

description about the aerogels processing, properties and applications. For the purpose of 

strengthening the mechanical properties of silica aerogels, different possible strategies of 

surface chemistry modification of aerogels, followed by compounding their surfaces with 

appropriate organic polymers, namely epoxide [48, 49], polyurea [50], polyurethane [33, 51], 
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polyacrylonitrile [22], polystyrene [52, 53], are reviewed by Leventis et al. [26, 54], and more 

recently by Meador et al. [29, 32].  

Despite of the reasonable mechanical strength achieved the majority of the developed 

polymer reinforced silica aerogels displayed high densities normally ranged over 0.5 g cm-3 

and thermal conductivities values above 0.04 W m-1 K-1.  

I. 2 Objective of the present dissertation  

The global objective of this research was the synthesis of mechanically strong silica aerogels 

with expanded aerospace application and retaining their outstanding properties as much as 

possible. Having in mind this goal, the initial attempt for mechanical reinforcement of native 

silica aerogels was to create extra connectivity through addition of strong covalent bonds in 

the connection points of silica nanoparticles inside the aerogel network. Relying on the 

extensive literature survey [55], the compounding of silica aerogel networks with appropriate 

organic polymers or cross-linker was a first and common approach to strengthen the silica 

aerogels. Motivated by this idea, we also selected this approach, and developed organic-

inorganic hybrid silica aerogels. Initially, in this context, the surface chemistry of silica 

nanoparticles in the aerogels body has been modified by appropriate functional groups. In the 

next step, a multifunctional methacrylate cross-linker reacted with silica surface functionality 

by free radical polymerization approach. Upon cross-linking, extensive branching within the 

silica network and, therefore, an increased compressive strength of the aerogel monoliths with 

an approximately constant overall intrinsic flexibility of the silica backbone were anticipated. 

In order to compensate for the increase in the backbone thermal conductivity due to the cross-

linking, we changed the microstructure pattern of the silica aerogels by co-gelation of the 

silica backbone with the alkyl-linked bis-silane 1,6-bis(trimethoxysilyl)hexane, BTMSH, and 

the aryl-linked bis-silane 1,4-bis(triethoxysilyl benzene, BTESB.  
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Previous studies [29] have been focused in the development of aerogels with several varied 

length of alkyl-bridged bis-silane in the silica backbone to correlate the elastic recovery 

response of developed aerogels with the length and type of the alkyl moieties. However, alkyl 

moieties on the underlying silica can affect other aerogels properties namely the thermal 

conductivity of the resulting aerogels, which has not been extensively investigated. As a 

complementary study, in the present work, we attempted to address the aforementioned 

properties of alkyl-bridged based aerogel and compared them, for the first time, with aerogels 

containing aryl-bridges in their backbone structures. The introduction of aryl-linked bis-silane 

to underlying silica structures can cause a great control on the size of porosity and indirectly 

on the thermal insulation performance of the aerogels. In this procedure, by varying the 

synthesis parameters, reasonable results in terms of mechanical strength (more than one order 

of magnitude improvement) with density of < 0.4 g cm-1 and thermal conductivities of < 0.04 

W m-1 K-1 (for BTESB based aerogel) have been achieved. In this phase of the project, a 

further goal was to establish a streamline and simple synthesis procedure, thus avoiding 

lengthy and tedious traditional aerogel preparation methods. Therefore, we developed a one-

pot synthesis strategy in which sol-gel reaction and diffusion of the monomer to the silica gels 

have been carried out at one single step without actually interfering with silica precursors’ 

function during hydrolysis and condensation steps.  

After having a global idea of the development of strong aerogels with improved mechanical 

strength and enhanced thermal insulation performance, the next phase of the project was to 

improve drying conditions for safe and facile silica aerogel’s development. This phase is 

decisive for future large-scale production and commercialization of the developed product 

with different geometries or sizes. Our objective was to avoid the need of fitting the samples 

in cell/chamber of the supercritical autoclave. For this, we have explored a safe and cost 

effective drying procedure by applying ambient pressure drying conditions that avoid the need 
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for the risky and costly supercritical drying step. The ambient pressure drying of wet gels was 

possible by removing the capillary pressure/stresses at the menisci of the solid-liquid-vapor 

interfaces inside the gel structure upon evaporation of solvent. By performing several post 

gelation washing and solvent exchange of silica aerogels with a low-surface tension solvent, 

crack free aerogels without any serious dimensional shrinkage were anticipated. Therefore, a 

simple and streamline procedure and easy drying conditions by removing supercritical drying 

was an advantage of this procedure. 

In this step of the project, in order to be able to predict and control the main properties of 

ambient pressure dried silica aerogels toward developing material properties similar to the 

supercritical counterparts, optimization studies were conducted. Therefore, the physical and 

mechanical properties of ambient pressure dried cross-linked silica aerogels having different 

aryl-linked and alkyl-linked silanes were examined and modeled by applying Central 

Composite Rotatable Design (CCRD) methodology. Finally, we built predictive models to 

optimize the test parameters as well as levels of each variable using the response surface 

methodology (RSM). 

 After optimization of the main properties of ambient pressure dried silica aerogels (APD), 

the evaluation of the material specification for intended space application followed, in the 

next stage. Several pre-defined standard thermal tests for Space application of materials have 

been made on APD samples and the results have been compared with the results of their 

supercritical dried counterparts under the same preparation conditions.  

The further attempt of the project was to develop, for the first time, silica-polymer composite 

aerogels by conducting a surface initiated controlled polymerization approach. For this, we 

proceeded with the synthesis of polymer reinforced silica nanocomposites using a surface-

initiated reversible addition-fragmentation chain transfer (SI-RAFT) technique. This approach 

was used to grow well-defined polystyrene (PSt) and poly butyl acrylate (PBA) with low 
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polydispersities and establish the structure-property relationship between the grafted polymer 

molecular weight and physical properties of hybrid aerogels. 

I. 3 Chapter classification and outline of thesis 

The results of research on the above objectives are presented in this document in several 

chapters. The general introduction to silica aerogels is summarized in Chapter I. In Chapter II, 

firstly, a general history of sol-gel process with chemistry beyond their methods of synthesis 

and the principles of the drying techniques is given. This was followed by an extensive study 

of very recent published works about the development of silica aerogels with improved 

mechanical properties with particular emphasis on recent advanced methods for preparing 

class II hybrid polymer-silica aerogels. Chapter III presents details on the effect of the 

incorporation of alkyl-linked 1,6-bis(trimethoxysilyl)hexane (BTMSH), and aryl-linked 1,4-

bis(triethoxysilyl)-benzene (BTESB) into the underlying silica structure of tri-methacrylate 

cross-linked aerogels. In this chapter, the improvement in the mechanical strength for the 

whole aerogels along with improvement in the mesoporous nature and thermal insulation 

performance of BTESB derived aerogels as a result of the inclusion of aryl chain linkages 

within the silica aerogel backbone are discussed.  

Ambient pressure dried (APD) silica aerogel-like monoliths with different underlying silica 

developed through simple wet chemical approaches are studied in the Chapter IV. Also, a 

statistical experimental design approach is extensively explained for better understanding the 

influence of several factors, including the type, concentration of bridged bis-silane and 

concentration of cross-linker on aerogels’ final properties. The present chapter also addresses 

the method of optimization of APD aerogels by means of fitted empirical models for each 

silica aerogels’ property and desirability function. Finally, a comparison of the key properties 

of optimized APD aerogel-like monoliths with their supercritical dried (scCO2) aerogels in the 
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same preparation condition was accomplished. Additionally, the suitability of these monoliths 

for intended space applications was discussed.   

In chapter V, we report the synthesis of mechanically reinforced polymer silica 

nanocomposites by surface-initiated reversible addition-fragmentation chain transfer (SI-

RAFT). In this chapter, SI-RAFT approach is used to grow polystyrene (PSt) and poly butyl 

acrylate (PBA) with low polydispersities and establish the structure-property relationship 

between the grafted polymer molecular weight and physical properties of hybrid aerogels. 

Chapter VI summarizes the conclusion and brief perspective on future direction of silica 

aerogels. Additionally, the open challenging areas for future development of silica aerogels 

are discussed.  

At the end, a list of references in this manuscript is presented in Chapter VII.  

I.4 List of publications 

1. Hajar Maleki, Luisa Durães, António Portugal, An overview on silica aerogels synthesis 

and different mechanical reinforcing strategies, J. Non-Cryst. Solids, 2014; 385:55–74.  

2. Hajar Maleki, Luisa Durães, António Portugal, Synthesis of lightweight polymer-

reinforced silica aerogels with improved mechanical and thermal insulation properties for 

space applications, Microporous Mesoporous Mater. 2014; 197:116–129. 

3. Hajar Maleki, Luisa Durães, António Portugal, Development of mechanically strong 

ambient pressure dried silica aerogels with optimized properties, submitted to J. Phy. Chem. 

C (2014). 

4. Hajar Maleki, Luísa Durães, António Portugal, Develoment of mechanically reinforced 

silica aerogels via Surface-Initiated Reversible Addition-Fragmentation Chain Transfer 

(RAFT) Polymerization, J. Mat. Chem. A, (2015), DOI: 10.1039/C4TA05618C. 

. 
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Chapter II. Historical background and chemistry of the sol-gel process, 

drying techniques and state of the art for mechanical reinforcement of 

silica aerogels. 

This chapter comprises the work published at Journal of Non-Crystalline Solids (2014); An 

overview on silica aerogels synthesis and different mechanical reinforcing strategies, 

385:55–74, by: Hajar Maleki, Luísa Durães, António Portugal. 

II. 1 Historical background of sol-gel process 

Silica and silicates are the earth’s most abundant minerals since Oxygen and Silicon are 

found in great abundance in the earth’s crust, 46.6% and 27.7%, respectively [56]. These 

minerals have been used widely over the course of history, starting as simple stone tools [57], 

to more sophisticated devices today, such as, optical components of lasers [58]. Traditionally, 

production of glasses and ceramics using these minerals involves melting them at elevated 

temperatures (<1000⁰C) to obtain usable shapes and forms. This procedure not only consumes 

a large amount of energy, but also limits the ability to incorporate organic molecules into the 

silica matrix, due to their decomposition (~ 500⁰C) at the temperatures used. An alternative 

and milder approach in silica materials, was developed in 1820 by Berzelius, who used 

soluble silanes in the presence of ammonium hydroxide to form silica powder [59]. A later 

approach by Ebelman in 1847, was the formation of transparent material using 

tetrachlorosilanes in the presence of an alcohol. In this way, a silica network is formed as a 

result of prolonged exposure of the alcohol/silane solution to a humid atmosphere [60]. This 

approach is similar to what is used today for the preparation of silica gels from the 

tetraalkoxysilane precursors [61]. This was a breakthrough because of the mild processing 
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conditions at low temperatures (<100⁰C). However, this research remained unnoticed for the 

most part until the early 1900’s when Schott glass company established the way of 

preparation of thin oxide films by sol-gel process by using a combination of metal-containing 

precursors by deep-coating [62]. During the same time period, the use of porous silica as 

desiccants and absorbent materials started to grow [63]. This led to the discovery of silica 

aerogels in the early 1930’s by Kistler [64] These discoveries initiated a period of research in 

which sol-gel methods produced a large number of patents, publications, new materials, 

applications and an extensive body of knowledge. 

In the following decades, the sol-gel process was used to prepare materials in applications 

such as anti-reflective coatings [65], silica filled composites [66], ceramic monoliths [67], 

ceramic nuclear fuels [68] and fibers [69]. In the 1970’s the sol-gel process began to see a 

number of uses in hybrid coatings [70], and optical applications [71]. In the few decades, a 

drastic increase in the number of publications emerged in the field of sol-gel science, with 

over 6000 new journal articles and patent being published (Figure II. 1) in 2013. The 

significant expansion of the sol-gel field led to several sub fields of research utilizing the sol-

gel processes leading to the development of many new advanced technologies (Figure II. 2). 
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Figure II. 1 A significant increase in the number of publications occurred from early 1980’s. 

Number of publications counted using ʺ″sol-gelʺ″ as a keyword (Scopus record). 

 

 

Figure II. 2 Application of Sol-Gel method according to a S. Sakka [72]. 
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II. 2 Sol-gel chemistry 

Generally, a nanostructured solid network of silica is formed as a result of a hydrolysis and 

condensation process of the silica precursors, in which siloxane bridges (Si–O–Si) are formed. 

Such reactions are equivalent to a polymerization process in organic chemistry, where bonds 

between the carbon atoms of organic precursors lead to linear chains or branched (cross-

linked) structures [73]. 

The manufacturing process to form silica aerogels comprises two steps: the formation of a 

wet gel by sol-gel chemistry, and the drying of the wet gel.  

Originally, silica wet gels were made by Kistler in the early 1930s [64, 74] through the 

condensation of sodium silicate (also termed as waterglass). However, the reaction formed 

salts within the gel that needed to be removed by many long and laborious repetitive washings 

steps [75]. In following years, Teichner's group extended this approach to prepare optically 

transparent monoliths using tetraalkoxysilanes (Si(OR)4) as the silica source [76]. The key of 

this process was to use an alcohol (e.g. methanol or ethanol), thus, the need for the tedious 

water to alcohol solvent exchange was eliminated [76-80]. This reduced the time required to 

make a final dried aerogel to approximately one day, which was a drastic reduction relatively 

to Kistler’s original method. Presently, with the further developments of the sol-gel process, 

different alkoxysilane derivatives are used all together and with different solvents, which are 

needed for the homogenization of the mixture and control of concentrations. Although, when 

switching from a protic to an aprotic (hydrocarbon) medium, alcohols are ideal intermediary 

solvents, as their bifunctional nature (polar/non-polar) promotes miscibility of water and the 

organic phase. But, surprisingly, the choice of the alcohol has a tremendous effect on pore 

structure and therefore also on final material properties [81-83]. The indication of different 

gelation solvents and related methodologies applied by different investigators, along with the 
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different properties of the resulting aerogels, are reviewed by Soleimani et al. and Siouffi [47, 

84].  

Due to the rapid development of sol-gel chemistry over the last few decades, the majority of 

silica aerogels are prepared today using silicon alkoxides as precursors [85-91]. The most 

common of the silicon alkoxides are the tetramethylorthosilicate (TMOS, Si(OCH3)4) and 

tetraethylorthosilicate (TEOS, Si(OCH2CH3)4) [42], with common chemical formula of 

Si(OR)4, that lead to the aerogels called ‘’Silica’’. Many other alkoxides [92], containing 

various organic functional groups linked to silicon, can be used to give different properties to 

the gel. They have a general formula Rʹ′XSi(OR)4-X (1≤X≤3), being mono, di and trifunctional 

organo silanes, which lead to the aerogels named as ʺ″orgonosilsesquioxanesʺ″ [89]. Other 

common organo silica precursors with chemical formula of (OR)3SiRʹ′Si(OR)3 in which Rʹ′ is 

an alkyl, aryl or alkenyl bridged moieties between two elements of silica, lead to the ʺ″bridged 

organosilsesquioxaneʺ″ products [19, 35, 93, 94]. Alkoxide-based sol-gel synthesis avoids the 

formation of undesirable salt by-products, and allows a much greater degree of control of the 

final products. A general overview of the polymerization of the soluble alkoxy silanes is 

represented below (Figure II. 3) 
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Figure II. 3 Overview of the sol-gel process. Initial step is hydrolysis of alkoxy silanes followed by 

the condensation of the newly formed silanols. Once the polymerization is initiated, they occur 

simultaneously. 

Sol-gel polymerizations has two primary steps, the first being hydrolysis which converts a 

halo or an alkoxy to a silanol. The second subsequent step in the polymerization is 

condensation where two silanols condense forming the siloxane linkage and an equivalent of 

water. If condensation results from a silanol and an alkoxide, a siloxane bond and an 

equivalent of alcohol are formed. Once the polymerization is initiated, hydrolysis and 

condensation occur at the same time. The significant change from the liquid to the solid stage 

is termed the sol–gel transition. When a sol reaches the gel point, it is often assumed that the 

hydrolysis and condensation reactions of the silicon alkoxide reactant are complete. During 

this event, initially, the primary particles are formed, then they aggregate into secondary 

particles, and finally link together in a pearl necklace morphology [95]. The diagram 

presented in Figure II. 4 shows the 3D network of porous silica, which is constructed by 

primary and secondary silica particles.  
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The kinetics of the sol-gel reactions is slow at room temperature and often requires several 

days to reach completion. For this reason, acid or base catalysts are added to the system [96, 

97]. The amount and type of the used catalysts play key roles in the microstructural, physical 

and optical properties of the final aerogel product. Acid catalysts can be any protic acid, such 

as HCl [18]. Basic catalysis usually uses ammonia, or ammonia buffered with ammonium 

fluoride [42].  

 

Figure II. 4 Typical SEM image of Si aerogels with schematic representation of primary and 

secondary silica particles (left); (i) neck growth mechanism of secondary silica particles and (ii) 

relative aging rate as a function of time for two mechanisms (a, b) (right, Adapted from [98] and [95]). 

II. 3 Aging 

Silica aerogels comprises highly open structures in which the secondary particles of silica 

are connected to each other with only few siloxane bonds, therefore, structure of native 

aerogels is too fragile to be handled. One elegant but time consuming method to strengthen 

the solid skeleton of a silica gel is to enlarge the connection point between the secondary 

particles with more siloxane bonds via an ‘’aging process’’ [99-101]. Common aging 

procedures for base catalyzed gels typically involve soaking the gel in an alcohol/water 

mixture of equal proportions to the original sol at a pH of 8-9 (ammonia) [102-104]. It has 
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also been demonstrated that simply performing a thermal aging of the wet gel in water can be 

a key factor to decrease the gel microporosity before drying [42]. 

During the aging process shrinkage of the gel is noticed and referred to as syneresis [40]. 

This shrinkage is the result of further condensation reactions, which form new siloxane bonds 

near the site at which the two colloids (“the neck”) are connected. 

Generally, two different mechanisms might operate during aging that affect the structure and 

properties of a gel: (a) neck growth, from reprecipitation of silica dissolved from particle 

surface onto necks between secondary particles (Figure II. 4 (i)); and (b) dissolution of 

smaller particles and precipitation onto larger ones (Ostwald ripening mechanism) [101]. 

These two mechanisms will operate at different rates, but simultaneously, as illustrated in 

Figure II. 4 (ii). In addition, the particle clusters are brought in contact by brownian motion 

and react with each other, increasing the number of siloxane bridges and reinforcing the silica 

network in neck regions [98]. The most effective and applied methods to overcome the weak 

mechanical properties of silica aerogels are reviewed in the upcoming section. 

II. 4 Drying techniques 

The final, and most critical, process in the synthesis of silica aerogels is the drying step. This 

is when the liquid within the gel is removed leaving only the linked silica network. Three 

main routes are commonly used for drying: (1) freeze-drying, in which the solvent inside of 

pores needs to cross the liquid-solid then the solid-gas equilibrium curve; (2) evaporation, 

which implies the crossing of the liquid–gas equilibrium curve of the solvent; (3) supercritical 

fluids drying (SFD), in which the supercritical condition is reached without crossing the 

equilibrium curve of the solvent [73]. 
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Generally, in the freeze drying technique, the solvent in the pores is frozen and then 

sublimed under vacuum. The material obtained in this way is called a “cryogel”. However, 

due to crystallization of the solvent within the pores, this process leads to cracked or even 

powder-like silica products with very large pores [42]. But this problem can be attenuated by 

using solvents with low expansion coefficient and high sublimation pressure, and also by 

using rapid freezing in liquid nitrogen at cooling rates over 10 Ks-1 [105, 106]. 

The capillary pressure, Pc (Pa), that develops during evaporative drying, causes the shrinkage 

of the gels. This pressure can be calculated by [42], 

 

 

γ1n is the surface tension of the pore liquid (N/m), rp is the pore radius (m); δ is the thickness 

(m) of a surface adsorbed layer.  

Evaporation without specific surface treatments [107-110] usually results in “dense” (e.g., > 

0.25 g cm-3 [109]) and cracked materials, the so-called “xerogels”. As explained by Phalippou 

et al. [111], the densification during evaporation comes from condensation of the remaining 

reactive silica species. When the silica wet gel is subjected to the capillary pressure, the 

initially far distance surface hydroxyl/alkoxy groups comes close enough to each other to 

react and generate new siloxane bonds, leading to the irreversible shrinkage due to the 

inherent flexibility of silica chains. In addition, often the pore structures of xerogels collapse 

when compared to those of aerogels with the same composition [90, 110, 112-115]. Due to 

the different existing pore sizes within the gel, a high capillary pressure gradient develops 

inside the porous structure during the drying, which leads to mechanical damage. The 

capillary pressure in evaporative drying may reach 100–200 MPa [47], and since the siloxane 

!! =
−!!!

(!! − !!) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(II− 1) 
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bonds within the aerogel monolith are not strong enough to withstand the capillary pressure 

then it results in shrunk and cracked xerogels [116]. 

One of the ways to overcome this problem is by strengthening the gel to stand the capillary 

stresses. This can be achieved by replacing some of siloxane (Si-O-Si) bonds with flexible 

and non hydrolysable organic bonds (Si-R), through the use of organosilanes as precursors to 

produce the aerogel network [20, 117, 118]. The organic group will allow the aerogel to 

spring back to its original wet gel size without resulting in any crack within the gel. Other 

methods involve changing the capillary force experienced by the network through surface 

modification of the silica with alkyl groups, and providing a surface with lack of Si-OH 

groups [119]. Here, the general goal for the surface treatment is to produce a more 

hydrophobic surface by reacting the surface hydroxyl groups with hydrophobic reagents, such 

as [(CH3) 3-Si-OR] [120, 121], or hexamethyldisilazane [122, 123]. On the contrary to the 

surface rich Si-OH gels, during the evaporation of the solvent in the hydrophobically surface 

treated gels, the alkyl groups repel one another originating the referred spring back of the 

aerogel [81, 117, 124]. The other methods to overcome the induced capillary pressures 

involve using low surface tension solvents [125], or adding additives to control the drying 

process [79]. Evaporation of a low surface tension solvent from the silica wet gel network 

reduces the capillary pressure when compared to the evaporation of an alcohol, since there is 

a direct relation between the surface tension and capillary pressure [126] according to 

equation (II-1). 

In the supercritical fluids drying method, the liquid in the pores is removed above its critical 

temperature (Tcr) and pressure (Pcr), i.e. in supercritical state. Critical pressure is achieved by 

heating the liquid within a confined space. At its supercritical state, the liquid-vapor meniscus 

responsible for the gels collapse is eliminated, allowing for crack free monolithic silica 

aerogels to be produced. From Kistler’s initial work using ethanol as a supercritical fluid to 
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develop silica aerogels, a number of other solvents have been used as seen in Table II. 1 

[127]. 

Table II. 1 Brief list of liquids and their supercritical values used in supercritical drying of silica 

aerogels. 

Liquid Critical Temperature (°C) Critical Pressure (MPa) 

Methanol 240 8.09 
Ethanol 243 6.3 
Acetone 235 4.66 
Carbon Dioxide 31 7.37 
Nitrous Oxide 36 7.24 
Water 374 22.04 

 

II. 4.1 Advances in drying approaches of silica aerogels 

The supercritical fluid drying method is performed in organic solvents in their supercritical 

state (generally with the synthesis alcohols and, consequently, near 260°C if ethanol or 

methanol is used), the process is called HOT process [42]. Perhaps one of the most significant 

changes to Kistler’s original method [74] for the production of aerogels was the switch from 

alcohol to liquid CO2 as the solvent of choice for supercritical drying. In 1984, a pilot plant in 

Sweden for the production of silica aerogel monoliths using the supercritical methanol 

method was destroyed when a 3000 liter autoclave leaked and eventually exploded [128]. 

There were no fatalities, but this event prompted the aerogel community to explore alternate 

routes for drying. To the possible safety issues, these elevated temperatures could also add 

possible variations in the aging of silica gels. Hunt and coworkers [129] demonstrated that 

carbon dioxide could be used in place of methanol in the supercritical drying process. By 

using CO2, the system only needed to be heated to 32°C instead of 260°C to go supercritical, 

and the required pressure was reduced slightly as well. The lower temperature in the drying 
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step and non-flammability of CO2 made the process safer and cheaper. Therefore, whenever 

the synthesis solvent is extracted with supercritical CO2 at a temperature slightly above the 

critical temperature of CO2 (~31°C), the process is called COLD process. In this process, the 

liquid part of the wet gels has to be exchanged with CO2, either in the liquid state [130], or 

directly in the supercritical state [131]. Once the supercritical point for carbon dioxide is 

reached (31°C, 7.37 MPa), the liquid-vapor meniscus disappears and a supercritical fluid is 

formed. At this point the supercritical carbon dioxide is vented off slowly causing a lowering 

in the pressure and expelling CO2 from within the pores of the silica gel. This process 

continues until all of the carbon dioxide is fully removed from the silica gel. The phase 

diagram for carbon dioxide can be seen in Figure II. 5 with a probable path that would be 

followed during the supercritical drying of silica aerogels. This process produces monolithic 

silica aerogels of rather large dimensions (for the typical cylindrical samples, the diameter is 

about 1-2 cm and length 5-6 cm), but the dimensions of aerogel are obviously scaled by the 

sizes of the supercritical drying autoclave [28].  

The development of the evaporative drying process to dry the silica wet gels by properly 

controlling the critical drying parameters (T, P, evaporation area and times) to achieve a 

ambient pressure dried (APD) aerogel-like or ‘’xerogel’’ material with final properties 

comparable with their aerogel counterpart, would be a tremendous potential for scaling-up 

and cost reduction of such a materials [110, 132, 133]. However, from an economical and 

large scale production point of view, there are also other items which can be significant in 

cost reduction of such materials [133]. Especially the cost of the starting silica precursors 

(normally, sodium silicate is cheaper than silicon alkoxides) and the several processing steps 

(e.g. the washing, the solvent exchange, surface treatment, etc.) influence the global cost of 

the final aerogels or xerogels [75, 107].  
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Figure II. 5 illustrate the complete aerogel synthesis process with its detailed steps, as 

explained before. Generally, the silica aerogels are made in two main steps: (1) the sol-gel 

process (the preparation of an alcogel), (2) supercritical drying. Initially, the alcogel is 

prepared by promoting the hydrolysis and condensation reactions of silica precursors in the 

solution with solvent/water/catalysts, based on sol-gel chemistry. During this step, the 

primary silica particles will be created, and, then, during gelation, the primary particles 

coalesce and link to each other to form the secondary silica particles (see Figure II. 5), 

resulting in a rigid three-dimensional network of silica. Then, the prepared silica wet gels can 

be subjected to different post-gelation treatments before drying, such as solvent exchange, 

washing and aging. In the drying step, the silica aerogel monolith can be obtained when the 

solvent inside the pores experience its supercritical condition and is released in this state 

without introducing any damage to the solid part.  
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Figure II. 5 Schematic representation of typical sol-gel synthesis procedure. 

II. 5 Silica Aerogel Drawbacks 

Silica aerogels are fascinating materials, which have been used in several applications as 

mentioned in the Introduction. In most cases, using silica aerogels in applications is based on 

their properties rather than their practicality. The two main drawbacks of silica aerogels for 

their use in potential applications are the cost of production and their extremely weak 

mechanical properties. Silica aerogels posses a reduced mechanical strength compared to their 

nonporous analog [134] and the cost for silica aerogel production is expensive and non safe 

due to the supercritical drying step which is needed in their preparation. The cost of silica 
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aerogel production while improving the mechanical properties will be addressed in the 

proceeding Chapter II. However, even if the cost of production for silica aerogels can be 

substantially reduced, the resulting aerogel is still mechanically weak. By improving the 

mechanical properties of silica aerogels, they could be used in numerous applications not 

currently achievable. 

II. 6 Development of strong silica aerogels 

Silica aerogels are cellular solids with a pearl-necklace-like skeletal network [95]. As 

indicated in Figure II. 4, the weak points of such structure are the interparticle neck regions 

[135, 136]. Although the native silica aerogels are sufficiently strong to be handled, their 

mechanical strength still is not adequate for them to endure and remain monolithic in some 

practical applications [54]. In fact, their intrinsic fragility that leads to low mechanical 

strength, imposes severe constrains on different potential load bearing applications of silica 

aerogels. It was believed that the mechanical properties of silica aerogels could be improved 

by increasing the amount of connectivity between particles (Figure II. 6). However addition 

of any material to strengthen the silica aerogel must be minimal to ensure that the physical 

properties, which made them attractive to so many applications, are retained.  

Several techniques have been reported in the literature [28, 29] to reinforce silica aerogel’s 

mechanical properties. The aim of such techniques is to develop aerogels of low density that 

can be easily deformed and show a capability to absorb shock energy during bending and 

compression [14, 30]. As stated before, the aging of wet gels leads to mechanically stronger 

inorganic networks [136, 137], by increasing the strength of the final silica aerogels through 

dissolution and reprecipitation of silica at the surface of interparticle necks [138]. With this 

process, an improvement of approximately a factor of two in the modulus of elasticity will be 
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achieved. But clearly, at the end, the reinforcement agent is still silica and remains a brittle 

material with low tensile strength. 

 
Figure II. 6 Reinforcing the weak necks between the silica particles. 

Hybridization of silica aerogels [34, 139, 140] can be an alternative solution for 

strengthening purposes, by promoting the co-gelation of the silicon alkoxide with hybrid 

precursors such as poly(dimethylsiloxane) (PDMS). Gels obtained in this way are termed 

“ORMOSIL” (ORganically MOdified SILica) hybrids. They have a more rubber-like 

flexibility. With 20 wt% PDMS, they can be elastically compressed to 30% (by volume) with 

no damage [34]. 

Compounding of the inorganic network of aerogels with different polymeric systems has 

been performed by several chemical procedures. This method leads to a dramatic increase of 

tensile strength and robustness of the aerogels [26]. Moreover, incorporation of various 

fibrous supporting materials, such as polymeric fibers [141, 142], carbon nanofibers [26], 

fiberglass [143], etc., into the aerogel systems, was also found to be quite effective in 

improving the mechanical properties of aerogels. Fiber matrix can support the aerogel and 

decrease the bulk size of aerogel within aerogel–fiber matrix composite [144]. So far, 
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composites of fiber and silica aerogels have been produced with various methods in order to 

fortify the structure of silica aerogels. 

The proceeding section will address all of above mentioned mechanical reinforcement 

strategies of the silica aerogels, and are a rather complete and updated literature survey on the 

subject. 

II. 6.1 Structural reinforcement of silica aerogels  

Generally, the trifunctional organosilane compounds of the type RSiX3 (where, R = alkyl, 

aryl or vinyl groups, X = Cl or alkoxy groups) produce flexible aerogels with reduced overall 

bonding and good hydrophobicity [91, 145], since one of the ends of Si atom contains a non-

hydrolysable R group. Due to the presence of this organic group, R, attached to the silica 

polymer chains, the inter-chain bonding is reduced resulting in an elastic and flexible three-

dimensional matrix [19]. Kanamori et al. have shown that MTMS-derived gels can have 

reversible deformation upon compression [146]; Figure II. 7 shows schematically the 

molecular structure of MTMS-derived silica aerogels. Rao et al. [19, 118] studied the 

elasticity of these aerogels in terms of the Young’s modulus (g), using uniaxial compression 

measurements. Aerogels with high elasticity, flexibility and with Young’s modulus as low as 

1.094×104 Nm–2 could be obtained. They attributed the easiness of hydrolysis and 

condensation reactions to the length of methyl and methoxy groups within the silica 

precursor, as these are the smallest among all alkyl and alkoxy groups.  
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Figure II. 7 Three dimensional network of MTMS-derived aerogels with its detailed molecular 

structure. 

The MTES (H3C-Si-(OC2H5)3) precursor has also been used as a trifunctional organosilane 

compound to synthesize superhydrophobic and flexible aerogels [20, 147, 148]. In this case, 

each monomer of the MTES has one non-hydrolysable methyl group (CH3), as in MTMS, and 

three hydrolysable ethoxy groups (OC2H5). Therefore, only hydrolysable ethoxy groups are 

responsible for the matrix formation. As the condensation and hence the polymerization 

progresses, the number of hydrophobic Si-CH3 groups increases compared to the number of 

hydrophilic Si-OH groups, leading to an inorganic-organic hybrid silica network which is 

superhydrophobic and highly flexible and can recover or springs back after compression [20, 

118].  

Figure II. 8 (a-c) shows the maximum bending possibility for MTES-derived aerogels with 

different dilutions (S=MeOH/MTES) of the silica precursor. Here in, increasing the S molar 

ratio (MeOH/MTES=19.35), the distance between the reacting silica monomers and 

oligomers increases. Therefore, higher gelation time and less polymerization degree are 

observed. In addition, for higher dilution, the silica chains are quite separated from each other 
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and large empty spaces or pores are formed in the aerogel network, leading to flexible 

aerogels. On the contrary, at lower dilution of the MTES precursor (MeOH/MTES=6.45), due 

to the less separation distance between the silica monomers and oligomer chains in the sol, the 

reacting species can react easily, leading to extensive polymerization in three dimensions, 

which results in dense and rigid polysilsesquioxane structures [19, 20]. 

 

 

Figure II. 8 Maximum possible bending of the MTES-derived aerogels prepared with a) S=6.45, b) 

S=12.96, and c) S=19.35. Reprinted from ref. [20], Copyright (2009), with permission from Elsevier. 

As it can be seen, the lowest dilution of organosilane leads to less flexibility; on the contrary, 

the aerogels with the highest S ratio show the highest flexibility. Further bending of these 

samples resulted in crack formation within the structure. Because of this new property, i.e. 

flexibility, the aerogel can be bent to any shape and acts as a good shock absorber as well 

[20]. 

  A limited selection of the monofunctional and difunctional organosilane compounds of the 

type R1SiX3, R2SiX2 as well as X3Si-R-SiX3 bis silane precursors, in which R is an alkyl or 

aryl group, are provided in Figure II. 9 [94, 149-152]. In this figure, different organosilica 

precursors are separated into different categories and, from them; various aerogels with 

different material properties can be prepared. Some of these silica precursors contain special 

organic functionalities that carry useful function for surface decoration or surface treatment of 
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the aerogel for application of one’s needs. To a certain extent, the inorganic-organic (hybrid) 

materials (ORMOSIL) that can be obtained from these precursors, combine the most 

important properties of their constituents, like high transparency (glasslike), low processing 

temperatures (polymer-like), sufficient thermal stability (silicone-like), and are easily 

prepared because of a unique availability of the respective precursors.  

Besides the simple metal or silicon alkoxide precursors (for example, TMOS) that, after 

hydrolysis and condensation, lead to the formation of an inorganic oxidic network with only 

siloxane (Si-O-Si) bonds, the organo (alkoxy)silanes, depending on what type of 

functionalities they have, can be used to incorporate polymerizable organic substituents, such 

as epoxy, vinyl, or methacryloxy groups, into the final aerogel product [29]. The Si-C bonds 

in such molecules are stable under the mild conditions of sol-gel processing [153]. 
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Figure II. 9 Organo(alkoxy) and bridged silanes used as precursors for sol-gel-derived (hybrid) 

materials. 

In addition to hybrid organo (alkoxy) silane precursors, the cross-linking of the silica 

backbone with more flexible and elastic alkyl bridged bis-silane precursors can improve the 

strength of the aerogels systematically. For example, as reported by Meador et al. [21], a non-

cross-linked aerogel made from a combination of TMOS and BTSPD showed complete 
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recovery after 25% compression, with an approximate modulus of 4 MPa and densities of 0.2 

g/cm3. A high concentration of the disulphide in the formulation yielded lower density 

monoliths, which recovered completely from as much as 75% compression, as shown in 

Figure II. 10 a. The inset of Figure II. 10 shows the same sample before, during and after 

compression with finger pressure. This sample recovered 98% of its original length during the 

first ten minutes after compression and, after thirty minutes, the recovery was 99.6%.  

 

 

Figure II. 10 a) Stress strain curves of a monolithic sample of aerogel made from TMOS and a high 

portion of BTSPD b) recovery after compression vs. time. The inset is showing the aerogel sample 

compressed by finger pressure and demonstrating full recovery. Reprinted from ref. [21], with 

permission from the Royal Society of Chemistry (RSC). 

Similar results have been reported by Meador et al. [49, 154], for aerogels synthesized by 

replacing up to 40% of TEOS or TMOS in the silica backbone with the alkyl linked BTMSH. 

As can be seen from Figure II. 11, the BTMSH reduces stiffness in the silica backbone by 

replacing some of the more rigid Si-O-Si bonds with flexible hexyl linkages. The resulting 

aerogels presented a modulus up to 23 MPa and almost complete recovery from a state of 

25% compressive strain. The evidence of increasing mechanical performance using hybrid 
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organic-inorganic bridged alkoxysilanes is consistent with the work of Loy, Shea and co-

workers [35, 94, 155], which have examined a wide range of precursors to synthesis bridged 

silsesquioxanes. Typically, bridged bis-silane precursors allow the pore size control that is 

directly related to the nature and length of the bridge. Best results for controlling the porosity 

were obtained using a stiffer structure such as an arylene chain. More flexible bridges such as 

alkyl chains lead to more compliant aerogels but tended to shrink more, reducing porosity.  

 

 

Figure II. 11 Three dimensional network of MTMS/BTMSH-derived silica aerogels with its detailed 

molecular structures. 

More recently, Randall et al. [29] examined the relative merit of three types of bis-silane 

precursors with different lengths of the alkyl groups on epoxy reinforced silica aerogels. As 

shown in Figure II. 12, this research team applied four types of bridged alkyl linked bis-
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silanes and a difunctional silica precursor to which the extended chemical structures are 

shown in Figure II. 9. In the case of co-gelation of bridged bis-silane precursors with TEOS, 

the flexible alkyl links/bridges between the secondary silica particles, depending on the size 

of the bridge, can confer flexibility to the network. All of these precursors improved the 

elastic recovery of the aerogels with an amount as small as 15% included in silica backbone. 

Randall et al. also reduced the number of Si-O-Si bonds by using a difunctional silane, 

DMDES, in order to improve the elastic response by reducing the stiffness of the silica 

network.  

 

 

Figure II. 12 Reaction strategy for preparation of non-modified polysilsesquioxane aerogels with 

incorporation of four types of flexible linking groups in the silica backbone. The chemical structures 

of the alkyl linked bis-silane precursors are indicated in Figure 8 with their related numbers. 

However, additional incorporation of bis-silane precursors (up to 45% of any bis-silane) 

reduces the compressive modulus. Authors indicated that the hexyl linked bis-silane 

(BTMSH) is the most effective among the bis-silanes as compared with others in their work. 

Only BTMSH produced aerogels with high mass yields, indicating complete hydrolysis and 
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condensation under the reaction conditions they studied. Nearly similar results have been 

reported by Vivod et al. [156], in which the incorporation of the hexane linked precursor 

(BTMSH) in the silica backbone was found to enhance the flexibility and the strength of the 

aerogels. The wet gel could be bent easily without any fracturing and this can improve the 

manufacturability of BTMSH-derived aerogels. This sample also displayed great recovery at 

higher Si concentrations after compression to 25% strain. 

II. 6.2 Polymer reinforced silica aerogels  

It has been proved that compounding of silica backbone with polymer is an effective way to 

increase mechanical strength by as much as three orders of magnitude while only doubling the 

density over those of native or non-reinforced aerogels [32, 133]. Compounding the silica 

network with polymer can be achieved by different type of interfacial interaction of secondary 

silica particles (inorganic parts) with appropriate functionality on the organic polymers. 

Depending on the chemical relationship between the polymer and the surrounding silica 

network, polymer/sol–gel composites are placed into two categories: Class I hybrid composite 

aerogels and Class II hybrid composite aerogels [157-159]. 

II. 6.2.1 Class I hybrid composite aerogels 

The composites that is formed as a result of weak interactions, like van der Waals forces, 

electrostatic forces, or hydrogen bonding, between the organic and inorganic phases are in the 

category of this class of hybrid materials [160, 161]. In this type of composite materials, 

organic molecules, pre polymers or even polymers are embedded in the inorganic matrix 

being totally independent from each other. These materials are synthesized by carrying out a 
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number of different routes, e.g. the formation of the inorganic network through hydrolysis and 

condensation of the silica precursors, in the presence of the organic compound or by 

polymerizing organic monomers in the porous inorganic host. The most prominent examples 

representing class I are organic dyes or biomolecules incorporated in porous sol-gel matrixes 

[162, 163]. The guest molecules are physically dissolved together with the precursors of the 

inorganic host (e.g., TEOS or TMOS) or introduced to the sol state, and become entrapped in 

the gel that results from condensation and drying of the mixture.  

Other examples of this group of hybrids are provided by composites formed upon 

incorporation of different polymers, such as poly(ethylene oxide) [164, 165], derivatives of 

nylon 6 [166] and poly(ethyl acrylate) [167], into SiO2 matrices synthesized by the sol–gel 

method. Here, in the composites whose organic components have polar groups, the formation 

of hydrogen bonds between the components of the system [168] is important to understand 

the nature of the synthesized materials. The hydroxyl groups in the repeating units of the 

polymer, like ethylene glycol oligomers [165] or poly(vinyl alcohol) [169, 170], are expected 

to produce strong secondary interactions with the residual silanol groups generated from acid-

catalyzed hydrolysis and poly-condensations of the SiO2 matrix.  

Although the resulted hybrid gels possess proper transparency and thermal stability without 

any phase separation between the two components, there is no particular example from this 

family of composite with the purpose of mechanical reinforcing of native silica aerogels. 

Indeed, this class of hybrid materials are traditionally used to improve the very poor 

mechanical properties of organic polymers such as polysiloxanes polymer (PDMS) with 

incorporation of an inorganic filler of SiO2 [171, 172].  

Since post-gelation washing is often required in the processing of the silica aerogels, class I 

hybrid silica composite aerogels are rarely studied. This is due to the existence of weak 

interfacial bonds between the two phases, and consequent easy leaching of the polymer from 
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the pores of silica by the extensive solvent exchange, either during the post-gelation washing 

steps or solvent passing through the gel pores during the supercritical drying [160, 161]. 

Instead, this class of polymer composite aerogels seems to be straightforward to make 

mainly xerogel composites through the introduction of the monomer inside the initial sol or 

by polymerizing of the appropriate monomer in the post-gelation steps. The composites 

obtained from this method shows a decrease in the elastic modulus with substantial increase 

(3 times) in their ultimate compressive strength [160]. 

From a practical point of view, the ambient dried aerogel-like class I composites are 

advantageous, since they are cost effective and easy to produce. Moreover, the elimination of 

the post-gelation processing steps is an asset for further mass production of this type of 

materials [173].  

II. 6.2.2 Class II hybrid composite aerogels 

Class II hybrid aerogel composites are referred to the composite network in which the 

interfacial bonding between the organic phase and silica is based on strong covalent bonds. 

This type of hybrid aerogels were studied by Mackenzie et al. [174] that considered the 

different rearrangement of covalent bonding between the two phases. 

Generally, this approach requires molecular precursors that contain a hydrolytically stable 

chemical bond between the element that will form the inorganic network during the sol-gel 

processing and the organic moieties. Since, in these materials, the polymer connects points 

along the skeletal framework of 3D assemblies of nanoparticles, the resulting composites are 

referred to as polymer cross-linked aerogels. These materials possess the advantages of both 

organic and inorganic materials and are expected to present unique properties that are 

different from the individual organic or inorganic materials. 
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Until now, several polymeric systems such as polyurea, polyurethane, poly (methyl 

methacrylate), polyacrylonitrile and polystyrene have been used to reinforce silica aerogels 

[22-24, 26, 175]. In fact, the underlying inorganic framework plays the role of structure-

directing agent (template). The mechanical properties improvement is attributed to 

reinforcement of interparticle necks, which are the weak points of the aerogel skeletal 

network (Figure II. 6). In turn, the stabilization provided by the cross-linking polymer is 

attributed to the extra chemical bonds created by interparticle polymeric tethers. 

Extending polymer cross-linked aerogel composition to additional polymers, optimization 

processes for desired material properties and simple manufacturing are currently the focus of 

attention of several research groups such as Leventis et al. [26, 133], and the group led by 

Meador [29, 32] at the NASA Glenn Research Center. 

II. 6.2.2.1 Liquid and vapour phase polymer cross-linking 

Native silica aerogels can be reinforced with different organic polymers, starting from the 

functionalization of secondary silica particle surfaces with appropriate functional groups. The 

functionalization of the surface of silica particles within the inorganic network can be 

achieved through co-condensation of the core precursors, namely TMOS or TEOS, with silica 

precursors containing the special organic functionality in their chemical structures. Then, the 

polymerization normally can be performed by introducing the organic monomer through the 

post-gelation solvent exchange and then promoting the reaction of the silica functionality with 

monomers (Figure II. 13). This multistep liquid-phase based reinforcing approach is quite 

long due to the solvent exchange process, the slow diffusion rates of monomers in the wet gel 

and the heating necessary to promote the reaction of the monomers with the silica surface, 

which is followed by more solvent exchanges and supercritical drying [23, 28, 29, 48, 52, 53, 
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95, 176-178]. In addition, the monomer is usually introduced into the wet gel by soaking the 

gel in a monomer solution and, thus, sometimes the monomer does not uniformly diffuse in 

the gels and, during the replication process, deviations of the aerogel properties are detected 

[49].  

 



Chapter II. Historical background and chemistry of sol-gel process, drying techniques and state of the art for 

mechanical reinforcements of silica aerogels 

 

 40 

 

Figure II. 13 a) Concept of polymer reinforcement using reactive groups on the silica surface; b) 

Epoxy cross-linking of silica aerogels. Inspired in [49]. 

In order to eliminate these time consuming and tedious post-gelation steps, two effective 

alternatives to the previous approach can be used. The first alternative is to introduce the 

organic monomers in the initial sol, which contains the whole silica precursors and gelation 
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solvent, in order to carry out the procedure in a simple one pot fashion [22, 49, 179]. This 

method provides the in situ formation of inorganic silica network with organic monomer 

contained in the pores. As in this step the monomers are already present inside the inorganic 

matrix of the wet gels, the diffusion of the monomer to the gel is not a limiting factor, 

therefore, the polymerization reaction is more efficient. Moreover, the elimination of time 

consuming steps of soaking the wet gel inside the monomer solution, in the in situ process, 

makes it more cost effective [54]. Figure II. 14 presents precisely the difference between the 

two liquid based routes for the development of polymer reinforced silica aerogels.  

Very recently, Duan et al. [180] established a new one-pot reinforcement strategy with the 

scope of shorter production time of strong silica aerogels. In this work, firstly APTES end 

capped polymer chains (Figure II. 15) prepared then integration of polymer to silica gel 

network was achieved simply via condensation of APTES end groups with TEOS precursors. 

In this study a factor of 5-fold increase in compressive modulus with 60% increase in density 

was achieved with great reduction in time of production of aerogels from 10 days to 

approximately 4-5 days. 
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Figure II. 14 a) Traditional method to prepare cross-linked aerogels. Each wash step takes 24 hrs, 

and heating to cross-link can take as long as 72 hrs (This process require approximately 1 liter of 

solvent to prepare one ~20 ml cylindrical monolith), b) One-pot synthesis of cross-linked aerogels; the 

gray counterparts are prepolymers in the sol that are inert to gelation. Once the gel is formed, it can 

react to initiate cross-linking. After one wash, which removes any unreacted components, the monolith 

is supercritically dried. 

 

Figure II. 15 APTES-End-Capped Pre-polymer [180]. 

The other recent approach for eliminating the post-gelation treatment is to cross-link the 

aerogels through gas phase after being dried supercritically [25, 181]. This can be carried out 

through the deposition of a desired monomer throughout the pores surface of an aerogel, by 

means of chemical vapour deposition (CVD) or atomic layer deposition (ALD) [25, 181-183]. 
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Overall, all liquid-phase cross-linking strategies, whether one pot or multi step, cause 

significant increase in strength (up to 8 MPa) but, on the other hand, they increase the density 

(≈ 0.5-0.8 g/cm3) and decrease the surface area (≈ 40-600 m2/g). The density and then 

mechanical properties can be well controlled by varying several factors, such as silicon molar 

concentration in the sol [21, 23, 29, 48, 49, 154, 184], the organic monomer concentration 

[23, 48, 49, 51, 154, 179], the gelation solvents [154, 184] and so on. The best samples with 

optimum physical and mechanical properties were selected by some authors through a 

statistical DoE studies [29, 32]. 

For the CVD procedures, the density of the silica aerogel composites was in the range 0.095-

0.230 g cm-3, and it also could be controlled by variation of the exposure times of the 

functionalized silica aerogel in the monomer vapour [25]. In this approach, the typical cross- 

linked aerogels can be 31 times stronger than the original silica aerogels before CVD 

treatment, with only 2-fold reduction in the surface area.  

Different possible polymer reinforcements of silica aerogels, with their detailed chemical 

approaches, are extensively studied and reviewed within different research groups. Table II. 2 

summarize some examples of polymeric systems that have been applied to improve the 

mechanical properties of silica aerogels by cross-linking. Some of the physical and 

mechanical properties of the obtained materials are also presented. 

II. 6.2.3 Advanced methods for polymer reinforcing of silica aerogels 

As outlined in the previous section, the one pot, in situ, cross-linking process of silica is 

efficient for large scale production of these materials and can eliminate the time consuming of 

post-gelation treatments of the wet gels. But, performing the cross-linking part with 

hydrolysis and condensation of silica precursors is not always responsive to some kind of 
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polymerization techniques. In fact, gelation of silica is based on acidic and basic catalyzed 

ionic processes, and to perform the cross-linking reaction simultaneously it is necessary to 

have a polymerization system with higher activation barrier than gelation, or performing 

through non-ionic process like free radical polymerization [133]. The implementation of this 

procedure for free radical polymerization seems to be effective but still needs further post-

gelation thermal or light treatment.  

The free radical polymerization can be achieved through modification of silica surface with 

olefins. From there, the polymerization follows the ‘’grafting to’’ or radical coupling process, 

in which the coupling of the radicals to the surface of silica aerogels occurs [52]. It can be 

also performed via surface decoration of silica with radical initiator, followed by 

polymerization through the ‘’grafting from’’ approach, initiating the polymerization from the 

surface of silica aerogels [177, 185]. 

With the modification of the silica surface with Si-AIBN radical initiator (Figure II. 16), 

Leventis et al. [177] applied the ‘’surface initiated grafting from’’ approach for integration of 

polymethylmethacrylate (PMMA), polydivinylbenzene (PDVB) and polystyrene (PS) in the 

silica network, with polymerization starting from the surface of the silica aerogel. The 

radicals were used to initiate the polymerization of vinyl groups grafted to the surface of the 

silica gel. Although this approach is simple and allows high control on polymer coating 

around silica and mechanical properties comparable with the ‘’grafting to’’ approach, the 

polymerization still is uncontrolled, which increases the polydispersity of the polymer. 
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Table II. 2 Examples of polymeric systems, with the method of cross-linking to silica aerogels and 

selected properties of cross-linked aerogels. 

Silica Method of 
crosslinking 

Cross linking 
polymer Density (g cm-3) 

Ultimate 
strength 
(MPa) 

Surface 
area (m2 g-1) Reference 

Non-modified 
Silica (Si-OH) 

Post gelation 
washing Polyurea 0.241-0.564 0.01-4 140-541 [28, 89] 

Gas phase Poly cyanoacrylate 0.235 - a 200 [181] 

 
NH2-modified 

Post gelation 
washing 

Polyurea 
 

0.48 186±22 261 [176] 

0.06-0.523 26.62-
261.26 8.3-320 [23] 

0.3-0.954 0.25-1.24 -d [178] 

Poly styrene 0.413-0.768 0.059-0.251 180-393 [53] 

Epoxide 0.21-0.59 0.04-1.9 267-856 [29, 48] 

One pot 
synthesis 

Epoxide 0.198-0.842 1.5-2.7 36-392 [49] 
Polyimide ∼0.1 Up to 2.5 240-260 [179] 

Gas phase Poly 
(cyanoacrylate) 0.095-0.23 0.021-

0.651b 
522.7-
964.2 [24] 

VTMS 
modified 

Post gelation 
washing Poly styrene 0.122-0.332 0.6c 8-750 [52] 

AIBN-modified 
 

Post gelation 
washes & one 
pot synthesis 

Poly styrene 0.2-0.549 0.09-28.86 65.98-
668.3 

[177] Poly methyl 
methacrylate 0.198-0.807 93.13 46.05-781 

Poly 
divinylbenzene 0.27-0.31 0.85 247-731 

One pot 
synthesis polyacrylonitrile 0.177-0.475 -d 144-681 [22] 

a - The rupture strength increased (32×) to 17.6 N  
b - Three-point bend-beam flexural strength  
c - Only in 25% strain 
d - Not reported 

On the other hand, if a significant portion of the initiator remains in the silica matrix, it 

causes the decomposition of the azo bridged silsesquioxane during the heating of the gels, and 

this leads to a weakening of the mechanical properties. 
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Figure II. 16 Chemical structure of silica wet gels obtained from a bis-triethoxysilane 

derivative of AIBN. Inspired in [177]. 

In order to overcome the problem arising from free radical surface initiated reaction, and to 

allow a greater control on molecular weight of the polymer and, indirectly, on the mechanical 

properties of the silica aerogels, Boday et al. [24] applied a controlled polymerization reaction 

for cross-linking the surface of silica with PMMA. For this purpose, they implemented the 

‘’Atom Transfer Radical Polymerization’’ (ATRP) technique [186], for controlling the 

molecular weight and polydispersity of the polymer on silica aerogel surfaces. In their 

approach, initially, the sol-gel processable ATRP initiator was synthesized. Afterwards, as 

shown in Figure II. 17, the surface of silica was modified with the ATRP precursor through 

co-gelation with TMOS precursor. Then, in next step, the vinyl polymer grew from colloidal 

secondary particles of silica via the ATRP process and, after supercritical drying; the polymer 

covered the surface of the silica network and reinforced it. This approach allows the 

incorporation of well-defined polymers with a versatile methodology for polymerization with 

controlled amount of vinyl groups and cross-linkable monomers. The resulted polymer 

reinforced aerogels comprised polymers with polydispersities from 1.2 to 1.8. The aerogel 

bulk densities were in the range of 0.177-0.47 g cm-3, and flexural strength ranges from 15.4 

to 63.5 KPa, with surface areas in the interval 144-681 m2 g-1. 
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Figure II. 17 Formation of an initiator-modified gel, ATRP growth of PMMA on surface and 

supercritical drying to afford a silica-PMMA composite aerogel. Adapted from ref. [24]. 

Recently, Duane et al [187] modified silica network by reacting them with polyhedral 

oligomeric silsesquioxane (POSS) as a multifunctional reinforcing agents. POSS molecule 

with phenyl, isobutyl, and cyclohexyl organic side groups and several Si-OH functionalities 

were incorporated into silica networks via reaction between Si-OH functionalities in POSS 

molecules and silanes (Figure II. 18). The POSS modified aerogel structures offered 

significant reduction of polarity and a 3-fold increase in the compressive modulus compared 

to the native aerogels with negligible changes in the bulk density. 
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Figure II. 18 Illustration showing reactions leading to silica network formation. Path 1 shows 

formation of unmodified silica networks, and path 2 shows modification of silica networks by POSS 

molecules. Illustration shows how a tri-POSS molecule can covalently bond to the silica network 

[187], with permission. 

II. 6.2.4 Cost estimation of polymer silica aerogels  

For the production of aerogels with approximately the same physical properties and 

mechanical strength by different reinforcing strategies, Table II. 3 was built to give a global 

comparative idea about the cost efficiency to produce a typical cylindrical strong aerogel with 

12 cm length, 1 cm of diameter and bulk density of ≈ 0.3 g cm-3. In this table, several issues 

such as consumption of starting material, amount of solvent, drying conditions and resources 

(representing mainly the energy needs) and time of preparation (representing the human 

resources) are compared for different strategies considered in Section II. 6.2. This table may 

be useful to estimate the cost inherent to each of these methodologies and to choose a certain 
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route according with the existent resources. It should also be noted that due to the non-

consistency between the extracted synthesis/processing/drying information in the literature, 

the data presented in this table is defined for the production of lab scale aerogels with the 

conditions that are optimized within the authors’ research group. 

Table II. 3 Comparison of the required resources for preparation of reinforced silica aerogels/aerogel-

like monoliths using different synthesis methodologies (for and aerogel with 12 cm length, 1 cm 

diameter and bulk density ≈ 0.3 g cm-3) 

Type of reinforced 
silica 

Silica 
precursors/ 

Other starting 
materials 

Total time 
for 

preparation 
(Days) 

Solvent for post-
gelation washing 
and/or monomer 
diffusion (Liter) 

Drying methods 

Polymer reinforced 
aerogel-like material 

(xerogel) 

Main precursor: 
4.47 mL 

Surface modifier 
a: 

1.5 mL 
Monomer: 5.25 gr 

≈5 days ≈1 L 
Ambient pressure drying 

in an oven: 
a) Electricity – 2-3 days 

Class I hybrid 
aerogels 

Main precursor b: 
4.47 mL 

Monomer: 5.25 gr 
≈5 days ≈0.5 L 

SFD: 
a) Electricity – 4-5 h; 

b) CO2 – 51.55 L (STP), 
450 mL (40°C, 130 bar) 

c) Solvent – 120 mL 

 
Class 
II 

hybrid 
aerogels 

 

Multi-
step 

synthesis 

Main precursor: 
4.47 mL 

Surface modifier: 
1.5 mL 

Monomer: 5.25 gr 

≈5 days ≈1 L 

SFD: 
a) Electricity – 4-5 h; 

b) CO2 – 51.55 L (STP), 
450 mL (40°C, 130 bar) 

c) Solvent – 120 mL 

One pot 
synthesis 

Main precursor: 
4.47 mL 

Surface modifier: 
1.5 mL 

Monomer: 5.25 gr 

≈3 days ≈0.5 L 

SFD: 
a) Electricity – 4-5 h; 

b) CO2 – 51.55 L (STP), 
450 mL (40°C, 130 bar) 

c) Solvent – 120 mL 

Gas 
phase 

Main precursor: 
4.47 mL 

Surface modifier: 
1.5 mL 

Monomer: 5.25 gr 

≈4 days ≈0.1 L 

SFD: 
a) Electricity – 4-5 h; 

b) CO2 – 51.55 L (STP), 
450 mL (40°C, 130 bar) 

c) Solvent – 120 mL 
a It is assumed that silica surface modifier contributes 20 ml% of total silicon. 
b This technique may require less silica precursors, since the surface modification of silica surface is not so 
crucial, therefore less silica precursors are used. 
 



Chapter II. Historical background and chemistry of sol-gel process, drying techniques and state of the art for 

mechanical reinforcements of silica aerogels 

 

 50 

II. 6.3 Additional approaches to strengthen silica aerogels 

Mechanical strengths of silica aerogels have also been improved using polymer 

nanoparticles (PNP) which are functionalized with reactive alkoxysilanes [188]. However, the 

strength is only improved at very high loadings of the PNPs. The size of the PNPs are large, 

on the scale of 100 nm and the cross-linking of the silica only furthered with the limited 

number of alkoxysilanes on the surface of the PNPs, without significant increase in the 

particle connectivity. Silica aerogels have also been prepared by templating aerogels during 

the sol-gel polymerization, where the aerogel is prepared from sol-gel polymerizations with 

methyl triethoxysilane [146], the addition of reactive silanes to the sol-gel polymerization 

[189] and even fiber reinforcing [141]. However, none of these approaches have resulted in 

the strengths achieved by the polymer cross-linked silica aerogel composites. 

II. 7 Summary and conclusions from literature 

Tailoring the underlying silica backbone structures with more flexible silica precursors, 

compounding the three-dimensional network of silica structure with different polymeric 

systems and integrating a low percentage of different fibers in the silica network, not only 

improves the strength of the aerogels, but also, in most cases, their elasticity [32]. In general, 

increasing the amount of polymer cross-linker leads to a dense and stiff structure of silica and 

weakens the thermal insulation properties [177]. Section II. 6.2 and Table II. 2 summarized a 

few major advancement in the synthesis and reinforcing of silica aerogels. 

 A few conclusions can be drawn from the published work on aerogels, as presented below: 

1. Silica aerogels can be reinforced by cross-linking with organic compounds such as 

urethanes (isocyanate), epoxies, etc. Acrylate and methacrylate derivatives in particular 
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are a good choice since they are readily polymerized and they have not been 

investigated extensively to improve mechanical properties of silica aerogels.  

2. An alkyl-linked bis-silane, bis(trimethoxysilyl)hexane, has shown to increase elastic 

recovery in polymer reinforced aerogels. However additional studies on this type of 

aerogels compared to the aerogels containing aryl bridged bis-silane precursor in their 

structures is required for a better understanding of the role of the alkyl/aryl moieties on 

the physical, mechanical, thermal and insulation properties of this type of aerogels.  

3. Replacing some of the network siloxane (-Si-O-Si-) by a rigid spacer of aryl-linked bis-

silane has been also shown to control the size of porosity and probably cause open 

structures with large pore volume. Large mesopore volume in turn would be in favor of 

 thermal insulation performance of aerogels,  however larger quantity of these groups 

might cause some rigidity in the silica network. Developing aerogels by insertion of aryl 

linkage between silica particles at optimal quantity and investigating their final material 

properties compared to the silica having alkyl linkage is a possible point of interest 

exploited here. 

4. It was felt that gelation and reinforcement if achieved in one-pot synthesis could reduce 

the total time of the process.  

Therefore, it is anticipated any nonuniformity of the reinforcement induced by slow poly

mer chain diffusion in post-gelation reinforcements step could be avoided. The present 

work was motivated by the later needs and implement on-pot strategy of synthesis.  

5. In recent years, there is a growing number of researchers that focused in the low energy 

and cost effective development of aerogels in order to make the large scale or mass 

production and commercialization of this material possible. In this context, the 

replacement of costly and risky supercritical drying process by sub-critical ambient 

pressure drying condition can be an effective solution in this context. The combination 
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of reinforcing of silica gels with polymers and simultaneously extra pos-gelation 

treatment by submerging silica wet gels in low surface tension solvent prior to drying 

would be a possible solution to avoid capillary pressure inserted by alcoholic solvents 

upon drying. Therefore, this strategy is a possible solution for a facile development of 

crack free aerogel in various sizes and geometries, when the size of wet gels does not fit 

with supercritical drying chamber/cell.  

6. Due to the trade off between aerogels properties, optimization studies using statistical 

design of experiment (DOE) are a possible way to have materials with balanced and 

optimized properties without scarifying specific main properties to improve other 

desired material properties. 

7. Based on the literature surveys, the silica-polymer aerogels synthesized by means of 

controlled polymerization technique has not been investigated yet. It was felt that by 

controlling the grafting ratio and molecular weight of polydispersed polymer grown on 

the silica particles’ surface, the main properties including bulk density, mechanical 

properties of silica aerogels can be controlled and, therefore, somehow a structure-

property relationship can be established. This work was also motivated by this strategy 

and is a contribution to the mechanical reinforcement of aerogels by initiating the 

polymerization from the silica surface by conducting controlled polymerization 

technique.  
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Chapter III. Synthesis of lightweight polymer-reinforced silica aerogels 

with improved mechanical and thermal insulation properties for space 

applications. 

This Chapter comprises the work published in Microporous and Mesoporous Materials 

197 (2014) 116-129, by: Hajar Maleki, Luísa Durães, António Portugal. 

III. 1 Introduction  

From the previous work on improving the mechanical properties of silica aerogels the 

greatest improvement was achieved by the reinforcement with polymers. It has also been 

shown that adjusting the nanoskeleton of silica aerogels using different silica precursors can 

lead to improved mechanical properties, mesoporosity and thermal conductivity.  

In the present work, the general goal is also to synthesis strong polymer reinforced aerogels 

with reasonable mechanical strength, densities and thermal conductivities as low as possible 

in order to meet the requirement for aerospace applications. In order to compensate for the 

increase in the backbone thermal conductivity due to the cross-linking with polymer, we 

changed the microstructure pattern of the silica aerogels by co-gelation of the silica backbone 

with the alkyl-linked bis-silane 1,6-bis(trimethoxysilyl)hexane, BTMSH, and the aryl-linked 

bis-silane 1,4-bis(triethoxysilyl)-benzene, BTESB. Recently, Randall et al. [29] investigated 

aerogels made by different alkyl-linked bis-silane precursors with different lengths of the 

spacer groups (bridges), in order to tailor the elastic properties of the reinforced aerogels. The 

purpose of this research was to promote flexibility/elasticity in the aerogel as well as to 

achieve higher compression strength by the polymer reinforcement. They indicated that the 

hexyl-linked bis-silane BTMSH, was the most effective of the bis-silanes tested due to the 

results of higher mass yield and elastic recovery. However, no special attention was given to 
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thermal conductivity of this type of aerogels. On the other hand, until now, there is no report 

in the literature focusing an the relative merit of a bis-silane type precursor having an aryl 

spacer, when compared to other types of bridged bis-silane. Loy et al. and Shea et al. [35, 94, 

153] made extensive studies on arylene-bridged polysiloxanes and concluded that, aryl-

bridged precursors lead to the aerogels with less shrinkage and more controlled porosity when 

compared to the aerogels derived from alkyl-linked bis-silanes. However, they did not make 

any systematic comparative report about their mechanical and thermal insulation properties.  

The particular focus of this work is the synthesis and mechanical reinforcement of silica 

aerogels with alkyl and aryl moieties, in order to study the role of the underlying silica 

backbone on the resulting properties of aerogels in a single type of polymerization. 

The BTESB precursor contains a rigid aryl group that does not favour the elasticity of the 

aerogel. In the present work, we introduced this precursor in a very low concentration (up to 

10 mol% of the total silicon), in order to develop aerogels with open porous structures, which 

favour higher thermal insulation performance. A significant improvement in compression 

strength was obtained by polymer cross-linking. In order to react the inorganic silica 

backbone with an organic component (multi-functional methacrylate), we modified the 

surface chemistry of the silica aerogels with methacrylate-containing silica precursors, 

through co-condensation of core silica precursors namely TMOS (Tetramethylorthosilicate) 

and aryl or alkyl linked bis-silanes with TMSPM (3-(trimethoxysilyl)propyl methacrylate). 

Figure III. 1 presents the proposed molecular structures of nonreinforced surface modified 

silica aerogels with the three different underlying silica structures prepared in this work. The 

selected organic monomer is a multifunctional methacrylate, which can cause extensive 

branching and reinforcement. Therefore, an increased compressive strength of the aerogel 

monoliths is expected with an approximately constant overall intrinsic flexibility of the silica 
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backbone. Since, the tri-methacrylate cross-linker is soluble in methanol (gelation solvent), 

we added the organic monomer to the gelation solvent in the initial step of the sol preparation.  

 

Figure III. 1 Three proposed molecular structures of methacrylate-modified silica aerogels: a) 

methacrylate-modified aerogel without bridging groups ([Bis-silane]=0%), b) methacrylate-modified 

aerogel with a part of the total silicon derived from BTMSH, c) methacrylate-modified aerogel with a 

part of the total silicon derived from BTESB. 
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Then, polymerization occurs after the sol-gel process by applying a post-gelation thermal 

treatment. Such a one pot strategy leads to a significant simplification in the synthesis of silica 

composites and reduced the total preparation time of silica monoliths to approximately two 

days, which is a drastic reduction when compared to the multistep traditional approaches to 

prepare isocyanate and styrene cross-linked silica aerogels [49, 52, 177, 190].  

Additionally, the presence of the monomer inside of silica gel monolith causes less 

consumption of the solvent during the post-gelation treatment, therefore to some extent leads 

to less energy and raw material consumption [55].  

In this study, we evaluated the effect of different critical factors on some selected 

physicochemical properties of the resulting aerogels. Such an experimental design was a 

starting point to understand the relation between the variations of each factor and the target 

properties of the silica aerogels for further exploration.   

III. 2 Experimental 

III. 2.1 Materials 

Tetramethylorthosilicate (≥99%; TMOS), 3-(trimethoxysilyl)propyl methacrylate (98%; 

TMSPM), ammonium hydroxide (NH4OH; 28-30 wt% solution), methanol (MeOH), ethanol 

(EtOH), tris[2-(acryloyloxy)ethyl]isocyanurate, 2,2′-azobis(2- methylpropionitrile) (98%; 

AIBN), 1,4 - Bis(triethoxysilyl)-benzene (96%; BTESB) and acetone were purchased from 

Aldrich. 1,6 - Bis(trimethoxysilyl)hexane (98%; BTMSH) was purchased from Cymit. All 

reagents were used without further purification.  
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III. 2.2. Methods 

III. 2.2.1 General 

Variables used in this study include the bis-silane type (BTMSH, BTESB), the mole fraction 

of the total silicon derived from BTMSH and BTESB (note that these precursors contribute 

with two silicon atoms in every molecule, and the rest of the silicon is derived from TMOS 

and TMSPM). By keeping the amount of silicon derived from TMSPM as 20 mol% of total 

silicon for the whole formulation, the amount of silicon derived from BTMSH varied from 0 

(named as aerogel without bridging group), to 20 and 40 mol%; in the aerogel derived from 

BTESB, the amount of silicon from this procedure had values of 0, 5 and 10 mol% of the total 

silicon.  

The amount of Tris[2-(acryloyloxy)ethyl] isocyanurate cross-linker (tri-methacrylate) was 

another variable, given as mole fraction to TMSPM. It is assumed that each tri-methacrylate 

cross-linker molecule reacts with the methacrylate groups of three TMSPM molecules via 

radical polymerization. Hence, a [Tri-meth]/ [TMSPM] molar ratio (R) of 0.3 is 

stoichiometric, whereas ratios of 0.6 and 2 represent an excess of monomer.  

For the water/total silicon mole ratio, r, a value of 2 is normally considered as a 

stoichiometric value for hydrolysis and condensation of TMOS [42]. However, an excess of 

water is usually needed to complete the reaction. In this study, r was kept constant at a value 

of 4 for all formulations. Table III. 1 summarizes the defined parameters of this study, with 

their levels, and the specific nomenclature used in this paper.  
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III. 2.2.2 Preparation of polymer-reinforced silica wet gels 

To illustrate, a typical procedure is outlined for a formulation with total silicon concentration 

of 1.3 mol/L in the sol, a TMSPM Si fraction of 20 mol %, a BTMSH Si fraction of 40 mol% 

and the tri-methacrylate monomer in a 0.3 to 1 ratio to TMSPM (Run: B_40_R_0.3)-see Table 

III. 2.   

Table III. 1 Synthesis parameters of reinforced silica aerogels. 
Parameters Levels Nomenclature 

Bis-silane types BTMSH     B 
BTESB Bz 

 - Nb 
   

R=[Tri-meth]/[TMSPM] 
Molar ratio 

0.3 R_0.3 
0.6 R_0.6 
2 R_2 

   

[BTMSH] Si mol% 
0% Nb 

20% B_20 
40% B_40 

   

[BTESB] Si mol% 
0% Nb 
5% Bz_5 

10% Bz_10 
 

A solution of 1.52 mL (10.56 mmol) of TMOS, 1.74 mL (10.56 mmol) of BTMSH, and 1.23 

mL (5.2 mmol) of TMSPM was cooled to below 0°C in an ethanol mixed dried-ice bath 

(Solution 1). Solution 2 was prepared by adding 12.9 mL of gelation solvent (methanol), 0.73 

g of Tris[2-(acryloyloxy)ethyl] isocyanurate monomer, 1.9 mL of H2O (r=4), 0.7 mL of 

NH4OH and 0.07 g of AIBN (formulated to 10 wt% of the organic monomer). The two 

solutions were mixed and poured into two propylene cylindrical molds, nominally with 17.2 

mm in diameter. The gels were formed within 5 min to 2 hours depending on the formulation. 

After aging for 24 hours, the wet gel was demolded and placed in a cylindrical reaction flask, 

containing enough ethanol solvent to cover the gel and the same concentration of initiator 
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used in the gelation step. The sample was refluxed at 70°C, for 6 hours, to promote free 

radical polymerization of organic monomers inside the pores of the wet gel with silica surface 

functionalities. After cross-linking, in order to remove residual water and ethanol, the samples 

were washed three times with the gelation solvent, giving an 8 hours interval between each 

washing step, and, then the cylindrical wet gels were introduced to supercritical fluid 

extraction chamber to dry.  

III. 2.2.3 Preparation of nonreinforced silica aerogels  

The nonreinforced aerogel for the same proportion of silica precursors was prepared 

following a procedure similar to that described above. In this case, the addition of the 

monomer and radical initiator to the Solution 2, as well as the polymerization reaction step 

were eliminated. After the gelation of the samples and 24 hours aging, they were demolded 

and washed three times with the methanol. After, the wet gels were dried using supercritical 

CO2 fluid extraction under the conditions explained in following section. Figure III. 2 present 

briefly the whole chemical procedure to develop cross-linked and non-cross-linked aerogels 

with a representative synthesized wet gel and cross-linked aerogel sample.  

III. 2.2.4 Diagram of the supercritical drying (SCD) system 

The silica aerogels used in the above experiments were prepared by SCD with carbon 

dioxide (CO2) as the supercritical solvent. The diagram below (Figure III. 3) represents the 

design of the supercritical drying system.  

The system contains a pump for the CO2, a pump for the solvent, a pressure cell to place the 

sample, several regulating valves and a means for heating and maintaining pressure in the 

system.  
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Figure III. 2 Practical approach for the synthesis of polymer-reinforced and nonreinforced silica 

aerogels. 

 
Drying of the silica gels involves dealing with several important valves, in which, each valve 

is carrying out the role of the regulation of the flow of the solvent or CO2 during pressurizing 

and depressurizing steps. 
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Figure III. 3 Diagram of SCD system. 

Basically, during the flux of the solvent through the system and switching to the CO2 

passing, valves 2, A and 3 need to be carefully regulated. Valve 1 and 5 are permanently open. 

Carbon dioxide (CO2) is pumped as a liquid, usually below 5°C, therefore a cooling bath 

(JULABO) or circulator is mounted in the system before the pump head of CO2.  

The pump of solvent (KNAUER) operates at a maximum flow rate of 15 mL/min and 

maximum pressure of 150 bar. The pressure and flow rate of the solvent can be adjusted by 

choosing the desired values by function buttons and display on the pump. The pump for the 

CO2 is a pneumatic pump (k-1900) operating at a maximum pressure of 1000 bar and 

equipped with air pressure gauge and regulator for compressed air.  

The silica wet gels are placed inside of the cylindrical sample vessel, which has 

approximately 50 cm3 of volume. The vessel is made of stainless steel and is manufactured to 

resist the gas or solvent pressure. The sample vessel must be heated, which is accomplished 

by placing it inside an oven. In terms of CO2 flux in the system, CO2 is cooled before 

pumping it to maintain liquid conditions, and, then heated after pressurization.  

The pressure in the system is maintained from the pump right through the pressure vessel by 

a back-pressure regulator (BPR). Heating of the BPR must be supplied, as the adiabatic 
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expansion of the CO2 results in significant cooling. This is problematic, if the water residue is 

present in the system, as it may freeze and cause blockage in the system.  

III. 2.2.5 SCD Procedure for Silica Aerogel Preparation 

To use the above SCD system the following procedure was followed. Before drying the 

sample with scCO2, the cylindrical silica wet gel samples were carefully placed in the sample 

cell by initially introducing the sample in another cylindrical open-ended glass tube.  

The thick metal back of the cell is screwed tightly into place and is set vertically in the oven, 

as shown in Figure III. 4. Primarily, all system’ s valves related to the flow of CO2 must be 

closed and all valves in path of the methanol solvent flow (valves 3 and 5) should be opened 

to wash the silica wet gels. In this way, we can be certain of the purification of monoliths and 

improve the flow of CO2 due to the extensive solubility of CO2 in the methanol. Normally, the 

solvent passes through the system at 125 bar and at a mass flow rate of 2 mL min-1. The flow 

rate of solvent is regulated with function buttons in the solvent pump while the BPR valve 

regulates the pressure.  

 

 

Figure III. 4 Sample vessel/cell. 
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Unreacted silica precursors and organic residues are eliminated by passing the solvent 

through the monoliths for 1 hour at constant temperature of 50°C. Afterward, the solvent flow 

is stopped and the system is depressurized by slowly opening the BPR valve. When the cell 

pressure in the digital counter is fixed at 0.5 bar, the valve 3 completely closed and instead 

valves 1, 2 and A opened followed by closing the BPR thoroughly to pressurize the system 

with supercritical CO2. The CO2 cylinder should be opened slowly and followed by the 

opening of the emergency shut off valve. Before adding the liquid CO2 to the cell, the 

flushing valve in the pump head should be opened to check the flow of CO2. The slight 

pressure of smoky and icy CO2 can be felt by placing the finger over the valve. By slowly 

opening the regulator for compressed air in the CO2 pump, the pressure of the CO2 in the cell 

reaches the supercritical values. However, the system is set for a pressure above the critical 

pressure of CO2 to increase the diffusivity of CO2 in the methanol, which is present in the 

silica wet gel pores. When the pressure and temperature are both above the supercritical point 

of CO2 (50ºC, 130 bar), the sample is exposed to the flow of supercritical CO2 for 90 minutes, 

having a mass flow rate of 5 mL/min and a CO2 volume of 51L (STP).  

In the final step, the flow of CO2 in the system is interrupted by closing the regulator for 

compressed air in the pump followed by the CO2 shut off valve closed on the cylinder. The 

evacuation of the CO2 from the cell is accomplished by opening the BPR valve at a constant 

rate. Once the CO2 is completely removed, the processing for the preparation of silica 

aerogels is complete. At this point the system is cooled back to 20ºC and the cell sample is 

opened.  
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III. 2.3 Characterization techniques 

Solid 29Si and 13CNMR spectra of the aerogels were obtained by using an Inova 500 

spectrometer using a 4 mm solids probe with cross-polarization and magic angle spinning at 

11 kHz.   

The bulk density (ρb) was determined by measuring the weight and volume of the sample. 

Dimensional shrinkage (%) is taken as the difference between the diameters of the aerogel 

monolith and of the 20 mL syringe mold (nominally 17.2 mm). He picnometry (Accupyc 

1330, Micromeritics) was used to measure the real (skeleton) density of the samples. 

Combining the information of the skeleton and bulk densities, it is possible to evaluate the 

porosity of the samples. In addition, we used the Nitrogen gas adsorption (Accelerated 

Surface Area and Porosimetry ASAP 2000, Micromeritics) for determination of the specific 

surface area, pore size distribution, pore surface area and pore volume of the material. Before 

the analysis, the sample was outgassed at 60oC in vacuum (10-5 bar) during 24 h, to remove 

adsorbed species. In the analysis, volumes of the adsorbed nitrogen at five different relative 

pressures (0.05 to 0.2) were taken at 77 K, to obtain the specific surface area by the BET 

theory. The desorption isotherm and the BJH theory were used for the porosimetry 

measurements.  

Scanning electron microscopy (SEM) (JMS-5310, JOEL) was used to observe the materials 

microstructure. Due to the low electrical conductivity of the highly porous silica-based 

samples, an Au film was deposited on their surface, using the PVD (Physical Vapor 

Deposition) technique during 20 s.  

For transmission electron microscopy (TEM), the specimens have been prepared by cleaving 

a small section with a razor blade, and then attaching this section to a copper-mesh TEM grid. 
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Grids were visualized with a microscope (JEOL JEM 1400), operated at 120 kV. Much of the 

specimens were too thick for analysis, but the thin edges were electron transparent.  

The thermal conductivity of the reinforced aerogels was measured using a transient method 

(Thermal constants analyzer TPS 2500 S, Hot Disk). The sensor is clamped between two 

identical disc shaped pieces of the sample, which have a diameter of 1cm and thickness of 0.5 

cm (properly cut from the cylindrical aerogel samples). This analysis was carried out at 20ºC 

and the equipment presents a reproducibility and accuracy over 1% and 5%, respectively.  

Thermal gravimetric analysis (TGA) was performed using a TA model TGA-Q500 

instrument with a heating rate of 10°C min-1, from room temperature to 600°C in a nitrogen 

atmosphere. This equipment allowed the evaluation of the weight contribution of the cross-

linker in the materials. In addition, a simultaneous differential thermal analyzer (SDT), SDT-

Q600, from TA, was used to obtain the complementary DSC curves, in order to better discuss 

the nature of the thermal phenomena (endothermic or exothermic). The analyses in this 

equipment had the same operation conditions as the TGA analyses.  

For the mechanical test, samples were cut with dimensions ratio of 2:1 (length: diameter), 

and were polished to make sure that top and bottom side were smooth and parallel. The 

compression test was conducted following the ASTM standard D695-02a. All tests were done 

at nominal room conditions with a stroke speed of 1.3 mm/min.  

III. 3 Results and discussion  

Resulting properties of the synthesized polymer-reinforced and nonreinforced aerogels 

monoliths under different preparation conditions are presented in Table III. 2 and Table III. 3 

respectively.  

For each formulation in Table III. 2, two independent replicates were performed, and the 
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density and thermal conductivity of all obtained aerogels were measured. Comparing the 

results shown in Table III. 2 with those on Table III. 3 it can be seen that the density in the 

aerogels has been influenced by the type and concentration of the bis-silane as well as by the 

cross-linker concentration (in the reinforced aerogels). 

Mechanical strength of aerogels was improved by introducing bis-silane precursors for the 

reinforced (Table III. 2) and nonreinforced (Table III. 3) materials. It can also be seen that 

cross-linked aerogels have improved in terms of structural integrity (or mechanical properties) 

compared to the nonreinforced counterparts. Basically, in terms of BTMSH based aerogels 

and aerogels without bridged-bis-silane precursor in their underlying silica structure, the 

mechanical properties improvement always is accompanied by an increase in the network 

connectivity and, consequently, an increase in the density and thermal conductivity. While, in 

terms of BTESB based aerogels with comparable density, it has been found that despite of the 

macroscopic and microscopic mechanical strength improvement upon cross-linking, the initial 

thermal insulation performance of native aerogels has been retained or, in most of cases, to 

some extent has been even improved. Therefore, this observation suggests the profound 

influence of the type of underlying silica and cross-linker on the aforementioned properties. 

A deeper discussion of these results is carried out in the next sections. 

III. 3.1 Chemical characterization 

The chemical structures of prepared reinforced and nonreinforced silica aerogels have been 

confirmed by solid 29Si NMR and 13C NMR. Figure III. 5 shows the proposed cross-linking 

strategies to obtain the silica aerogels of this study as well as the schematic expected chemical 

structures. 
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Table III. 2 Measured properties of polymer reinforced aerogels. 

Sample Density 
(g cm-3) 

Shrinkage 
(Diam.%) 

Average 
Elastic 

Modulus 
(kPa) 

Thermal 
Conductivity 
(W m-1 K-1) 

Average Max. 
Stress at break 

(kPa) 

Nb_R_0.3 
 

0.173 
0.189 

 

9 
10 

 

1.73 
 
 

0.044 
0.046 

 

22.8 
 
 

Nb_R_0.6 
 

0.183 
0.187 

 

12 
18 

 

0.93 
 
 

0.0548 
0.0512 

 

137.0 
 
 

Nb_ R_2 
 

0.290 
0.240 

 

17 
20 

 

3.33 
 
 

0.0938 
0.0925 

 

257.0 
 
 

B_20_R_0.3 
 

0.141 
0.162 

 

5 
8 
 

0.95 
 
 

0.044 
0.047 

 

25.0 
 
 

B_20_R_0.6 
 

0.197 
0.188 

 

8 
11 

 

0.93 
 
 

0.052 
0.050 

 

32.2 
 
 

B_20 _R_2 
 

0.271 
0.314 

 

14 
12 

 

6.77 
 
 

0.053 
0.053 

 

400.0 
 
 

B_40_R_0.3 
 

0.220 
0.213 

 

14 
12 

 

2.74 
 
 

0.065 
0.067 

 

213.0 
 
 

B_40_R_0.6 
 

0.220 
0.192 

 

11 
14 

 

2.27 
 
 

0.067 
0.068 

 

248.0 
 
 

B_40_R_2 
 

0.390 
0.330 

 

15 
16 

 

5.96 
 
 

0.089 
0.085 

 

270.0 
 
 

Bz_5_R_0.3 
 

0.129 
0.143 

 

6 
10 

 

1.11 
 
 

0.039 
0.042 

 

17.7 
 
 

Bz_5_R_0.6 
 

0.144 
0.149 

 

11 
15 

 

1.17 
 
 

0.039 
0.043 

 

87.8 
 
 

Bz_5_R_2 
 

0.314 
0.318 

 

13 
13 

 

5.42 
 
 

0.051 
0.053 

 

131.0 
 
 

Bz_10_R_0.3 
 

0.167 
0.163 

 

12 
12 

 

1.44 
 
 

0.039 
0.038 

 

10.7 
 
 

Bz_10_R_0.6 
 

0.179 
0.175 

 

14 
13 

 

0.74 
 
 

0.049 
0.048 

 

78.7 
 
 

Bz_10_R_2 0.250 
0.295 

10 
12 

3.61 
 

0.050 
0.054 

279.0 
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Table III. 3 Measured properties of nonreinforced aerogels. 

Sample Density 
(g cm-3) 

Shrinkage 
(Diam.%) 

Average 
Elastic 

Modulus 
(kPa) 

Thermal 
Conductivity 
(W m-1 K-1) 

Average Max. 
Stress at break 

(kPa) 

Nb 
 

≈0.243 
 

28 
 

-a 
 

-b 
 

-a 
 

B_20 
 

0.192 
 

15 
 

1.98 
 

0.050 
 

32.1 
 

B_40 
 

0.185 
 

10 
 

1.68 
 

0.057 
 

10.0 
 

Bz_10 
 

0.145 
 

20 
 

-a 
 

0.051 
 

-a 
 

a. Samples are too fragile for measurement of this property. 
b. Samples lose their monolithic structure, which hinders the measurement of their thermal conductivity. 

 
Figure III. 5 Proposed cross-linking reaction for silica aerogels with different underlying silica structures. 

Solid 29Si NMR spectra of selected reinforced aerogel samples are shown in Figure III. 6, 

along with that for the sample prepared from plain TMOS only. As shown in Figure III. 6a, 

TMOS-derived silicons appear at -110 ppm (Q4, small peak), -100 ppm (Q3) and -95 ppm 

(Q2), which correspond to the formation of four, three and two Si-O-Si bridges, respectively 
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Figure III. 6b shows the spectrum for monoliths without BTMSH or BTESB. Two broad peaks 

are observed for TMSPM-derived silicon, a peak at -69 ppm (T3M peak) and at -61ppm (T2M 

peak). The peak T2M integrates about half of the area of the peak T3M, indicating that 2/3 of 

TMSPM silicon atoms had completely reacted. Spectrum of Figure III. 6c belongs to the silica 

aerogels 40 mol% of silicon derived from BTMSH. In this spectrum, the three broad 

additional peaks are due to the silicon derived from BTMSH groups. Fully reacted BTMSH 

derived silicon (T3B) appears at -67 ppm, while the T2B peak appears at -58 ppm and the T1B 

appears at -49 ppm [52]. Due to the strong overlapping of T3B and T2B peaks with T3M and 

T2M, it is difficult to figure out the extent of reaction of the silicon atoms for BTMSH. 

However, assuming the same extent of reaction for TMSPM as spectra b and subtracting the 

T3M, T2M, it can be deduced that the area of the T2B peak is to some extent larger than T3B. 

Therefore, it can be concluded that more than half of BTMSH silicon atoms are not fully 

reacted. Figure III. 6d, shows the spectrum for monoliths with 10 mol% of silicon atoms 

derived from BTESB. Two broad and low intense peaks are observed for BTESB-derived 

silicons, a peak at -78 ppm (T3Bz) and other at -71 ppm (T2Bz) [191]. The T2Bz peak is strongly 

overlapped with the T3M and has slightly larger peak area than T3BZ, which indicates a non-

complete reaction of BTESB within the aerogel monoliths. Representative solid 13C NMR 

spectra of selected prepared aerogels are shown in Figure III. 7a-d. The spectrum of Figure 5a 

belongs to the nonreinforced silica aerogels prepared with 40 mol % of silicon derived from 

BTMSH. The broad peaks at 121 ppm, 134 ppm and 174 ppm belong to the aliphatic double 

bond and carbonyl bonds of silica surface methacrylate group derived from TMSPM. The 

methylene groups from hexyl link of BTMSH appear at 12, 22, 32 ppm (Figure III. 7b-c), 

which are masked with other aliphatic carbon due to the polymerization. Figure III. 7b and 

Figure III. 7c belong to the formulations with the same underlying silica as in the spectrum of 
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Figure III. 7a, but with cross-linking with tri-methacrylate, using R=0.3 and R=2, respectively. 

Clearly, the aliphatic carbon double bonds due to the silica surface methacrylate disappear in 

both spectra. Instead, a peak at 150 ppm and the intense and overlapped peak at 171 ppm, due 

the insertion of cyanurate groups and the carbonyl bond of tri-methacrylate monomer, show 

up.  

 

Figure III. 6 Solid 29 Si NMR spectra of aerogel samples formulated from a) TMOS alone, b) Non-

X-TMOS 80 mol% + TMSPMA 20 mol% (Nb), c) Non-X-TMOS 40 mol%+ BTMSH 40 mol% + 

TMSPMA 20 mol% (B_40), d) Non-X-TMOS 70 mol% +BTESB 10 mol% + TMSPMA 20 mol% 

(Bz_10), (X=cross-linked). 
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The spectrum at Figure III. 7b indicates that the reinforced aerogel with R=0.3 still has some 

unreacted carbon double bonds, due to the lower addition of cross-linker to the silica surface, 

and the intensity of the characteristic peak of cyanurate is very low.  

  

 

Figure III. 7 Solid 13 C NMR spectra of aerogel samples a) B_40, b) B_40_R_0.3, c) B_40_R_2 and 

d) Bz_10_R_2. 

In Figure III. 7c the carbon double bonds were totally reacted and the peak area of cyanurate 

is four times higher than the corresponding peak area at Figure III. 7b, Figure III. 7d belongs 

to the cross-linked aerogel with R=2 and 10 mol% of silicon derived from BTESB. In this 

spectrum, with full reaction of aliphatic carbon double bonds, the peak at 135 ppm is the 

evidence of the insertion of aryl group of BTESB to the aerogels. The peak area of the 

cyanurate group in this figure is about 1.5 times higher than the peak area of same group in 

the spectrum of Figure III. 7c. Therefore, it can be proved that, comparing with aerogel 
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samples with 40% BTMSH in their underlying silica network, the extent of polymerization 

for the aerogel sample with 10 mol% of silicon from BTESB is relatively high. Due to the 

lower introduced amount of BTESB (maximum 5-10 mol% of silicon in each formulation) 

into the aerogel and its rigid nature, less steric hindrance and less possible masking of silica 

surface functionality exists in such an aerogel. Therefore, high accessibility of surface 

methacrylate groups leads them to react easily with the cross-linker and, consequently, a 

higher extent of polymerization occurs. Finally, the peak at 65 ppm for all spectra might be 

due to the presence of residual methoxy groups during the incomplete hydrolysis of silica 

precursors.  

Hydrophobic/hydrophilic properties of some selected samples were evaluated by studying 

their water contact angles. Table III. 4 presents the measured values for samples without bis-

silane along with samples containing 10% and 40 mole % of silicon derived from BTESB and 

BTMSH at given R values (0.3 and 2), respectively. Basically, the native TMOS-derived 

aerogels of this study, upon exposure to water, tend to interact promptly with water molecules 

and decompose thoroughly. However, due to the surface functionalization of this aerogels 

or/and cross-linking with tri-methacrylate, this effect has been slightly improved; after 

dispensing the water droplets on the surface, they tend to make holes instead of the total 

decomposition of the silica aerogel. 

            Table III. 4 Water contact angles of selected nonreinforced and reinforced aerogels. 

Bis-silane 
 Water contact angle (o) 

 R_0 R_0.3 R_2 

Nb  0 30±7 0 

Bz_10  130±5 90±8 66±6 

B_40  139±3 102±2 76±5 
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As expected, underlying silica has a major contribution on the hydrophobic nature of the 

prepared aerogels. This can be confirmed by the high contact angle for nonreinforced 

BTMSH (139o) and BTESB (130o) derived gels, which indicates that the hexyl and aryl 

groups are present in the surface and contribute to the hydrophobic nature of the aerogels. 

Apart from the underlying silica effect, the effect of R values on the contact angle of the 

reinforced aerogels also is pronounced, indicating that the cross-linker of this study some how 

suppresses the surface hydrophobicity upon coating the silica particles surface. However, 

despite of the cross-linker interaction with water, the contact angle measured here for the 

reinforced BTMSH derived aerogel (B_40_R_0.3) is in good agreement with the contact 

angle of styrene reinforced aerogels containing BTMSH precursors [52]. 

III. 3.2 Physical and microstructural characterization  

III. 3.2.1 Density, porosity and dimensional changes 

Figure III. 8a shows the bulk density changes for tri-methacrylate cross-linked and non- 

cross-linked aerogels with 0-40 mol% Si from BTMSH and 5-10 mol% Si from BTESB 

versus the [tri-methacrylate]/[TMSPM] molar ratio. This figure shows, as expected, that with 

increasing molar concentration of tri-methacrylate monomers, the density increases, 

especially at a higher concentration of BTMSH due to the insertion of additional mass of 

hexyl groups. At the lowest concentration of tri-methacrylate monomer, due to the little 

incorporation of cross-linker in the aerogels, almost similar densities are obtained for non-

cross-linked and cross-linked aerogels. Porosity always follows the opposite trend of density 

and it is calculated by Equation (III-1) from the measured bulk density (ρb) and the skeletal 

density (ρs), being the second measured by helium pycnometry.  
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Porosity  (%)   =     
1
ρ!
  −    1ρ!    1

ρ!

  ×  100                                                                                                                                              (  III− 1)   

 The results of skeletal density (ρs) and measured porosity of representative reinforced and 

nonreinforced aerogel samples are indicated in Table III. 5. 

 

 

Figure III. 8 a) Bulk density changes and b) dimensional shrinkage of aerogel samples with different 

mol % of Si from BTMSH and BTESB as a function of [Tri-meth]/[TMSPM] molar ratio. 

Considering Equation (III-1), the cross-linked samples of this study have relatively open 

structure, for instance, the typical reinforced aerogel with average bulk density of ρb =0.390 g 

cm-3 has 71% porosity, whereas with same underlying silica, the nonreinforced aerogel with 

average density of ρb=0.185 g cm-3 is 85% porous. Examining the porosity of some selected 

samples, it can be concluded that the porosity decreases with increasing molar concentrations 

of both BTMSH and tri-methacrylate cross-linker. Both density and porosity of aerogels are a 

consequence of the dimensional shrinkage of the aerogel during the drying and processing 

steps. As indicated in Figure III. 8b and Table III. 2, Table III. 3 all the aerogels of this study 

present a dimensional shrinkage, from 6-18% for reinforced aerogels and 10-31% for 

nonreinforced aerogels. Although there is no regular trend between the dimensional shrinkage 
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and the synthesis parameters of the aerogels under study, it has been shown that altering the 

silica backbone with bridged precursors leads to less shrinkage. Basically, introducing the 

non-polar alkyl and aryl bridged bis-silane precursors and the surface methacrylate groups 

into the nonreinforced aerogels leads to a decrease in the shrinkage. In fact, creation of silica 

surface with lack of Si-OH groups by introducing alkyl/aryl bis-silane precursors and more 

importantly by surface methacrylate functionality makes these groups repel each other 

causing less shrinkage during the drying stage. However, for reinforced samples, the 

shrinkage of the aerogels is influenced by both the introduction of bridged bis-silanes and the 

concentration of the cross-linker. For instance, the sample with 0% of bridged precursor and a 

R value of 2 exhibits higher shrinkage during the course of drying and processing, which 

means that alkyl and aryl linked bis-silane to some extent decrease the shrinkage. In the other 

hand, for samples with the same underlying silica backbone, increasing the cross-linker 

concentration leads to an increase of the dimensional shrinkage. This is likely due to the type 

of the multifunctional cross-linker on the silica surface, which due to the high extent of 

polymerization and consequent steric hindrance, leads to less spring back to the original 

dimension of the aerogel. 

Representative cross-linked aerogels of the whole samples made in this study are shown in 

Figure III. 9. More transparent aerogels could be prepared with lower concentration of 

bridged bis-silanes and less extent of polymerization. But, stronger aerogels with high 

structural integrity, handling and processing capability can be obtained when higher extent of 

polymerization occurs on the silica surface.  
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Figure III. 9 Photographs of some of selected tri-methacrylate reinforced silica aerogel monoliths, 

(X=cross-linked). 

III. 3.2.2 Micro and mesoporous structures of the developed aerogels 

The porous nature of representative nonreinforced and reinforced aerogels was evaluated by 

nitrogen physisorption measurements. The details of pore size; pore volume and specific 

surface area of the aerogels are presented at Table III. 5. Representative isotherms of three 

types of reinforced aerogels along with their pore size distributions are also shown in Figure 

III. 10a and Figure III. 10b, respectively.  
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Table III. 5 Surface area, porosity, skeletal density (ρs), pore volume and average pore size values 

for representative nonreinforced and reinforced samples. 

Sample BET surface 
area (m2 g-1) 

Average pore 
diameter (nm) 

Pore 
volume 
(cm3 g-1) 

Porosity 
(%) 

ρs 
(g cm-3) 

Nb 854.9 4.9 1.44 91 2.78 

Nb_R_0.3 481.3 10.1 1.33 86 1.28 

Nb_ R_2 178.8 9.2 0.43 77 1.08 

B_40 203.6 7.5 0.51 85 1.23 

B_40_R_0.3 249.0 9.2 0.50 87 1.69 

B_40_R_0.6 82.2 7.8 0.27 84 1.25 

B_40_R_2 7.0 6.4 0.01 71 1.20 

Bz_10 719.0 9.1 1.41 93 2.07 

Bz_10_R_0.3 710.0 10.7 0.71 89 1.50 

Bz_10_R_2 208.9 13.1 0.68 86 1.92 

 

The specific surface areas and the pore size distributions were evaluated from the adsorption 

and desorption branches of the isotherms applying the Brunauer-Emmett-Teller (BET) and 

Barrett-Joyner-Halenda (BJH) methods, respectively. It was found that the isotherms of the 

samples were of type ΙV, according to the IUPAC classification, which is a typical profile for 

mesoporous materials recognized by their characteristic hysteresis loop. The decrease in 

adsorption value for whole reinforced aerogels is due to the fact that the pore structure of 

aerogel is lost/closed by the cross-linking with polymer. The results also show that the micro 

and mesoporosities are also significantly influenced by the underlying inorganic silica 

structures. For instance, the reinforced aerogels Bz_10_R_2, despite the higher extent of 

polymerization on their surfaces (higher than the reinforced aerogel B_40_R_2, confirmed by 

13CNMR), show relatively higher adsorption volumes and, consequently, higher specific 

surface areas. As explained by Loy et al., this is probably due to the rigid nature of the aryl 

spacer, which allows less dimensional shrinkage of the silica skeleton and, therefore, less 

collapse of the pores occurs [153].  
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Figure III. 10 a) Comparative N2 sorption isotherms of selected (cross-linked) X-aerogels Nb_R_2, 

B_40_R_2 and Bz_10_R_2; the inset is the magnified isotherm of B_40_R_2; b) BJH pore size 

distributions from the desorption branches of the isotherms for cross-linked aerogels Nb_R_2, 

B_40_R_2 and Bz_10_R_2. 

As indicated in Table III. 5, in the reinforced aerogels, the size of the pores decreases with 

cross-linking as the pores get gradually filled by polymer. Therefore, the average pore 

diameter of native aerogel samples generally is larger than pore diameters of their 

corresponding reinforced aerogels. Figure III. 10b indicates that the majority of the pores of 

the reinforced samples fall in the mesopores region, with relatively few micropores. Although 

the most part of microporosity is lost during the reinforcing process for aerogels made with 10 

mol% of Si from aryl bridged bis-silane, the diameter of mesopores (peak) increases to 13.1 

nm, due to the rigid nature of aryl bridges and, then, probably to less shrinkage of aerogels 

(specially at R=2) during cross-linking and drying.  

For further elaboration in terms of microstructure of the prepared aerogels, we also observed 

the scanning electron micrographs (SEM) of the selected samples. Figure III. 11a-i reveals 

that all aerogel networks appear as a 3D agglomerate of nanoparticles and the microstructures 

of the native nonreinforced and polymer-reinforced aerogels are not identical. The native 

TMOS-derived aerogel network, Figure III. 11a, has a more closed packed arrangement of the 



Chapter III. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and 
thermal insulation properties for space applications. 

 

 80 

secondary silica particles with few nanometers size and high percentage of porosity. The 

incorporation of the alkyl-bridged precursor (40 mol% of Si), Figure III. 11b, leads to a 

network with more open structure and larger pores sizes. The network of the nonreinforced 

BTESB-derived aerogels also shows a uniform arrangement of the secondary silica particles 

and a regular distribution of their mesoporosities, which was already confirmed by gas 

adsorption porosimetry.  

In the aerogels that are cross-linked with polymer (R=2), regardless of the type of the 

underlying silica network, the microstructure patterns change and the network appears more 

collapsed and dense – Figure III. 11c, f, i. In these types of aerogel, the surface of silica is 

subjected to a higher extent of polymerization, which resulted in silica aerogels with increased 

sizes of secondary silica particles as well as the significant lost of fine pore structures. This 

effect is not so obvious in the reinforced aerogels with less polymer (R=0.3) – Figure III. 11b, 

e, h. In fact, enhancing the cross-linker concentration from R=0.3 to R=2 leads to large 

number of silica surface methacrylate groups to react with the cross-linker and, pronounced 

differences in terms of the network appearance are caused.  

For aerogels without alkyl or aryl bridges in their inorganic underlying silica structures 

(Figure III. 11b, c), increasing the cross-linker leads to a more compact structure with loss of 

the microporosity of the aerogel.  
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Figure III. 11 Scanning electron microscopy images of selected nonreinforced and reinforced aerogels. 

Overall, the concentration of cross-linker does not cause a marked difference in the 

microstructure appearance of this type of aerogel. Instead, increasing the cross-linker 

concentration for both type of BTMSH and BTESB-derived aerogels, as shown in Figure III. 

11e, f and Figure III. 11h, i, respectively, leads to a pronounced effect in terms of secondary 

silica particle sizes and porosity arrangements. Indeed, the aerogels containing bridged 

precursors, in higher cross-linker concentration, possess larger clusters of silica nanoparticles 

with higher extent of macroporosity in the network and significant loss of their micro and 

mesoporosity. 
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The porous texture of some selected samples is also well illustrated in Figure III. 12a-c, 

which shows the transmission electron microscopy (TEM) micrographs of BTMSH and 

BTESB based aerogel as well as for an aerogel without bridged bis-silane in its structure. The 

TEM images for aerogel samples show a porous interconnected dendritic-type network 

structure, similar in nature to the one commonly observed in conventional silica aerogels 

[192].  

 

 

Figure III. 12 TEM micrographs of selected (cross-linked) X-aerogels: a) B_40_R_2, b) 

Bz_10_R_2, and, c) Nb_R_2. 
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The average size of individual (secondary) particle appears to be less than 10 nm for the 

aerogel without bis-silane. The introduction of BTESB and BTMSH bis-silane to the silica 

structure leads to an increase in the average size of secondary particles of the order of 20 and 

50 nm, respectively. The inset of magnified section of each image well illustrates the pearl 

necklace arranging the semispherical connected silica secondary particles, which are 

composed by silica primary nanoparticles with an average size in the order of ∼1 nm, as 

suggested also elsewhere [95]. However, the secondary particles aggregated and formed 

larger size clusters of about 200, 100 and less than 100 nm for reinforced aerogels B_40_R_2, 

Bz_10_R_2 and B_0_R_2, respectively.  

III. 3.3 Thermal stability  

Thermogravimetric analysis (TGA) and simultaneous TG/DSC thermal analysis were 

conducted from ambient temperature to 600°C. The native TMOS-derived aerogel loses up to 

~9% of its weight at 73ºC due to the evaporation of physically adsorbed water - Figure III. 

13a. This mass loss could also caused by the loss of the OH groups at the network ends. In 

this figure, the simultaneous TG/DSC curves showed that B_40 looses 4% of weight at 67ºC 

and Bz_10 looses <1% of weight at 73ºC, due the evaporation of adsorbed water in the 

network. These weight losses are accompanied by the endothermic peaks in the DSC curves 

at the same temperature for both samples. The observed adsorbed water mass losses indicate 

the ability of the TMOS-derived aerogels to retain adsorbed water throughout processing and, 

more importantly, can elucidate about the increase in the degree of hydrophobicity of the final 

aerogels when alkyl and aryl bridges are incorporated in their microstructures. Further mass 

losses take place at 496°C due to the pyrolysis of the hexyl and silica surface methacrylate 
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groups, for B_40, and at 392°C due to the pyrolysis of aryl groups and silica surface 

methacrylate groups, for Bz-10. The small endothermic peaks at 518°C for B_40 and at 

425°C for Bz_10 confirm the thermal decomposition of the organic content inside of these 

aerogels.  

 

 

Figure III. 13 a) TGA of native TMOS-derived aerogel along with simultaneous TG/DSC curves for 

methacrylate modified non-X-aerogels with different bridges within the silica structure, b) TG/DSC 

curves of tri-methacrylate cross-linked silica aerogels B_40_R_2, Bz_10_R_2 and neat polymer. TGA 

curves of tri-methacrylate cross-linked silica aerogels containing c) 40 mol% of Si from BTMSH and 

d) 10 mol% of Si from BTESB with different R values, (heating rate: 10°C/min) (X=cross-linked). 
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The tri-methacrylate cross-linked B_40_R_2 aerogel loses all of their cross-linker and hexyl 

groups at 392°C, being slightly less stable than the neat polymer that decomposes at ∼ 439°C 

– Figure III. 13b. The DSC curves indicate that these mass losses are accompanied by a small 

endothermic peak at 477°C, for B_40_R_2, and a sharp and intense peak at 464°C, for the 

neat polymer. In the tri-methacrylate cross-linked Bz_10_R_2 aerogels, the decomposition of 

polymer and aryl bridges occurs at 394°C along with a slight endothermic peak at 476°C. In 

these composites, the incorporation of aryl bridges leads to more stability of the aerogel 

composite compared to the BTMSH contained aerogels.  

In summary, the TG/DSC studies are describing that the aerogel material absorbs heat during 

the observed mass losses. In other words, basically, the chemical reactions that happen in 

these aerogel insulating materials during the heating process are endothermic processes [193].  

After assigning the weight loss contributions of the underlying silica at non-cross-linked 

aerogel, from Figure III. 13a, the cross-linker weight loss contribution at Figure III. 13c and d 

can be obtained by subtracting these values from the overall weight loss of the aerogel 

composite. Therefore, cross-linker contributions for the cross-linked BTMSH contained 

aerogels with R ratios of 0.3, 0.6 and 2 are 8.65%, 12.38% and 23.42% w/w (Figure III. 13c), 

respectively. This observation is in good agreement with increase in the bulk density and 

decrease in the specific surface area of this type of aerogels upon increasing cross-linker 

concentration. 

The aryl groups, also, due to their intrinsic rigidity, and to some extent less steric hindrance 

of the aerogel structure, favours the accessibility of the monomer to the surface methacrylate 

groups. Therefore, polymer content in these composites is 20.232%, 23.32% and 31.66% w/w 

for aerogels with R ratios of 0.3, 0.6 and 2 - Figure III. 13d, respectively, which shows higher 
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introduction of the tri-methacrylate cross-linker in the aerogel than for the case in which 

BTMSH is used. 

In analogy with recent arguments that has been given by Ilhan et al. [53] and Meador et al. 

[48], for epoxy and poly styrene reinforced aerogels, the average number of monomer units 

(Nt) in the tri-methacrylate cross-linked aerogel samples can be calculated by Equation (III-2). 

  

𝑁!   =   
ρ!,!"#$$!!"#$%&   −   ρ!,!"#$%&

MW!"#"!$%  ×  S!"#$$!!"#$%  ×ρ!,!"#$$!!"#$%&
  ×    1

10!!                                                                             (III− 2) 

 

Where S is the BET surface area, ρb is the bulk density and assuming that the monolayer 

coverage with a small molecule of monomer requires 10-6 mol m-2.  

For tri-methacrylate cross-linked aerogel samples, including 0% of bis-silanes, 40 mol% of 

Si from BTMSH and 10 mol% of Si from BTESB precursors, at R=2, a typical polymer chain 

contains 3.2, 1.7 and 2.5 monomer units, respectively. These values are consistent with 

13CNMR and TGA results, which indicate that the extent of polymerization is relatively low 

for the cross-linked BTMSH-derived aerogel.  

III. 3.4 Mechanical and thermal conductivity properties 

The stress-strain curves obtained from compression tests to the reinforced and nonreinforced 

aerogels are shown on the Figure III. 14a, b. The elastic modulus for each curve is calculated 

from the slope of data near the origin (slope of initial linear part of stress-strain curves) – 

Figure III. 14c. The maximum stress at break of each aerogel is indicated in Figure III. 14d. 

From these figures, and data from Table III. 2, it is clear that the maximum stress at break is 

improved for cross-linked aerogels but the modulus is slightly higher for the reinforced 
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samples over their nonreinforced counterparts. The polymer-reinforced aerogels have as much 

as one order of magnitude higher maximum strength at break than their nonreinforced 

counterparts, indicating that the cross-linker indeed enhances their mechanical strength.  

 

 

Figure III. 14 a) Stress-strain curves for BTMSH contained tri-methacrylate reinforced aerogels, b) 

Stress-strain curves for BTESB contained tri-methacrylate reinforced aerogels, c) Elastic modulus 

versus [Tri-meth]/[TMSPM] molar ratio at different mol% of Si from BTMSH and BTESB, d) 

Maximum stress at break versus [Tri-meth]/[TMSPM] molar ratio at different mol% of Si from 

BTMSH and BTESB. 

Among the reinforced aerogels made by 0-40 mol% of Si from BTMSH, the aerogel with 20 

mol% and R=2 has the highest strength and elastic modulus. The higher strength values for 

this aerogel is probably due to a higher extent of cross-linking on the silica surface than the 
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aerogel made with 40 mol% of Si from BTMSH. As it was noted before, based on the 

13CNMR results, a higher percentage of BTMSH leads to a higher steric hindrance in the 

aerogel structure, which hinders the accessibility of the cross-linker to the silica surface 

functionality.  

For the aerogels made using the aryl bridged precursor (BTESB), the elastic modulus of the 

aerogel prepared with 5-10 mol% of Si from BTESB generally decreases with increasing 

percentage of BTESB. Additionally, the reinforced aerogel made with 10 mol% of Si from 

BTESB and R=2, due the higher extent of polymerization in its surface, has a maximum 

strength at break slightly higher than the aerogel containing 40 mol% of Si from BTMSH 

with the same R value.  

Fricke et al. [36] and Pekala et al. [37] presented the relation between mechanical properties 

(e.g. Young’s modulus or maximum strength etc., (E)) of silica aerogels and their bulk density 

(ρb) as power law relationship E ~ ρb
a. Therefore, according to this scaling law, the most 

straightforward methods of mechanical reinforcing of silica aerogels result in increasing the 

density and therefore increasing the thermal conductivity [38-40]. This is caused by the 

increase of the total amount of material used for the production of the gel matrix, due to the 

need of increasing the total number of connection points within the silica aerogel.  

The graphs of the power law dependency between the elastic modulus and bulk density, and 

between the maximum stress at break and bulk density for all tri-methacrylate reinforced 

aerogels are shown in Figure III. 15a, b. The power law exponent between the elastic modulus 

and bulk density for silica aerogels, without organic part, are reported to be 3 [194]. It is also 

reported that this exponent strongly depends on the synthesis route and connectivity between 

the secondary silica particles [40]. The power law exponent for polymer-reinforced silica 
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aerogels is higher due to the conformal coating of the silica aerogel and reinforcement of the 

silica backbone by increasing the network connectivity between secondary silica particles.  

 

 

Figure III. 15 a) Power law dependency between elastic modulus and bulk density, b) Power law 

dependency between maximum strength at break and bulk density. 

The method of least-squares was used in this study to approximate the exponent of power 

law for the obtained reinforced aerogels. As shown in Figure III. 15a, the power law 

dependency between the elastic modulus and the bulk density of the aerogels has an exponent 

of approximately 3.9. This value is comparable with those reported for the power law 

relationship between the modulus and density for tri-isocyanate reinforced silica with 

dipropyl amine linking groups from bis(trimethoxysilylpropyl)amine (BTSMPA) ([α]=4.5) 

[184]. Similar to the previous studies [52] [184] in which flexible alkyl bridges of bis-silanes 

contribute to the network connectivity, in the present work, the hexyl and aryl bridging groups 

from BTMSH and BTESB provide connections within the network. The obtained exponent 

for the power law relationship between the modulus and density is in agreement with the 

reported values by Nguyen et al. [184], which applied the tri-isocyanate cross-linker with 

molecular structure similar to that of the cross-linker used in the present work.  
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The maximum stress at break (Figure III. 15b) for the reinforced aerogels shows a higher 

influence of the power law dependency from polymer reinforcement. In this case, the 

exponent [α] is 4.8, higher than the reported values by Nguyen et al., [α]=4.3, for their 

reinforced aerogels [184]. The higher value of this exponent for the tri-methacrylate cross-

linked aerogels in this study is probably due to the higher structure variation possible in this 

system, i.e. the fact that the amount of the total silicon concentration, fraction of silicon 

derived from TMSPM and BTMSH/ BTESB, amount of cross-linker and mechanism of cross-

linking all contribute to the density, modulus and maximum strength in different ways.  

Aerogels, due to their vast internal empty space, generally exhibit low thermal conductivities 

and, in that regard, an obvious application is in thermal insulation [42, 43].  

As shown in Figure III. 16 and Table III. 2, the thermal conductivity of reinforced aerogels is 

higher than the thermal conductivity of nonreinforced aerogels (Table III. 3) and it increases 

with the increasing in the cross-linker concentration and, consequently, with the increasing in 

the bulk density. The thermal conductivity of the aerogel without bridged precursors, at 

maximum concentration of the cross-linker, is higher than for those containing Si from 

BTMSH and BTESB within their structure. As it was noted before, this is due to the higher 

extent of polymerization that occurs in this type of aerogel without bis-silane precursors (0% 

bis-silane, R=2), which leads to higher thermal conductivity (TC=0.094±0.005) than the 

aerogel containing 40 mol% of Si from BTMSH and R=2, with a TC value of 0.084±0.002.  

The thermal conductivity of the aerogel made with 5-10 mol% of Si from BTESB is far less 

(TC=0.050±0.002, for 10 mol% BTESB, R=2) than for other aerogels made with BTMSH or 

without bis-silane precursors with comparable densities and mechanical strength. The lower 

thermal conductivity can be explained by open structure of aerogel due the high extent of 

porosity or volume (confirmed by porosimetry) compared to the other type of aerogels. 
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Figure III. 16 Thermal conductivity of reinforced and nonreinforced aerogels with different 

underlying silica structures. 

The thermal transfer in porous media like silica aerogels is conducted by three pathways: i) 

solid transfer, which is the heat transfer through the chain of primary particles forming the 

solid silica network; ii) thermal radiation; iii) heat transfer by gaseous molecules present in 

the porous structure of the aerogel. In the cross-linked aerogels, due to the additional mass 

inserted by the reinforcement agents and bis-silane precursors, an increase in the density and, 

consequently, in the solid or backbone thermal conductivity of the aerogel is observed. The 

increase of Si mol% from BTESB in the range of 5-10 mol% causes an improvement in the 

thermal conductivity, but further increasing over 10 mol% likely leads to rigid and non-elastic 

properties which are not favorable in terms of mechanical properties. The pore sizes of 

BTESB-derived and nonreinforced aerogels were found to be larger than those of aerogels 

made with and without BTMSH. The large pores sizes often lead to large pore volumes and, 

thus, lead to large porosity. Large porosity, in turn, favours low thermal conductivity.  
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III. 4 Conclusions  

The incorporation of alkyl and aryl bridges of bis-silane precursors in the underlying silica 

of aerogels along with cross-linking of the silica surface functionality with tri-methacrylate 

cross-linker is examined. In this work, the synthesis process was simplified by eliminating the 

diffusion step of the monomer into the silica network, and aerogels with low densities along 

with improvement in the mechanical strength and thermal insulation performance have been 

obtained. Although moderate improvement in terms of the elastic modulus for all aerogels has 

been achieved, still more than one order of magnitude improvement in the final compression 

strength (up to 400 kPa) has been attained. The mechanical strength improvement is 

somewhat limited by the aerogel’s bulk density (ρb) of ≈ 0.13 to 0.39 g cm-3, which is far 

below the values of the previously reported reinforced aerogels with ρb > 0.4 g cm-3 [29] [22-

24, 26]. 

Notably, in terms of BTESB derived aerogels, the surface area and extent of porosity even 

after cross-linking was quite high, confirming a high contribution of the underlying silica on 

the mesoporous structure of the aerogel. When compared to the other types of aerogel, in the 

reinforced BTESB based aerogel, despite of higher extent of cross-linking (proved by TGA 

and 13CNMR), shows quite ordered and larger mesopores, leading to further improvement in 

terms of thermal insulation performance. In fact, the introduction of the aryl bridges of 

BTESB precursor in the silica structure of the reinforced aerogels resulted in thermal 

conductivity values lower than 0.04 W m-1 K-1, which is less than the values found for epoxy, 

styrene and isocyanate reinforced aerogels, reported so far [26]. 

It is also worthy to note that the aerogel made by 10 mol% of Si derived from BTESB is at 

the same time stiffer and stronger than those made by incorporation up to 40 mol% of Si from 

BTMSH, with comparable density values. However, a remarkable improvement in the 
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mechanical strength of BTMSH based aerogel was also achieved, even at low concentration 

of cross-linker (R=0.3), with little changes in the density, over the non-cross-linked 

counterparts.  

In summary, the strong silica aerogels with improved mechanical and thermal insulation 

performance developed here can be robust thermal insulator candidates for different potential 

aerospace applications. 
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Chapter IV. Development of mechanically strong ambient pressure 

dried silica aerogels with optimized properties.  

This chapter comprises the work submitted to the Journal of Physical Chemistry C (2014) 

by: Hajar Maleki, Luísa Durães, António Portugal. 

IV. 1 Introduction 

The expanded industrial and commercial use of silica aerogels has been difficult to 

implement because of their poor mechanical properties and fragility. Moreover, the need for 

drying wet gels by supercritical drying (SCD) during manufacturing makes the preparation 

process more costly and non-safe, which limits the broadening of the aerogels applications.  

The ambient pressure drying is safer and less expensive than the supercritical drying process, 

and has been more actively investigated in recent years [83, 110, 173, 178, 195, 196]. 

Evaporation of the liquid in the pores causes serious shrinkage and cracking due to the high 

capillary pressure at the menisci of the solid-liquid-vapor interfaces inside the gel structure 

during drying. This is particularly severe when the solvent wets the solid, i.e. when the 

contact angle of the menisci is lower than 90°. 

 The most common approach to overcome the capillary tension during evaporation of solvent 

from the porous structure was reviewed at Chapter II of the present dissertation. In general, 

the surface modification of silica by reacting surface silanol groups with hydrophobic 

reagents and producing hydrophobic surfaces [81, 117, 119, 122, 123, 197] and replacing 

some of (Si-O-Si) bonds with flexible and non-hydrolysable organic bonds (Si-R) [20, 117, 

118, 195, 198] [120, 121] [81, 117, 119, 122, 123, 197] have been investigated for the 

developing of ambient pressure dried aerogels. In this context, cross-linking of silica aerogels 
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with appropriate organic polymers to prepare hybrid materials [173, 195, 196, 199] were 

counted as an elegant and straightforward method. The silica surface organic groups allow the 

aerogel to spring back during drying and partially recover its initial wet gel size without 

resulting in any cracks within the monolith structure [81, 117, 197]. Evaporation of low 

surface tension hydrocarbons from silica wet gels [125, 173, 178] or the introduction of 

additives to control the drying process [79, 200] can also be possible ways to overcome the 

induced capillary pressures. Evaporation of a low surface tension solvent from the silica 

network reduces the capillary pressure when compared to the evaporation of an alcohol [126].  

Recent articles list several mechanical reinforcing strategies of silica aerogels [29, 199]. The 

polymer reinforced silica aerogels have good mechanical properties, but still are not strong 

enough to withstand capillary pressure when dried under ambient pressure drying condition, 

especially when the wet gels are dried from an alcoholic solvent. Therefore, in order to take 

advantages of the ambient pressure drying method to produce crack free aerogel-like 

monoliths with minimum dimensional shrinkage, we conducted polymer reinforcement 

approaches along with drying of wet gels from a low surface tension solvent. 

In the previous chapter, we have studied the effect of different underlying silica on the 

physicochemical properties of tri-methacrylate cross-linked supercritical CO2 (scCO2) dried 

silica aerogels [201]. In that regard, the underlying silica structure was changed by altering 

the alkyl/aryl linker or bridge between secondary silica nanoparticles, according to the 

proposed molecular structures shown in Figure IV. 1. The alkyl and aryl bridges between 

secondary silica particles have been originated by introducing 1,6-Bis(trimethoxysilyl)hexane 

(BTMSH) and 1,4-Bis(triethoxysilyl)-benzene (BTESB) bis-silane precursors into the 

underlying silica structure prior to the cross-linking reaction. 
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Figure IV. 1 Proposed molecular structures of silica gels having a) BTMSH and b) BTESB in the 

underlying structure. 



Chapter IV. Development of mechanically strong ambient pressure dried silica aerogels with optimized 

properties.  

 98 

In the aforementioned study, we were able to show fundamental properties differences 

between aerogels having akyl/aryl linking groups within the silica structure, along with 

drastic improvement in the mechanical strength and thermal insulation performance. The 

aerogels made by 10 mol% of silicon derived from BTESB, which have rigid aryl spacers, 

show less structural collapsing during SCD. Additionally, a drastic improvement in terms of 

extent of porosity/pore volume and surface area and an improvement in the thermal insulation 

performance for such aerogels have been achieved. 

Motivated by the changing of the silica aerogels properties by altering the underlying silica 

structure, we have also investigated safe and cost efficient synthesis of ambient pressure dried 

tri-methacrylate reinforced silica aerogels. In order to be able to predict and control the 

density, mechanical strength and thermal conductivity of ambient pressure dried silica 

aerogels containing different underlying silica structures, optimization studies using central 

composite rotatable design (CCRD) of response surface methodology (RSM) were conducted.  

Therefore, the aim of this study was to investigate the density, mechanical strength and 

thermal conductivity of ambient pressure dried tri-methacrylate cross-linked aerogels and 

determine the effect of the type of silica precursors as well as cross-linker concentration on 

these properties. For this, the linear, interaction and quadratic effects of [Si]% derived from 

BTMSH, and BTESB as well as cross-linker concentration were modeled leading to 

predictive models for the optimization of the test parameters. In this way, the levels of the 

variables using a response surface methodology (RSM) were determined.  

The optimized ambient pressure dried (APD) aerogel-like properties were also compared 

with their scCO2 dried counterparts for identical preparation conditions.  

Our further attempt in this study was to explore the capability of optimized aerogel-like 

samples for being used in Space applications, by evaluating the materials specifications. For 

this purpose, thermal cycling and outgassing characteristics of the optimized APD aerogels 



Chapter IV. Development of mechanically strong ambient pressure dried silica aerogels with optimized 

properties.  

 99 

and scCO2 dried aerogels were evaluated under the framework of several pre-defined standard 

tests.  

IV. 2 Experimental 

IV. 2.1 Materials 

Tetramethylorthosilicate (≥99%; TMOS), 3-(trimethoxysilyl)propyl methacrylate (98%; 

TMSPM), ammonium hydroxide (NH4OH; 28-30% V/V solution), methanol (MeOH; 99.8%), 

hexane (≥99%), ethanol (EtOH; ≥99.5%), tris[2-(acryloyloxy)ethyl]isocyanurate (99%), 2,2′-

azobis(2- methylpropionitrile) (98%; AIBN), 1,4 - Bis(triethoxysilyl)-benzene (96%; BTESB) 

and acetone were purchased from Aldrich. 1,6 - Bis(trimethoxysilyl) hexane (98%; BTMSH) 

was purchased from Cymit. All reagents were used without further purification.  

IV. 2.2 Methods 

IV. 2.2.1 General 

Variables used in this study include the bis-silane type (BTMSH, BTESB), the mole fraction 

of the total silicon derived from BTMSH and BTESB (note that these precursors contribute 

with two silicon atoms in every molecule, and the rest of the silicon is derived from TMOS 

and TMSPM). The amount of silicon derived from BTMSH varied from 0 to 40 mol%; in the 

aerogel derived from BTESB, the amount of silicon from BTESB had values of 5 to 10 mol% 

of the total silicon. The amount of cross-linker (tri-methacrylate) was given as mole fraction 

to TMSPM. The water/total silicon mole ratio (r) was kept at a value of 4 for all formulations, 

which is higher than the stoichiometric value for hydrolysis and condensation of TMOS (r = 

2).  
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IV. 2.2.2 Preparation of polymer-reinforced ambient pressure dried (APD) silica 

aerogel-like monoliths  

Apart from the drying step, the mechanically reinforced APD aerogels monoliths of this 

study followed the same synthesis procedure as their scCO2 dried counterparts, which was 

explained in Chapter III. For reference, a typical procedure is outlined for a formulation with 

total silicon concentration of 1.3 mol/L in the sol, a BTMSH Si fraction of 40 mol% and the 

tri-methacrylate monomer in a 1.25 ratio to TMSPM (Run B_40_R_1.25 of Table IV. 3, in 

section IV. 3). A solution of 1.52 mL (10.56 mmol) of TMOS, 1.74 mL (10.56 mmol) of 

BTMSH, and 1.19 mL (5.2 mmol) of TMSPM was cooled to below 0°C in an ethanol mixed 

dried-ice bath (Solution 1). Solution 2 was prepared by adding 12.9 mL of the gelation 

solvent (methanol), 2.7 g of Tris[2-(acryloyloxy)ethyl] isocyanurate monomer, water (r = 4), 

0.7 mL of NH4OH solution and 0.27 g of AIBN (formulated to be 10 wt% of the organic 

monomer). The two solutions were mixed and poured into two propylene cylindrical molds, 

with 17.2 mm nominal diameter. The gels were formed within 5 min to 2 hours depending on 

the formulation. After 24 hours of aging, the wet gel was demolded and placed in a cylindrical 

reaction flask, containing enough ethanol solvent to cover the gel and the same concentration 

of initiator used in the gelation step. The sample was refluxed at 70°C, for 6 hours, to promote 

free radical polymerization of the organic monomers inside the pores of the wet gel with silica 

surface functionalities. After cross-linking, in order to remove the residual water and ethanol, 

the samples were washed three times with the gelation solvent, giving 8 hours interval 

between each washing step. Afterwards, methanol was slowly exchanged by hexane over a 24 

hours period. Finally, the wet gels were carefully placed in the ventilated oven and dried 

several days in ambient pressure and temperature conditions.  
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The experimental procedure leading to the BTESB derived aerogel-like sample was exactly 

similar to the procedure described above. The only difference is in the preparation of Solution 

1, in which the BTESB precursor with defined silicon mole percentages has been introduced 

to the solution instead of the BTMSH precursor.   

IV. 2.3 Physicochemical analysis  

Solid-state 29Si and 13C NMR spectra of the aerogels were obtained by an Inova 500 

spectrometer using a 4 mm solids probe with cross-polarization and magic angle spinning at 

11 kHz. Infrared analysis was conducted with ATR-FTIR spectroscopy (JASCO FTIR-4100).  

The bulk density (ρb) was determined by measuring the weight and volume of the sample. 

Dimensional shrinkage (%) was taken as the difference between the diameters of the aerogel 

monolith and of the 20 mL syringe mold (nominally 17.2 mm). He picnometry (Accupyc 

1330, Micromeritics) was used to measure the real (skeleton) density of the samples. 

Combining the information of the skeleton and bulk densities, it was possible to evaluate the 

porosity and pore volume of the samples through equation (IV-1) and (IV-2), respectively: 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦  (%) =   
1
𝜌!
− 1
𝜌!

1
𝜌!

×100                                                                                                                                                               𝐼𝑉 − 1  

𝑃𝑜𝑟𝑒  𝑣𝑜𝑙𝑢𝑚𝑒   𝑐𝑚!  𝑔!! = 1
𝜌!
− 1
𝜌!
                                                                                                                                                  (𝐼𝑉 − 2) 

In addition, we used the Nitrogen gas adsorption (Accelerated Surface Area and 

Porosimetry ASAP 2000, Micromeritics) for the determination of the specific surface area. 

Before the analysis, the sample was outgassed at 60oC in vacuum (10-5 bar) during 24 h, to 

remove adsorbed species. In the analysis, volumes of the adsorbed nitrogen at five different 
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relative pressures (0.05 to 0.2) were taken at 77oK, to obtain the specific surface area by the 

BET theory. The average pore diameter of samples has been calculated from equation ( IV-3): 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑝𝑜𝑟𝑒  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟   𝑛𝑚 =   4(𝑝𝑜𝑟𝑒  𝑣𝑜𝑙𝑢𝑚𝑒)𝑆!"#
                                                                                            (𝐼𝑉 − 3) 

Scanning electron microscopy (SEM) (JMS-5310, JOEL) was used to observe the materials 

microstructure. Due to the low electrical conductivity of the highly porous silica-based 

samples, an Au film was deposited on their surfaces, using the Physical Vapor Deposition 

(PVD) technique during 20 s.  

The thermal conductivity of the reinforced aerogels was measured using a transient method 

(Thermal constants analyzer TPS 2500 S, Hot Disk). The sensor is clamped between two 

identical disc shaped pieces of the sample, which have a diameter of 1 cm and thickness of 

0.5 cm (conveniently cut from the cylindrical aerogel samples). This analysis was carried out	
  

at 20ºC and the equipment presents a reproducibility and accuracy over 1% and 5%, 

respectively.  

For the mechanical test, samples were cut to meet a length:diameter ratio of 2:1, and were 

polished to make sure that top and bottom sides were smooth and parallel. The compression 

test was conducted following the ASTM standard D695-02a. All tests were done at nominal 

room conditions with a stroke speed of 1.3 mm/min. 

IV. 2.4 Vacuum outgassing and thermal cycling screening tests 

The thermal characteristics of developed aerogels have been evaluated by conducting two 

standard screening tests of vacuum outgassing (normative reference: ECSS‐Q‐ST‐70‐02C, 

European Space Agency for the members of ECSS, 2008) and thermal cycling (normative 

reference: ECSS‐Q‐ST‐70‐04, European Space Agency for the members of ECSS, 2008). The 

two standard tests of vacuum outgassing and thermal cycling have been conducted in a 
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vacuum drying oven (Binder; temperature range: 15oC (59oF) - 200oC (392oF); heating rate: 

3oC min-1; pressure interval: 1 mbar - 1 atm).  

Before conducting the standard tests, for each selected optimized aerogel and aerogel-like 

monoliths under study, three specimens (replicas) with minimum weight of 0.1 g were 

prepared by proper cutting from initial monoliths. For the outgassing test, after recording the 

initial weight of each sample (∼0.3 g), the Total Mass Loss (TML) of the material outgassed 

during 24 hours, at constant temperature of 125oC and minimum pressure of 1 mbar was 

evaluated. The Water Vapor Regained (WVR), which is defined as the mass of water vapor 

regained by the sample after a reconditioning step, is measured from the increase in the 

sample mass, after the test for TML, when exposed 2 hours to controlled conditions (relative 

humidity of 65% at room temperature of 22°C). The total mass of the specimen without 

adsorbed water, i.e. the Recovered Mass Loss (RML), is evaluated by the previous two 

quantities, according to the following expression: 

RML = TML – WVR                                                                                                     (IV-4) 

 The outgassing requirement is RML < 1% in order to consider the material acceptable for 

use in Space applications. 

After evaluating the values of TML, WVR and RML, the samples chemical properties were 

evaluated again by taking ATR FT-IR spectra. 

For the thermal cycling test, for each selected sample, three replicas were prepared and 

precisely weighted, and then, samples were exposed to three successive thermal cycles from -

78oC to 125oC. To do this, firstly the samples were immersed in liquid nitrogen (-78oC) for 

about 1 min and, then, they were allowed to rest at ambient temperature for 30 min. After, the 

samples temperature was raised to 125oC in an oven, for 30 min, under vacuum. This 

procedure was repeated for each sample after allowing the sample to rest in ambient 
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conditions for 2 hours. After each cycle, the information related to the sample outgassing and 

macroscopic changes in the samples was recorded.  

IV. 2.5 Response Surface Methodology 

Response Surface Methodology (RSM), developed by Box and Wilson in 1951 [202], is a 

collection of statistical and mathematical methods that are useful for designing experiments, 

building models, evaluating the effect of factors and searching for optimum conditions for 

desirable responses [203]. The RSM technique can improve product yields and provide better 

confirmation of the output response toward the target requirements. In recent years, RSM has 

played an important role in biotechnology and other fields [204]. The main advantage of RSM 

is the significant reduction of experimental runs required to provide sufficient information for 

statistically valid results. Moreover, RSM is faster and more informative than the classical full 

factorial design approach.  

The RSM is a sequential process and its procedure can be summarized as follows [205]. 

First, a series of experiments is performed for adequate and reliable measurement of the 

response of interest. Second, a mathematical model of the response surface is developed, with 

the best fit, and, then, the optimal set of experimental parameters that produce a maximum or 

minimum value of the response is determined. Lastly, the direct and interactive effects of 

process parameters are represented through two- and three-dimensional (3D) plots, allowing 

the final verification. 

In most RSM problems, the form of the relationship between the response and the 

independent variables is unknown. Thus, the first step in RSM is to find a suitable 

approximation for the true functional relationship between the response (Y) and the set of 
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independent variables [206]. If the response is well modeled by a linear function of the 

independent variables, then the approximation function is the first-order model below: 

𝑌 =   𝛽! + 𝛽!𝑋! + 𝛽!𝑋! +   ⋯+ 𝛽!𝑋! +   𝜀                                                                     (IV-5) 

Where X1, X2, . . ., Xk are the independent variables, 𝛽!  the constant coefficient, 𝛽!   the linear 

effect of the kth factor coefficients and ε is the error observed in the response Y. 

If there is curvature in the system, then a polynomial of higher degree must be used, such as 

the second-order model that follows, written for the case of two variables: 

𝑌 = 𝛽! +   𝜀 +    𝛽!  !
!!! 𝑋!   + 𝛽!!!

!!! 𝑋!! + 𝛽!"!!!!!!!!
!!!

𝑋!𝑋! ,                                (IV-6)  

Where 𝛽!! represents the quadratic effect of the ith factor and  𝛽!" represents the interaction 

effect, between the ith and jth factors. The goal of RSM is to find an approximation function 

for predicting future response and to determine factor values that optimize the response 

function. An important assumption is that the independent variables are continuous and 

controllable by experiments with negligible errors. The task then is to find a suitable 

approximation for the true functional relationship between independent variables and the 

response surface [205]. 

IV. 2.5.1 Central Composite Rotatable Design (CCRD) 

Experimental design and analysis was conducted using Design Expert 7.1.3 available from 

State-Ease, Inc. (Minneapolis). 

Two 2-factor-5-level central composite rotatable designs (CCRD) with two replicas at the 

center were used to develop predictive models for some physical and mechanical property 

parameters of BTMSH and BTESB derived aerogels. It was deemed reasonable to set two 

CCRD for each type of APD-aerogel-like samples (with BTMSH or BTESB) to evaluate 

measured properties of cross-linked aerogels as a function of processing parameters. The two 
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factors’ levels in terms of coded and uncoded (actual) values are shown in Table IV. 1 and 

Figure IV. 2 for BTMSH and BTESB derived aerogels. 

 Here in, the important variables under study as well as their levels have been previously 

defined by factor screening. Therefore, for each ambient pressure dried aerogel, two 

preparation conditions have been systematically varied: silicon concentration derived from 

BTMSH or BTESB (X1) and values of R, which are defined as a molar ratio of tri-

methacrylate to TMSPM (X2). The variation of these two variables has previously 

demonstrated to have a strong effect on both mesoporous underlying structure and the extent 

of cross-linking [201]. 

This design includes a standard of 2k factorial points (coded as ±1 notation), 2k points fixed 

axially at a distance a from the center (±a), and N0 replicate tests at the center (0) – Figure IV. 

2. k is the number of operating variables. Center points, which are located in the midpoint of 

each factor range, give information about the existence of curvature.  

Table IV. 1 Coded and actual levels of variables considered for design for APD BTMSH and BTESB 

derived aerogel-like monoliths. 

 
 

Feed Factors Coded Xi  

BTMSH derived silica xerogel 
 

BTESB derived silica xerogel 

Variation levels Variation levels 

-1.41 -1 0 1 1.41  -1.41 -1 0 1 1.41 

Si mol% of Bis-silane X1 
 

0 6% 20% 34% 40% 
 

5% 6% 7.5% 9% 10% 
R X2 0.5 0.7 1.25 1.8     2 0.5 0.7 1.25 1.8      2 
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Figure IV. 2 Central composite rotatable design (CCRD) for two experimental factors, X1 and X2 

variables, respectively Si mol% derived from BTMSH and BTESB, and R ratio. 

The estimation of the pure quadratic properties of the model can be carried out by using the 

axial points. All these points were calculated as function of the range of interest for each 

factor [207]. The total number of design points in CCRD can be calculated from: 

N=2k+2k+N0                                                                                                                     (IV-7) 

Where N is the total number of design points, k is the number of factors. 

Rotatability was selected since these properties of the design are desirable. The design is 

rotatable if the variance of response is constant for all variables at a given distance from the 

design center [208]. The CCD is rotatable if: 

𝛼 =    2!!                                                                                                                            (IV-8) 

Figure IV. 3 shows the CCRD in which two axes represent one of the two variables for 

APD- BTMSH aerogel-like samples. Designs with this property exhibit circular contours on 

the standard error plots.  
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Figure IV. 3 Standard error of design plot for BTMSH derived aerogels. 

The X1 and X2 variables were orthogonalized (transformed to -1 to 1 range) prior to the 

modeling, in order to minimize correlation between terms. The results were statistically 

evaluated by the analysis of variance (ANOVA) at the significance level of p=0.1 or 90% 

confidence. The software calculates F-test for significance of the model as well as the 

significance of each term. Apart from calculating p-values, the adequacy of the model was 

also evaluated by the coefficient of determination (R2). The R-squared value of the final 

model indicates the amount of variation present around the mean that is explained by the 

model. The closer R-squared is to 1, the less variation exists around the model. The standard 

deviation of the model is also given. The standard deviation reported is the square root of the 

residual mean square, and is taken as an estimate of the standard deviation of the experiment. 

Multiple regression analysis was used and the second order polynomial equations as function 

of Xi were fitted for each variable assessed at each experimental point.	
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IV. 3 Results and discussion  

As previously described [201] in Chapter III, the multifunctional methacrylate cross-linked 

silica aerogels were prepared firstly by reacting a mixture of tetramethylorthosilicate 

(TMOS), bis-silane precursors and 3-(trimethoxysilyl) propyl methacrylate (TMSPM), with 

base catalysis, to form a silica backbone, following by polymerization on the silica surface as 

shown in Figure IV. 4. TMSPM was incorporated as a site for tri-methacrylate cross-linking 

in these gels. In the aforementioned study, and because the tri-methacrylate cross-linker is 

soluble in methanol (gelation solvent), we added the organic monomer to the gelation solvent 

in the initial step of preparation of the sol. Then, polymerization occurs after the sol-gel 

process by applying post-gelation thermal treatment to the wet silica gels.  

 

 	
  

Figure IV. 4 Proposed cross-linking scheme with TMSPM and tri-methacrylate. 
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   Such a one pot strategy leads to a significant simplification and time reduction in the 

preparation of silica gels. The chemical structures of the aerogels as well as the extent of 

cross-linking with various underlying silica structures were characterized by studying the 

obtained solid-state 13CNMR [201], solid-state 29SiNMR and ATR FT-IR spectra.  

IV. 3.1 Chemical characterization  

The solid 29Si NMR spectra for the aerogel-like samples in which 40 mol% of total silicon 

was derived from BTMSH (Figure IV. 5a), and, 10 mol% of total silicon derived from 

BTESB (Figure IV. 5b) with the rest of silicon derived from TMOS and TMSPM precursors, 

are shown to study the reactivity of each silica precursor. The characteristic peaks that belong 

to TMOS are assigned as Qn, being ‘’n’’ indicative of the degree of condensation of silica or 

extent of siloxane bond (‘’Si-O-Si’’) formation. The TnM, TnB and TnBz are assigned to the 

characteristic peaks for TMSPM, BTMSH and BTESB precursors, respectively, with ‘’n’’ 

being the number of siloxane bonds in each precursor.  
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Figure IV. 5 Solid-state 29Si NMR spectra of aerogel-like samples formulated by a) TMOS 40 mol% 

+ BTMSH 40 mol% + TMSPMA 20 mol%, b) TMOS 70 mol% + BTESB 10 mol% + TMSPMA 20 

mol%. 

The 29Si spectrum for both aerogel-like samples consists of three peaks Q4, Q3 and Q2, being 

the largest population from Q3 sites at -101 ppm, which is indicating that a large number of 

Si-OH sites in TMOS have undergone a condensation reaction. Also, the peak at T2M (-61 

ppm) integrates about half of the area of peak T3M (-69 ppm), indicating that 2/3 of TMSPM 

silicon atoms had completely reacted. Referring to Figure IV. 5a and by subtracting TnM peaks 

(by considering the equivalent peaks in Figure IV. 5b), the area of the T2B peak at -58 ppm is 

to some extent larger than T3B at -67 ppm. Therefore, it can be concluded that more than half 

of BTMSH silicon atoms are not fully reacted. In the spectrum of b, the T2Bz peak at -71 ppm 

is strongly overlapped with the T3M and has slightly larger peak area than T3Bz, at -78 ppm, 

which indicates a non-complete reaction of BTESB during gelation. 

ATR FT-IR spectra of the different monoliths show that at R = 2, almost all silica surface 

carbon double bonds, at 1628 cm-1, are consumed during the cross-linking reaction – Figure 

IV. 6a-c. As expected, a peak due to the stretching vibration of C=O bonds of tri-methacrylate 

at 1690 cm-1 has appeared (vd. Figure IV. 6b, d). This is evidenced by the increasing area 
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under the characteristic peak of tri-methacrylate on the solid-state 13CNMR spectrum and, in 

the thermo gravimetric analysis, by a drastic increase in the weight loss due to the cross-linker 

in the aerogel composites – Figure III. 13 of Chapter III [201]. The average number of 

monomer units (Nt), along with the mass percentage of the monomer contribution on the 

composites, for representative samples of this study containing different underlying silica and 

R = 2, were quantified and summarized in Table IV. 2. In the cross-linked aerogels without 

bis-silane precursors in the underlying silica, the extent of cross-linking is relatively higher 

than for those containing BTMSH and BTESB bis-silanes. The relative poor cross-linking 

reaction in the aerogel-like monoliths containing BTMSH may be due to the less accessibility 

of the silica surface methacrylate to the cross-linker, being sterically blocked by hexyl links 

from BTMSH [52]. 

 

	
  

Figure IV. 6 ATR FT-IR spectra of a) Non-X-BTMSH 40 mol%, b) X-BTMSH 40 mol%, R=2, c) 

Non-X-BTESB 10 mol%, d) X-BTESB 10 mol%, R=2, (X: cross-linked). 
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Table IV. 2 Monomer contribution in the different aerogel-like composites. 

 Cross-
linked_BTMSH 40 

mol%, R=2 

Cross-
linked_BTESB 10 

mol%, R=2 

Cross-
linked_without 
bis-silane, R=2 

Average number of 
monomer units (Nt) 

1.7 2.5 3.2 

Cross-linker (wt%) in 
the aerogel composites 

23% 32% 41% 

 

Hydrophobic behavior of some selected best samples was evaluated by studying their water 

contact angle values. As shown in Figure IV. 7, contact angles measured for representative 

samples in this study ranged from 100-151o. The high contact angle (151o) for BTMSH 

derived gels indicates that the hexyl groups from BTMSH are present in the silica surface and 

contributed to the superhydrophobic nature of the cross-linked aerogels. Additionally, the 

contact angle measured for this sample is higher than for its scCO2 counterpart (θ = 102±2°), 

suggesting the importance of the drying condition on the hydrophobic properties of this 

material. The porous surface causes a complication on the accurate quantification of the 

contact angle, but here, due to the structural shrinkage of the aerogel by ambient pressure 

drying, the samples lose part of their porosity on the surface. The contact angle measured here 

is also higher than the contact angle for styrene reinforced aerogels containing BTMSH, 

which ranged from 112o to 114o depending on the BTMSH silicon mol% [52].  
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Figure IV. 7 Water contact angle measurements for the cross-linked aerogels with and without 

BTMSH and BTESB precursors. 

IV. 3.2 Modeling the responses for BTMSH and BTESB derived aerogel-like materials 

The experiments were carried out according to Central Composite Rotatable Design 

(CCRD), an optimal design that allows the calculation of linear and quadratic effects and 

interactions of factors with the best possible precision at a minimum number of experiments. 

In this work, 10 experimental runs were prepared, including four factorial points, four axial 

points and two replicas at the center for each aerogel type. All samples were characterized in 

terms of bulk density, thermal conductivity and maximum strength at break and the results are 

summarized in Table IV. 3. By using the multiple regression analysis, the second order 

polynomial equations as function of Xi were fitted for each variable assessed at each 

experimental point.  
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Table IV. 3 Coded operating variables with measured properties of BTMSH and BTESB derived 

aerogel-like monoliths. 

Run no. 
 

Coded level of 
variables 

Experimental responses of BTMSH derived 
aerogel–like monoliths 

X1
a X2

b 
Density 
(g cm-3) 

 

Thermal 
conductivity 
(W/m-1 K-1) 

Max. 
stress at break 

(MPa) 

Bc_20_R_1.25 0 0 0.50 0.079 2.80 
B_20_R_1.25 0 0 0.54 0.081 3.20 

B_6_R_0.7 -1 -1 0.48 0.071 0.31 
B_34_R_0.7 1 -1 0.46 0.057 2.01 
B_6_R_1.8 -1 1 0.66 0.101 1.12 

B_34_R_1.8 1 1 0.34 0.065 0.59 

B_0_R_1.25 -1.14 0 0.78 0.130 1.13 
B_40_R_1.25 1.14 0 0.25 0.055 0.79 
B_20_R_0.5 0 -1.14 0.52 0.088 1.03 
B_20_R_2 0 1.14 0.56 0.073 4.00 

Run no. 
 

Coded level of 
variables 

Experimental responses of BTESB derived  
aerogel-like monoliths 

X1
a X2

b Density 
(g cm-3) 

Thermal 
conductivity 
(W/m-1 K-1) 

Max. 
stress at break 

(MPa) 
Bzd_7.5_R_1.25 0 0 0.65 0.096 3.61 

Bz_7.5_R_1.25 0 0 0.70 0.127 3.60 

Bz_6_R_0.7 -1 -1 0.71 0.133 0.30 

Bz_9_R_0.7 1 -1 0.64 0.105 0.20 

Bz_6_R_1.8 -1 1 0.73 0.103 4.20 

Bz_9_R_1.8 1 1 0.58 0.075 2.70 

Bz_5_R_1.25 -1.14 0 0.79 0.138 0.34 

Bz_10_R_1.25 1.14 0 0.68 0.096 3.30 

Bz_7.5_R_0.5 0 -1.14 0.61 0.113 0.13 
Bz_7.5_R_2 0 1.14 1.05 0.079 3.80 

aX1: Si mol % derived from BTMSH or BTESB 
bX2: R = [Tri-meth]/[TMSPM] 
cB: BTMSH dBz: BTESB 

 

Summary statistics and significant terms in the models for both types of aerogel-like samples 

are shown in Table IV. 4. 
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Table IV. 4 Significant terms and statistics summary for response surface models for BTMSH 

derived aerogel-like material and BTESB derived aerogel-like material. 

BTMSH derived aerogels Significant terms R2 Standard error 
(RMS) 

Density X1, X1X2 0.89 0.061 
Maximum stress at break 

(power transformed) X1X2 0.80 2.400 

Thermal conductivity X1 0.82 0.009 

BTESB derived aerogels Significant terms R2 Standard error 
(RMS) 

Density X2 0.81 0.040 
Maximum stress at break 

(power transformed) X2, X2
2 0.91 1.200 

Thermal conductivity X1, X2, X1
2, X2

2 0.99 0.001 
 

Response surface plots were generated with the Sigma Plot software (SigmaPlot 12.0) and 

drawn by using the function of two factors. Note that the axes in the resulting surface 

response plots are sometimes rotated in order to best illustrate the particular surface. 

Therefore, with the derived empirical response surface models, significant effects of the 

variables on the measured properties were assessed. Multiple regression analysis was used 

and the second order polynomial equations as function of Xi were fitted for each variable 

assessed at each experimental point.  

Graphs of the response surface models for bulk density, mechanical strength and thermal 

conductivity are shown in Figure IV. 8. These are plotted vs. mol% of Si derived from bis-

silane and R ratio. As it is evident from Figure IV. 8a and Table IV. 4, and in agreement with 

previous studies, the most influential variable on the density of BTMSH derived aerogels is 

the percentage of BTMSH as well as the synergetic effect of the percentage of BTMSH and 

R. This is due to the insertion of additional mass of BTMSH and cross-linker on the aerogel-

like samples. However, in terms of BTESB derived aerogels, due to the low incorporation of 

BTESB precursor, there is a less significant effect of bis-silane concentration on the measured 

density – Figure IV. 8d and Table IV. 4. The main influential factor in this case is R, and 

density increased positively by increasing the tri-methacrylate cross-linker concentration. In 
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addition, for the same preparation conditions, the bulk densities for these aerogel-like samples 

exceed the values for BTMSH derived counterparts. This is due to the substantial increase in 

the extent of cross-linking/number of repeating units incorporated per TMSPM unit as 

measured by solid 13CNMR and TGA for BTESB derived aerogels - Table IV. 2. The actual 

effect of tri-methacryalate concentration on the density of these aerogels is a challenge, since 

these samples suffered a high level of shrinkage during the course of drying.  

The BTMSH derived aerogels displayed a reduced structural collapse, with an average 

dimensional shrinkage of 20% upon ambient pressure drying, while BTESB derived aerogels 

showed an average shrinkage value as high as 30%. This effect is particularly visible at low 

cross-linker concentrations. Therefore, the increase in density for the BTESB derived aerogels 

is somehow related to the extent of dimensional shrinkage, as well. Due to the flexible nature 

of hexyl groups in the BTMSH derived monoliths, these samples recovered most part of their 

initial wet gel sizes after the ambient pressure drying process.  

The graphs of the response surface models for mechanical strength for both aerogel-like 

samples is shown in Figure IV. 8b, e. As indicated, the most dominant factor in the 

mechanical strength of BTMSH based aerogel-like sample is the synergetic effect of BTMSH 

percentage with cross-linker concentration (Figure IV. 8b, Table IV. 4). In fact, the model 

indicates that with an increasing molar percentage of BTMSH, the compression strength 

increases when the cross-linker concentration is high, but the inverse occurs when the cross-

liker concentration is low. In terms of BTESB derived aerogels, first and second order effects 

of cross-linker concentration have significant effects on the mechanical strength – Figure IV. 

8e, Table IV. 4. 
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Figure IV. 8 Response surface models of a) density, b) mechanical strength and c) thermal 

conductivity of BTMSH derived APD-aerogel-like monoliths versus the mol% of silicon from 

BTMSH and R; response surface models of d) density, e) mechanical strength and f) thermal 

conductivity of BTESB derived APD-aerogel-like monoliths versus the mol% of silicon from BTESB 

and R. 

The BTESB derived aerogels are stiffer (Young’s modulus (E) ∼ 0.05-1.8 MPa) when 

compared to the BTMSH derived aerogels (E ∼ 0.01-0.43 MPa), due to the presence of rigid 

aryl spacer in their structures - Figure IV. 9a, b. Moreover, high extent of shrinkage in the 

APD process intensified this property (vd. Table III. 2 – Chapter III).  

As expected, thermal conductivity is mostly influenced by the percentage of the BTMSH 

(Figure IV. 8c), in agreement with results from another reported work [201]. Upon increasing 

BTMSH molar percentage, the silica network has undergone less structural shrinkage, which 

led to create large spacing between silica secondary particles, and therefore thermal insulation 

performance of aerogels has subsequently improved. Response surface graph of thermal 
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conductivity for BTESB derived aerogels (Figure IV. 8f) indicates that, both the underlying 

silica structure and R have contribution to the thermal conductivity values of this type of 

aerogel-like samples. The effect of BTESB concentration can be better observed specially at 

R = 2, where the thermal conductivity decreases with the increasing of BTESB derived Si 

mol% from 5 to 10 mol%. This is probably due to the increase in the porosity values due to 

the rigid aryl spacer. Higher porosity favors low thermal conductivity, despite the drastic 

increase in the density upon drying for these aerogels.	
  

   
  (a)   

      (b) 
Figure IV. 9 Stress-strain curves of a) BTMSH and b) BTESB derived APD-aerogel-like monoliths. 

The N2 adsorption isotherms along with the pore volume, mean pore sizes and extent of 

porosity of some selected aerogel-like samples having the same cross-linker concentration but 

different underlying silica structures are shown in Figure IV. 10 and Table IV. 5, respectively. 

The N2 adsorption volumes, the pore sizes and the porosity are extremely influenced by the 

degree of cross-linking as well as by the inorganic silica nanostructure. As indicated in Figure 

IV. 10, in the cross-linked aerogels, the N2 adsorption volumes decreased due to the closing 

and collapsing of the network pores upon cross-linking by polymer. The reinforced BTESB 

aerogel-like samples, like their scCO2 dried aerogels, despite the higher extent of 

polymerization on their surfaces (higher than the reinforced BTMSH aerogels), exhibited 

relatively high adsorption volumes and, consequently, high specific surface areas. Such 
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aerogels possess also relatively high extent of porosity (Table IV. 5) and, length scales of the 

pores (40 nm) are smaller than the mean free path of air molecules at standard temperature 

and pressure (≈ 80 nm). Therefore, improvement in the thermal insulation performance of this 

type of monoliths is expected, due to a decrease in the gaseous component of thermal 

conductivity. 

 

Figure IV. 10 a) Comparative N2 sorption isotherms of selected cross-linked APD-aerogel-like 

monoliths. 

	
  
Table IV. 5 Specific surface areas (BET), pore volumes, pore average sizes and porosity values of 

selected APD-aerogel-like monoliths. 

Sample 
BET 

(m2 g-1) 

Pore Volume 

(cm3 g-1) 

Average pore 

diameter (nm) 

Porosity 

(%) 

Bis-silane 0%, R=1.25 190.7 0.55 11.2  82% 

BTMSH 40%, R=1.25 53.1 3.47 261   83% 

BTESB 7.5%, R=1.25 166.1 2.01 40 90% 
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IV. 3.3 Optimization of the properties of ambient pressure dried BTMSH and BTESB 

derived aerogel-like samples 

Optimization is an essential tool in the development of silica aerogels for the efficient 

adjustment of different important synthesis parameters to yield highly acceptable material 

properties. Optimization and adjustment of the mechanical properties of silica aerogels is a 

challenge due to the trade off between mechanical strength and bulk density and, therefore, 

thermal conductivity [29]. So, optimization of silica aerogels properties during mechanical 

reinforcement, preserving their initial important properties, must be carried out.  

Here in, during the optimization of synthesis parameters of APD-aerogel-likes, several 

response properties describe the quality characteristics of the obtained samples. Some of these 

properties need to be maximized, while others need to be minimized. To optimize the process 

with two or more output responses, it is helpful to use the concept of desirability function 

[209]. The desirability function is one of the most widely used methods for optimization of 

multiple response processes in science and engineering [210]. Desirability varies from zero to 

one for specific responses. A value of one represents the ideal case, while zero indicates that 

one or more responses fall outside the desirable limits. 

The main goal of this research was to find the best preparation conditions for the 

development of APD-aerogel-like samples with material properties near to their scCO2 dried 

aerogel counterparts. In this context, the desirability allows to find the optimal bis-silanes 

type and their percentage along with optimal cross-linker concentration.  

The desirability function for both aerogel-like types was adopted for the following criteria: 

maximum value for the compression strength and minimum values for density and thermal 

conductivity. In terms of density and thermal conductivity, the weight of responses are set at 5 

which is determining the level of importance of these two responses in order to be close as 
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possible to the minimum. In terms of maximum strength, the weight of response is set at 3 in 

order to be close as possible to the maximum.  

By applying the desirability function method, the optimum preparation conditions are 

demonstrated in Figure IV. 11a, b and Table IV. 6 and were found to be the following: for 

APD-BTMSH derived aerogels, the BTMSH Si mol% was 40 % and the R value was 1.56; 

for APD-BTESB derived aerogels, the BTESB Si mol% was 9.27 % and the R value was 1.8. 

From the response surface graph of desirability for BTMSH aerogel-like monoliths, the 

optimum density was determined as 0.26 g cm-3, with maximum compression strength of 0.63 

MPa and thermal conductivity of 0.054 W m-1 K-1. On the other hand, optimum density value 

for APD-BTESB derived aerogels was determined as 0.70 g cm-3, with higher maximum 

compression strength ranging of 2.4 MPa and thermal conductivity of 0.079 W m-1 K-1.  

 

	
  

Figure IV. 11 a) Desirability versus Si mol% of BTMSH and R for BTMSH derived APD-aerogel-

like monoliths, b) Desirability versus Si mol% of BTESB and R for BTESB derived APD-aerogel-

like monoliths. 
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Table IV. 6 Optimal design points for BTMSH and BTESB derived aerogel-like monoliths with their 

predicted response values. 

Bis-silane mol% R Density 
(g cm-3) 

Thermal 
conductivity 
(W m-1 K-1) 

Max. stress 
at break 
(MPa) 

Desirability 

BTMSH: 40 mol% 1.56 0.269 0.054 0.631 0.976 

BTESB: 9.27 mol% 1.8 0.760 0.079 2.380 0.80 

 

After the determination of APD-aerogel-like samples with optimized properties, our next 

attempt was to compare their important properties with the scCO2 dried aerogel counterparts 

under the same preparation conditions. For both experimental approaches, we selected the 

design points that are near in terms of the preparation conditions to the defined optimized 

APD-aerogel-like monoliths, according to the formulations indicated in Table IV. 6. The 

selected optimized samples have been synthesized by subjecting the wet gels to extra post-

gelation washing with hexane so that all methanol and residual water could be removed. 

Then, several important properties, including physical and mechanical properties, of both 

types of samples were compared with those from their scCO2 dried counterparts - Table IV. 7. 

It is interesting to note that, by increasing the number of the post-gelation treatment cycles of 

monoliths with hexane, the material properties of the sample have been improved over their 

previous values at Table IV. 3. 
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Table IV. 7 Comparison of important physical and mechanical properties of optimized APD-aerogel-

like monoliths and scCO2 dried aerogels under the same synthesis conditions. 

Sample Density 
(g cm-3) 

Shrinkage 
(Diam.%) 

BET 
(m2 g-1) 

Pore 
volume 
(cm3 g-1) 

Average 
pore 

diameter 
(nm) 

Thermal 
conductivity  
(W m-1 K-1) 

Max. 
stress at 
break 
(MPa) 

SCD-B_40_R_1.25 0.22 11 82.2 3.5 170 0.060 0.523 

APD-B_40_ R_1.25 0.24 14 53.1 3.47 261 0.055 0.786 

SCD-Bz_9_R_1.8 0.29 12 208.9 3.94 75 0.052 1.146 

APD-Bz_9_R_1.8 0.52 26 155.1 1.81 47.4 0.075 2.658 

 

As indicated, BTMSH derived aerogel-like samples are stronger than their SCD 

counterparts with only marginal differences between density and thermal conductivity of both 

samples. Sample photos shown in Figure IV. 12a reveal that there are no major structural or 

physical differences in both aerogel and aerogel-like samples derived from BTMSH, and, 

both are strong and have enough structural integrity. However, compared to the SCD 

aerogels, aerogel-like samples, due to the relatively higher shrinkage upon drying from 

hexane, have exhibited less spring back or recovery of the gel initial size after drying. The 

higher shrinkage caused to some extent the losing of porosity and surface area in the APD 

aerogels. Analyzing the stress strain curves (Figure IV. 12c), they revealed that the scCO2 

dried BTMSH aerogel possesses slightly high elastic properties, confirmed by its higher strain 

values, up to approximately 45% of the strain, when compared to the APD-aerogel-like 

monoliths that compressed up to 36% of the strain.  

In terms of BTESB derived samples, <50% increase in the density and thermal conductivity 

along with significant increase in the mechanical strength is shown for the aerogel-like 

samples when compared to their scCO2 dried counterparts. As mentioned before, BTESB 

derived APD-aerogel-like monoliths have suffered higher dimensional shrinkage when 

compared to the BTMSH derived samples. Therefore, a significant increase in density is 

noticed for the BTESB aerogel-like samples (Figure IV. 12b). It is worth noting that, despite 
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of higher R values for the optimized BTESB samples, their surface area is still high. This 

confirms their relatively high pore volume and extent of porosity even after large shrinkage 

with drying – Table IV. 7. 

a)  

 

b) 

 
 

 
       c) 

Figure IV. 12 a) Optimized APD-BTMSH derived aerogel-like samples and their scCO2 dried 

counterparts and, b) optimized APD-BTESB derived aerogel-like samples versus their scCO2 dried 

counterparts, c) stress-strain curves for monoliths in a) and b).  

Scanning electron microscopy micrographs of both optimized APD samples and their scCO2 

dried aerogel counterparts are shown in Figure IV. 13, under the same preparation conditions. 

The SEM micrographs of both types of samples revealed a conformal polymer coating on the 

silica that forms the skeletal framework of the aerogel. The optimized APD cross-linked 

BTMSH derived aerogels retain a microstructure, which is practically identical to that of 
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aerogels dried under supercritical conditions. On the contrary, the optimized cross-linked 

APD-BTESB derived aerogel monolith shows clear signs of collapse (i.e. a virtual 

disappearance of mesoporosity and irregularities in the silica particle morphology). This result 

is in agreement with a high extent of shrinkage and relatively low surface area and porosity 

when compared to the scCO2 dried aerogel, already discussed before.   

These results suggest that the properties of cross-linked aerogels dried from hexane under 

ambient pressure are to some extent similar to those dried supercritically. 

 

scCO2 dried aerogels (a,c) APD-aerogel-like samples (b,d) 

BTMSH 40% R=1.25 (a,b) 

  

  
BTESB 9%, R=1.8 (c,d) 

Figure IV. 13 SEM images of optimized APD and scCO2 dried aerogels. 

IV. 3.4 Evaluation of sample properties for Space applications 

Aerogel and aerogel-like materials properties should fulfill the requirements for service in 

the environments to which they will be exposed. The aerogels in this study are being 

developed for Space applications; therefore, the material properties should comply with 
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thermal characteristics of the Space environment. There are several standard tests to evaluate 

the material specification with the purpose of Space use [211]. These standards apply to 

materials used for structural, semi-structural, electronic, electrical as well as both manned and 

unmanned Space craft applications. The standards should consider some constrains that are 

specific to Space, i.e. vacuum and radiation. These constrains are applied in order to ensure 

that the material satisfies the requirements during mission. Vacuum outgassing [212] and 

thermal cycling [213] are two important examples of those important standard tests to qualify 

materials for Space use. Vacuum outgassing test is applied to evaluate outgassing 

characteristics of the proposed materials under high vacuum, when they are developed for use 

in the fabrication of spacecraft and their associated equipment. 

The summary of results for the samples subjected to outgassing is presented in Table IV. 8, 

revealing that, for optimized APD-aerogel-like samples and their scCO2 dried aerogels, the 

RML values are far less than 1%, which indicates the compatibility of samples with simulated 

thermal and vacuum characteristics of Space environment. The chemical structure inspection 

by ATR FT-IR also confirms that there are no structural degradation/dissociation on the 

chemical bonds of the aerogels after 24 hours outgassing at T = 125oC – Figure IV. 14a, b.   

The thermogravimetric analysis indicated that both BTMSH and BTESB derived aerogels 

are almost thermally stable, since there is no significant mass loss until T = 125oC, except for 

the mass loss of water adsorbed on the aerogel network - Figure IV. 15. 
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a) 

 
 
b) 

 
Figure IV. 14 ATR FT-IR spectra of a) BTMSH and b) BTESB derived APD-aerogel-likes and 

scCO2 dried aerogels after vacuum outgassing test. 
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Table IV. 8 Vacuum outgassing data for optimized APD-aerogel-like samples and scCO2 dried 

aerogel samples. 

Sample 
TML 

% 

RML 

% 

WVR 

% 

SCD-B_40_R_1.25 0.92±0.08 0.29±0.002 0.64±0.002 

APD_B_40_ R_1.25 1.28±0.006 0.46±0.006 0.82±0.0003 

SCD-Bz_9_R_1.8 1.08±0.002 0.23±0.003 0.85±0.005 

APD-Bz_9_R_1.8 1.5±0.001 0.46±0.002 1.04±0.0006 

 

 

	
  
Figure IV. 15 Thermogravimetric analysis (TGA) data of BTMSH and BTESB derived APD-aerogel-

like monoliths. 

Thermal cycling is the other standard test, in which material is subjected to a certain number 

of thermal cycles under vacuum. The purpose of this test is to evaluate the capability of the 

material to withstand thermal stresses in the intended Space environment. For this, 

temperature oscillates within a defined temperature range in order to anticipate or evaluate the 

material resistance to some deleterious, namely outgassing, fracture or cracking due to sudden 

dimensional changes and so forth. Here in, the optimized APD and scCO2 dried aerogel 

samples were subjected to three successive thermal cycles by applying temperature in the 
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range of -78 to 125oC in each cycle, under vacuum. Subsequently, the tested samples were 

inspected by visual examination, outgassing recording and mechanical properties evaluation. 

Summary of the outgassing behavior of the samples during three referred cycles is shown in 

Table IV. 9 These results reveal that samples are stable even after three thermal cycles.  

 

Table IV. 9 Thermal cycling data for optimized APD and scCO2 dried aerogels. 
Sample  1st thermal cycle 

 TML1 (%) RML1 (%) WVR1 (%) 

SCF-B_40_R_1.25 1.090 ± 0.006 0.580 + 0.003 0.510 ± 0.004 

    APD_B_40_R_1.25 0.960 ± 0.005 0.620 ± 0.003 0.340 ± 0.002 

SCF-Bz_9_R_1.8 1.130± 0.006 0.560 ± 0.002 0.580 ± 0.004 

APD-Bz_9_R_1.8 0.910 ± 0.002 0.780 ± 0.002 0.130 ± 0.001 

 2nd thermal cycle 

 TML2 (%) RML2 (%) WVR2 (%) 

SCF-B_40_R_1.25 0.86 ± 0.13 0.29 ± 0.01 0.53 + 0.02 

APD_B_40_ R_1.25 0.88 ± 0.13 0.20 ± 0.05 0.66 ± 0.05 

SCF-Bz_9_R_1.8 1.03 ± 0.30 0.47 ± 0.03 0.56 ± 0.12 

APD-Bz_9_R_1.8 1.0 ± 0.13 0.41 ± 0.03 0.59 ± 0.20 

 3rd thermal cycle 

 TML3 (%) RML3 (%) WVR3 (%) 

SCF-B_40_R_1.25 1.43 ± 0.27 0.030 ± 0.007 1.400 ± 0.007 

APD_B_40_ R_1.25 0.95 ± 0.05 0.310 ± 0.041 0.640 ± 0.035 

SCF-Bz_9_R_1.8 0.84 ± 0.10 0.040 ± 0.040 0.800 ± 0.140 

APD-Bz_9_R_1.8 1.27 ± 0.20 0.540 ± 0.010 0.730 ± 0.210 

 

IV. 4 Conclusion  

In summary, ambient pressure dried silica aerogels with different underlying silica 

structures have been synthesized. The polymer cross-linked silica aerogel monoliths 

developed here can be dried under ambient pressure from hexane with no need for 

supercritical fluid extraction. The key properties of APD-aerogel-like materials, including 
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bulk density, thermal conductivity and mechanical properties, were studied and modeled by 

using a statistical design of experiments. The empirical models derived for each type of 

aerogel-like samples allowed us to define the optimized preparation conditions by means of a 

desirability function that included all the referred key properties. Comparing the optimized 

APD aerogels’ properties with those of their scCO2 dried counterparts, we proved the 

similarity in the some properties with ∼2× increase in the mechanical strength, which 

confirmed the adequacy of the proposed synthesis and drying method. Also, the cross-linked 

aerogels of this study are more than 400× stronger than the underlying plain silica framework, 

and thus they have been able to withstand the surface tension forces during ambient pressure 

drying. Such drastic increase in mechanical strength was accompanied by less than two time 

increase in the bulk density for BTMSH based aerogel-like samples over their nonreinforced 

counterparts. Additionally, the optimized aerogel-like and aerogel samples of this study have 

been inspected in terms of their material characteristics for use at intended Space applications. 

It has been shown that the material characteristics of the developed aerogels are suitable for 

the simulated Space environment condition. This appears to be the first report on aerogels 

addressing successfully the aerogels’ material specification for Space environments.  

Finally, monolithic materials developed here have a broad practical impact. In fact, due to 

their hydrophobicity, higher mechanical strength and the need of simple ambient pressure 

drying, they can replace their supercritical counterparts in some applications, enabling large-

scale production. 
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Chapter V. Develoment of mechanically reinforced silica aerogels via 

Surface-Initiated Reversible Addition-Fragmentation Chain Transfer 

(RAFT) Polymerization. 

This chapter comprises the work published in Journal of Materials Chemistry A (2014), 

DOI: 10.1039/C4TA05618C, by: Hajar Maleki, Luísa Durães, António Portugal. 

V. 1 Introduction  

Reinforcement of the silica network with polymers synthesized by step growth 

polymerization from initiators attached to the surface has been demonstrated to produce 

strong aerogels [48]. Similarly, free radical polymerizations from attached initiators was only 

recently achieved with the synthesis of an azobisisobutyronitrile (AIBN) bridged 

silsesquioxane monomer (5 mol%) that upon co-polymerization with tetraethylorthosilicate 

(TEOS) was inserted into the silica matrix of the aerogel [177]. Heating the silica gel 

modified with the azo bridged silsesquioxane to 70°C led to the decomposition of the azo 

compound to form radicals attached to a silane. These radicals were used to initiate the 

polymerization of vinyl monomers (methyl methacrylate, styrene and divinylbenzene) grafted 

from the surface of the silica gel. However, a significant portion of the initiator remained 

buried in the silica matrix and was not useful to the polymerization of vinyl monomers. The 

polymer grafted was of high polydispersity, as the polymerization was uncontrolled, not 

allowing for structure property relationships to be established. Additionally, heating the gels 

resulted in decomposition of the azo bridged silsesquioxane which cause a weakening of the 

silica gel mechanical properties. 
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To ascertain the grafted polymer’s molecular weight influence on the mechanical properties 

of silica aerogels, Boday et al. [24] utilized atom transfer radical polymerization (ATRP) 

from surface bound initiators. This approach led to the incorporation of well-defined poly 

(methyl methacrylate) with low polydispersity and, therefore, allowed to establish a tunable 

structure-property relationship between the molecular weight of grafted polymers and the 

toughening of the hybrid aerogel.  

To date, controlled polymerization techniques are scarcely investigated as an approach to 

improve silica aerogels’ mechanical properties. In this study, we extend the previous 

approaches to grow vinyl polymers from the colloidal particles of silica gels. Inspired on the 

previous work of Boday et al. [24] that seeks to establish a tunable correlation between 

polymer molecular weight and mechanical properties of aerogels, we also report the 

preparation of mechanically enhanced hybrid aerogels using surface initiated reversible 

addition-fragmentation chain transfer (SI-RAFT) [214, 215] polymerization to grow well-

defined polystyrene and poly (butyl acrylate) from the silica surface.  

This work included the synthesis of sol-gel processable RAFT initiators, sol-gel 

polymerization for RAFT initiator-modified gels, RAFT from the surface of gels, supercritical 

drying for aerogels formation and characterization of the mechanical properties of the 

resulting aerogel composites. Not only this approach will allow the incorporation of well 

defined polymers into aerogels, but its versatile methodology allows for the polymerization of 

a number of vinyl and cross-linkable monomers, without the initiator causing the weakening 

of the silica network [177]. 

V. 2 Background of controlled radical polymerization  

In conventional free radical polymerizations, the radicals generated from the decomposition 

of free radical initiators, such as azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO), 
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follow rapid propagation and rapid termination [216]. In these polymerizations, high 

molecular weight polymers are obtained and the formed polymers are polydisperse. 

Controlled radical polymerizations (CRP) differ from conventional free radical 

polymerizations since, in the former case, the propagating radical is present [217]. As 

mentioned, conventional free radical polymerizations undergo chain transfer or termination of 

the propagating radical within seconds of initiator decomposition. CRP is based on a dynamic 

equilibrium of dormant and active propagating sites, in which the conversion from a dormant 

site to a propagating radical and back to dormant is very rapid. To achieve this dynamic 

equilibrium, CRP utilizes deactivators or transfer agents that react with the propagating 

radical making it dormant. This process allows for the preparation of well-defined polymers.  

In the past two decades, the field of CRP has been rapidly growing with a number of 

techniques developed to prepare well-controlled polymers. The most prevalent methods used 

to prepare well-defined polymers using CRP are stable free radical polymerizations (i.e. 

nitroxide mediated polymerization (NMP)) [218], metal catalyzed radical polymerizations 

(i.e. atom transfer radical polymerization (ATRP)) [219] and degenerative transfer radical 

polymerizations (i.e. reversible addition-fragmentation chain transfer (RAFT)) [220]. As we 

use RAFT in this study, a brief summary of this polymerization technique is included to 

provide an adequate background of this method. 

V. 2.1 Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization 

technique 

RAFT polymerization has now became one of the most powerful CRPs because of its good 

control over the polymer structures, its applicability to a wide range of monomers and the 

mild reaction conditions [221-223]. It is a degenerative chain transfer process and is free 



Chapter V. Develoment of mechanically reinforced silica aerogels via Surface-Initiated Reversible Addition-
Fragmentation Chain Transfer (RAFT) Polymerization 
	
  

 136 

radical in nature. Implementing a RAFT polymerization can be as simple as introducing a 

suitable chain transfer agent (also known as RAFT agent, normally thiocarbonylthio 

compounds) into a conventional free radical polymerization system. The RAFT agents have a 

significant effect on the controllability of the RAFT polymerization and thus should be 

carefully chosen for a specific polymerization system. 

As shown in Figure V. 1, RAFT polymerization starts with a standard initiation step as in the 

conventional radical polymerization (with e.g. AIBN or BPO initiator), where the homolytic 

bond cleavage of a normal radical initiator I2 leads to two reactive primary free radicals Io. Io 

then reacts with monomer molecules to form a propagating polymeric radical Po
n, which 

further adds to the C=S bond of the initial RAFT agent 1 to yield a carbon-centered 

intermediate RAFT radical 2. Fragmentation of this intermediate gives rise to either the 

original reactants (1 and Po
n) or a polymeric RAFT and a new radical Ro, which is able to 

reinitiate polymerization and can generate its own active center by reacting with monomer 

molecules, providing eventually a new polymeric radical Po
m. Ultimately, a rapid equilibrium 

is established between the actively growing polymeric radicals (Po
m and Po

n) and the dormant 

polymeric RAFT compounds 3, which provides equal probability for all chains to grow and 

allows for the production of narrowly dispersed polymers with a thiocarbonylthio end group. 

In comparison with other CRPs techniques, RAFT polymerization offers the benefit of being 

able to readily synthesize well-defined polymers for a wider range of monomers (almost all 

monomers suitable for the conventional free radical polymerization) under mild reaction 

conditions. Furthermore, it can also be used in all modes of free radical polymerization such 

as solution, emulsion, and suspension polymerizations. Therefore, since RAFT 

polymerization is probably the most versatile living radical polymerization process [223], it is 

deemed to have a bright future in both academic and industrial fields [224]. 
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Figure V. 1 Mechanism of RAFT polymerization. 

V. 2.2 RAFT polymerization on solid supports 

A number of hybrid materials have been prepared by grafting organic polymers with low 

polydispersities to a number of inorganic substrates, using the above mentioned RAFT 

methods. Until now, RAFT polymerization has been successfully used to graft a wide range 

of polymeric chains onto various solid supports such as functionalized silica particles [225-

228], silicon wafers [229-231], gold nanoparticles [232, 233], CdSe nanoparticles [234], 

carbon nanotubes [235, 236], cotton [237], cellulose [238, 239] and Merrifield resin [240, 

241]. In general, RAFT polymerization based on solid supports can be performed using both 

(a) the R-group approach, where the chain transfer agent (CTA) is attached to the backbone 

via the leaving and reinitiating R group, and (b) the Z-group approach, where the CTA is 

attached to the backbone via the stabilizing Z group. Both methods have advantages and 

limitations [220, 222, 242]. In the R-group approach, where the solid support is part of the 

leaving R group, higher molecular weight of grafted polymers and grafting density can be 

achieved, but the molecular weight distribution may be broadened by the possible chain 
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coupling [225-227]. In the Z-group approach, where the backbone is part of Z group, the 

RAFT process involves the reaction of linear radical chains with the functional backbone, 

leading to a monomodal molecular weight distribution and a better-defined grafted polymer, 

but the grafting density is liable to decrease due to the shielding effect [243, 244].  

In this study, the Z-supported RAFT polymerization of two vinyl monomers mediated by 

silica-supported S-Benzyl Sʹ′-trimethoxysilylpropyltrithiocarbonate (Si-BTPT) was 

investigated. 

V. 3 Materials 

Tetramethoxysilane (98%), anhydrous methanol (99.5%), toluene (99%), tetrahydrofuran 

(THF), 3-(mercaptopropyl)trimethoxysilane (95%), 1-propanethiol (98%), carbon disulfide 

anhydrous >99%, benzyl choloride (99%), sodium methoxide (25 wt% solution in methanol), 

butyl acrylate (BA, <99%), styrene (St, <99%), 2,2´-azobisisobutyronitrile (AIBN, 99%) and 

ammonium hydroxide (NH4OH, 28-30 wt% solution) were purchased from Sigma-Aldrich. 

All reagents were used without further purification. 

V. 4 Method 

V. 4.1 Preparation of S-Benzyl Sʹ′-trimethoxysilylpropyltrithiocarbonate (BTPT) and S-

benzyl Sʹ′-propyltrithiocarbonate (BPTT) 

In a typical run, a solution of sodium methoxide in methanol (25 wt%, 6.48 g, 30 mmol) was 

added dropwise, under nitrogen, to a stirred solution of 3-(mercaptopropyl)trimethoxysilane 

(95%, 6.20 g, 30 mmol) in 50 mL of anhydrous methanol. After stirring for 30 min, CS2 (3.05 

g, 40 mmol) was added dropwise to the solution, and the mixture was then stirred at ambient 
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temperature for 5 h. Benzyl chloride (98%, 3.43 mL, 30 mmol) was added to the resultant 

yellow solution, and the mixture was stirred overnight under nitrogen. The mixture was 

concentrated, diluted with dichloromethane, filtered off, and concentrated under reduced 

pressure until constant weight. S-benzyl Sʹ′-trimethoxysilylpropyltrithiocarbonate (BTPT, 10.8 

g, 30 mmol, 102%) was obtained as an orange oil and used without further purification – 

Figure V. 2. Other chain transfer agent (CTA) of BPTT was synthesized according to a 

similar procedure using 1-propanethiol as raw material and obtained in almost quantitative 

yield.  

 

	
  

Figure V. 2 Preparation of S-Benzyl Sʹ′-trimethoxysilylpropyltrithiocarbonate (BTPT) to be used as a 

surface bond RAFT initiator. 

 
BTPT: 1H NMR (CDCl3): δ 7.30 (m, 5H, PhH), 4.60 (s, 2H,CH2), 3.56 (s, 9H, CH3O), 3.39 

(t, J7, 2H, CH2S), 1.84 (m, 2H, CH2), 0.77 (t, J8, 2H, CH2Si) (vd. spectra a at Figure V. 3). 

BPTT was obtained as a yellow liquid product in 98.5% isolated yield. 

1H NMR (CDCl3): δ 7.33 (m, 5H, PhH), 4.61 (s, 2H, CH2), 3.35 (t, J7, 2H, CH2S), 1.75 (m, 

2H, CH2), 1.02 (t, J7, 3H, CH3) (vd. spectra of b at Figure V. 3).  
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Figure V. 3 1HNMR spectra of a) S-Benzyl Sʹ′-trimethoxysilylpropyltrithiocarbonate (BTPT), and b) 

S-benzyl Sʹ′-propyltrithiocarbonate (BPTT). 

V. 4.2 Synthesis of RAFT modified silica (RAFT-Silica) aerogels 

A solution containing tetramethoxysilane (TMOS, 2.15 mL, 14.7 mmol) and S-benzyl Sʹ′-

trimethoxysilylpropyltrithiocarbonate (BTPT) (0.1 mL, 0.3 mmol) was prepared. The second 

solution was prepared by adding 11.2 mL of the gelation solvent (methanol), H2O (1.08 mL, 

r=[Si]/[water]=4) and 0.4 mL of NH4OH (28-30 wt%). The two solutions were mixed for one 

minute, then poured in a poly(propylene) container, with 17.2 mm nominal diameter, at room 

temperature. The final volume was 15 mL. Gelation occurred within ~5 minutes. Gels were 
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aged at room temperature for 48 h followed by 48 h at 50°C. Once removed from the 

poly(propylene) container, the methanol was slowly exchanged with toluene over 48 h for the 

RAFT process - Figure V. 4. If processed for silica aerogel formation, gels were dried using 

the optimal procedure for supercritical carbon dioxide drying affording a RAFT -modified 

silica aerogel.  

 

	
  

Figure V. 4 Copolymerization of TMOS and silica-BTPT for preparation of a wet gel with surface 

bound RAFT initiator 

V. 4.3 RAFT Polymerizations 

Initiator-modified gels were placed into a Schlenk flask along with toluene (50 mL). The 

Schlenk vial was sealed and purged with argon for 30 minutes. In a separate vial the monomer 

and radical initiator of AIBN was deoxygenated by bubbling azote for 30 minutes. Then the 

deoxygenated monomer (45 mmol) and radical initiator of AIBN (0.1 gr) was transferred into 

the schlenk flask under argon containing the gel in toluene via syringe. 

Solutions were allowed to equilibrate for 3 h, after which the Schlenk flask was placed into a 

thermostated oil bath at 70°C. The time left in the oil bath depended upon the composite 

density desired - Figure V. 5. The density of the polymer composites can be controlled by 

varying the polymerization times. After a specific reaction time, the composite silica aerogels 

were removed from the vial and washed several times with toluene in order to purify the 

Si
O

O
O S S

S

BTPT-silica

Si
O

OO

O
+

TMOS

MeOH

NH4OH, H2O

Si
O

O
O S S

S ii)

RAFT-silica

i)



Chapter V. Develoment of mechanically reinforced silica aerogels via Surface-Initiated Reversible Addition-
Fragmentation Chain Transfer (RAFT) Polymerization 
	
  

 142 

composite gels from free polymers and other residues. Afterward, the toluene solution was 

slowly exchanged for methanol, which is needed for supercritical drying. 

 

	
  

Figure V. 5 RAFT growth of PSt and PBA on silica surface. 

V. 4.4 General procedure to cleave grafted chains from the silica surface by aminolysis 

The grafted polymers were cleaved from the silica surface according to a method similar to 

the literature [214]. In a typical run, the following compounds were added to a glass tube: 100 

mg of polymer-silicaaerogels, 5.0 mL of THF, and one drop of a dilute aqueous solution of 

Na2S2O4. The solution was degassed with nitrogen for 5-10 min, and then 0.1 mL of degassed 

n-hexylamine was injected into the mixture. After stirring at ambient temperature overnight, 

the solution was subjected to centrifugation, and the recovered polymer was used for SEC 

analysis. 
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V. 5 Characterization techniques 

V. 5.1 Size exclusion chromatography - determination of molecular weight and 

molecular weight distributions of grafted polymers 

Molecular weights of the PBA and PSt grafted from the surface of silica aerogel were 

determined by size-exclusion chromatography (SEC) (HPSEC) (Viscotek (ViscotekTDAmax) 

with a differential viscometer (DV); right-angle laser-light scattering (RALLS, Viscotek); 

low-angle laser-light scattering (LALLS, Viscotek) and refractive index (RI) detectors). The 

column set consisted of a PL 10 mm guard column (50 ×7.5 mm2) followed by one Viscotek 

T200 column (6 mm), one MIXED-EPL gel column (3 mm) and one MIXED-C PLgel column 

(5 mm). A HPLC dual piston pump was set with a flow rate of 1 mL min-1. The eluent (HPLC 

THF) was previously filtered through a 0.2 mm filter. The system was also equipped with an 

on-line degasser. The tests were conducted at 30°C using an Elder CH-150 heater.  Before 

injection (100 µL), the samples were filtered through a poly(tetrafluoroethylene) (PTFE) 

membrane with 0.2 µm pore. For PBA and PSt, Mn,GPC and PDI values were determined by 

conventional calibration with PSt standards between 1820 and 96 000. 400 MHz 1H nuclear 

magnetic resonance (NMR) spectra of samples of the reaction mixture were recorded on a 

Bruker Avance III 400 MHz spectrometer, with a 5 mm TXI triple resonance detection probe, 

in CDCl3 with tetramethylsilane (TMS) as an internal standard. 

V. 5.2 Bulk and skeleton density and nitrogen gas adsorption  

The bulk density (ρb) was determined by measuring the weight and volume of the samples. 

Dimensional shrinkage (%) was taken as the difference between the diameters of the aerogel 

monolith and of the 20 mL syringe mold (nominally 17.2 mm). He picnometry (Accupyc 
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1330, Micromeritics) was used to measure the real (skeleton) density of the samples. 

Combining the information of the skeleton and bulk densities, it was possible to evaluate the 

porosity of the samples. In addition, we used the Nitrogen gas adsorption (Accelerated 

Surface Area and Porosimetry ASAP 2000, Micromeritics) for determination of the specific 

surface area, pore size distribution, pore surface area and pore volume of the materials. Before 

the analysis, the sample was outgassed at 60oC in vacuum (10-5 bar) during 24 h, to remove 

adsorbed species. In the analysis, volumes of the adsorbed nitrogen at five different relative 

pressures (0.05 to 0.2) were taken at 77 K, to obtain the specific surface area by the BET 

theory. The desorption isotherm and the BJH theory were used for the porosimetry evaluation.  

V. 5.3 Thermo gravimetric analysis (TGA) 

Thermal gravimetric analysis (TGA) was performed using a TA model TGA-Q500 instrument 

with a heating rate of 10°C min-1, from room temperature to 600°C, under nitrogen 

atmosphere. 

V. 5.4 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) (JMS-5310, JOEL) was used to observe the materials 

microstructure. Due to the low electrical conductivity of the highly porous silica-based 

samples, an Au film was deposited on their surface, using the PVD (Physical Vapor 

Deposition) technique during 20 s. 

V. 5.5 Thermal conductivity and mechanical properties  

The thermal conductivity of the reinforced aerogels was measured using a transient method 
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(Thermal constants analyzer TPS 2500 S, Hot Disk). The sensor is clamped between two 

identical disc shaped pieces of the sample, which have a diameter of 1 cm and thickness of 

0.5 cm (properly cut from the cylindrical aerogel samples). This analysis was carried out at 

20ºC and the equipment presents a reproducibility and accuracy over 1% and 5%, 

respectively.  

For the mechanical test, samples were cut with length:diameter ratio of 2:1, and were polished 

to make sure that top and bottom side were smooth and parallel. The compression test was 

conducted following the ASTM standard D695-02a. All tests were done at nominal room 

conditions with a stroke speed of 1.3 mm/min. 

V. 6 Results and discussion 

Silica aerogels-polymer composites in this study have been synthesised through several 

steps. Firstly, trimethoxysilane-containing chain transfer agent (S-benzyl S´- 

trimethoxysilylpropyltrithiocarbonate (BTPT-silica) as a RAFT-silane coupling agents was 

synthesized [214]. Then, a modified silica wet gel (RAFT-silica) was synthesized by 

conducting sol-gel polymerization reaction between tetramethoxysilane (TMOS) and BTPT-

silica. The lower reactivity of the trimethoxysilyl group compared to tetramethoxysilane 

during sol–gel reaction ensured that the majority of initiating groups would be inserted to the 

aerogel surface [245]. The RAFT polymerization process is initiated from the chain transfer 

agent (CTA) modified silica, and, finally the resulted aerogel composites are supercritically 

dried. The degree of polymerization [M]o/[I]o= 150 was chosen. Polymerization times were 

varied from 6 to 30 h, thus allowing for control over the grafted polymers molecular weight 

(Table V. 1) 

SI-RAFT of vinyl monomers was conducted in solution using a AIBN and BPTT as a free 

CTA in the presence of a monolithic gel. 
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.Table V. 1 Properties of silica, PBA and PSt-silica aerogel composites. 

Sample 
MW 

(g mol-1) 
PDI 

Density b 

(g cm-3) 

Thermal  

Conductivity 

(W m-1 k-1) 

Mechanical 

Strength 

(kPa) 

Porosity c 

% 

Surface 

Area d (m2 g-1) 

Av. pore 

Diameter 

(nm) 

   Pore 

Volume 

(cm3 g-1) 

0a - - 0.0910±0.004 0.032± 0.007 14 96 850 21 4.3 

6h-PBA 10 315 1.60 0.140±0.006 0.036± 0.001 58 94 518 16 3.9 

20h-PBA 13 529 2.27 0.160±0.009 0.039±0.007 77 92 487 15 2.9 

30h-PBA 19 895 2.37 0.170±0.010 0.042± 0.002 98 91 352 11 2.1 

6h-PSt 2 798 1.54 0.130±0.007 0.034± 0.008 32 94 779 13 4.2 

20h-PSt 3 016 2.04 0.140±0.004 0.035± 0.006 55 93 676 14 3.8 

30h-PSt 3 184 2.18 0.150±0.006 0.037± 0.001 124 93 501 14 2.7 
a Silica aerogel prepared without PBA/PSt (Silica-RAFT). b Density values are an average from three prepared gels. c Porosity calculated from  
!
!!
−    !

!! !
!!

  ×  100%,   ρb = bulk density ρs = skeletal density. d Surface area calculated from the N2 adsorption isotherm using the BET method. 

 

The monolithic gels were subjected to the several solvent exchanges with the initiators and 

free CTA at room temperature before heating to start the polymerizations. For surface RAFT 

polymerization, the addition of free RAFT-CTA is a useful approach to help control the 

polymerization process when the concentration of surface-bound RAFT-CTA is insufficient 

[246]. 

Imaging the PBA and PSt silica aerogel composite using SEM (Figure V. 6b, c) revealed the 

composites aggregate structure had been thickened compared to the polymer free RAFT 

initiator silica aerogel (Figure V. 6a). Thickening of the aerogels aggregate structure would be 

expected from the grafted PSt and PBA leading to a reinforcement of the weak necks inside 

aerogels network structure.  

TGA, FT-IR and elemental analysis (EA) confirmed that chain transfer agents were 

successfully immobilized on the silica surface. The elemental analysis revealed that loading 

of BTPT-silica (CTA agents) was 0.017 mmol of CTA per g of solid. In FT-IR spectra of 

plain BTPT-silica aerogel samples (spectrum a of Figure V. 7a strong and broad absorption 

band corresponding to the asymmetric stretching vibration of Si-O-Si was noted at 1020-1050 
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cm-1 and characteristic absorption bands of benzene ring were observed at 1464 and 1616 cm-

1. 

  

 
Figure V. 6 a) SEM image of surface functionalized silica aerogel with RAFT-silica, b) PBA-silica 

aerogel composite and c) PSt-silica aerogel composite after 30h polymerization. 

The characteristic absorption bands of C=O stretching were observed at 1727 cm-1 (PBA-

silica, spectrum b of Figure V. 7); and characteristic peaks of PSt-silica appeared at 1452, 

1492 and 1601 cm-1 (Figure V. 7c).  

Determination of tethered PSt and PBA molar mass was achieved by detaching the polymer 

from SiO2 by aminolysis using n-hexylamine [214] and size exclusion chromatography (SEC) 

of recovered polymers. 

Controlled SI-RAFT was achieved, as evidenced by SEC of cleaved PBA in the range of 

Mw=10-20 Kg mol-1 and PSt in the range of Mw=2-3 Kg mol-1 with polydispersities (Mw/Mn) 

of 1.5-2.1 and 1.6-2.4, respectively - Figure V. 8a, b. Clearly, the molecular weight of PSt and 

PBA increased with the polymerization time, thus providing strong evidence for controlled 

growth of the polymer. 

The PDI, which was initially quite low, became moderate and then even quite high at higher 

polymer loadings.  
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Figure V. 7 FT-IR spectra of RAFT-silica (a), PBA-silica (b) and PSt-silica aerogels. 

These molecular weight distributions were broader than those observed for typical 

homogeneous free polymer in solution. It is very common that the polydispersity of grafted 

polymers from highly porous materials is higher than those prepared in the absence of a 

substrate. Typically it ranges from 1.14 to 2.59, which were found to be higher with increased 

molecular weight. Moreover, the complex environment of aerogel and the concave surface 

geometry lead to sterically inaccessible initiation sites that affected the overall control of the 

SI-RAFT [247]. The thermal stability and grafting ratio of polymer on the silica surface were 

studied by thermogravimetric analysis (TGA). The increase in the molecular weight of 

polymer was correlated with the content of the polymer in PSt or PBA-silica aerogel 

composites- Table V. 2. Figure V. 9 indicates that the onset temperature of non-reinforced 

silica aerogels increased by incorporation of polymer on the silica surface.  
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a) 

 
b) 

 
Figure V. 8 Size exclusion chromatography traces for a) PSt, and b) PBA polymers isolated from 

silica composites. 

This result also suggests that thermal stability of silica composites increased by increasing 

the grafting ratio to the composites. 
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a) 

 
b) 

Figure V. 9 TGA curves of a) PBA-silica aerogels and b) PSt-silica aerogel composites. 

On the basis of SEC, TGA and gas adsorption data, the initiator efficiency, that is, the ratio 

of the number of grafted polymer chains to the number of initiation sites, has been determined 

and ranged between 1.5-24% - Table V. 2. The apparent decrease in the grafting density and 

initiation efficiency for the PBA in composite may be related to the coupling of chains at later 

stages of the grafting process where the pores are nearly completely filled with the polymer 

and the monomer cannot readily diffuse to convert the propagating chains to the dormant 

species [247]. This observation is consistent with the more than two-fold increase in the 

molecular weight and the broadening of the molecular weight distribution at this stage. This 

broadening in the PDI’ grafted polymers can also be explained by comparing the 

composition/organic content of outer and inner side of PBA-silica aerogels prepared in the 

20h and 30h of polymerization (Figure V. 10). After thirty hours of RAFT, the difference in 

the organic content between center and exterior part has increased to 10%. While the growth 

of polymer chains inside the pores was hindered because of the scarcity of available space, the 

chains growing on the external surface had no such restriction. Therefore, as the 

polymerization proceeds, it would cause second molecular weight distribution and the 

increase in the PDI’s grafted polymers. 
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Table V. 2 Results of TGA and SEC analysis for RAFT graft Polymerization. 

Aerogel Tonset (oC) Wt% polymerb Gr (%)c 
Gp 

(µmol g-1)d 

Initiator 

efficiencye 

(%) 

0a 314 - - - - 

6h-PBA 336 21 0.16 0.24 1.4 

20h-PBA 340 23 0.30 0.44 2.5 

30h-PBA 350 36 0.46 0.50 2.9 

6h-PSt 320 20 0.15 1.72 10.1 

20h-PSt 357 34 0.41 3.20 19.0 

30h-PSt 358 40 0.56 4.00 24.0 
aSilica aerogel prepared without PBA/PSt (RAFT-Silica) 
bWt%: weight percent of PBA/PSt in PBA- and PSt-silica composites, estimated from TGA data ; 
cWeight grafting ratio of polymeric chain on silica surface,  𝐺! =   

!"%  !"#$%&'!!"#"$%

!""!  !"%  !"#$%&'!!"#"$%
− !"%  !"#!!"#"$%

!""!!"%  !"#!!"#"$%
; 

dMolar grafting ratio of polymeric chain on silica surface, 𝐺! = !!
!!  (!)

; 
eInitiator efficiency = no. grafted polymer chains/no. of initiation sites. 

The porous nature of aerogel composites was evaluated by nitrogen physisorption (Figure V. 

11a, b). The detailed results are summarized in Table V. 1.  

It was found that the isotherms of almost whole samples were following the type ΙV 

according to the IUPAC classification, which is the characteristic of mesopore structures with 

cylindrical pores. The specific surface areas and the pore size distributions were evaluated 

from the adsorption and desorption branches of the isotherms applying the Brunauer-Emmett-

Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively (Figure V. 11d, c). The 

nitrogen adsorption of silica composites decreases gradually as the polymerization time 

increases. Grafting of PSt (Figure V. 11a) and PBA (Figure V. 11b) resulted in a gradual 

decrease in the volume of nitrogen adsorbed as the density of the composites increase. 

Volume of adsorbed gas decreases due to the expected gradual filling of the mesopores within 

the RAFT-modified silica aerogels. As a consequence, the average pore size shifts to lower 

values as the composites (PSt-Silica and PBA-silica) density increases. 
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Figure V. 10 TGA analysis of samples from interior and exterior of silica aerogels RAFT modified 

with PBA for 20 and 30 hours. 

 

a) 

 

b) 

 
 

   c) 

 
 

d) 

 
 

Figure V. 11 Nitrogen adsorption and desorption isotherms (a, b) and Barrett–Joyner–Halenda (BJH) 

pore-size distribution (c, d) of aerogels calculated from the desorption branch of the isotherm. Relative 

pressure=P/P0. 
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The thermal conductivity of synthesized aerogels has been measured by non-steady state 

(transient) approach and the results for nonreinforced and reinforced aerogels are indicated at 

Table V. 1 and Figure V. 12. 

 

	
  

Figure V. 12 Thermal conductivity versus polymerization time. 

The thermal conductivity of aerogels are strongly depend on the number of network 

connectivity and applied mass to reinforce them and ranging from 0.036 to 0.042 W m-1 K-1 

for PBA-reinforced aerogels and from 0.034 to 0.037 W m-1 K-1 for PSt-reinforced aerogels. 

The thermal conductivity of reinforced aerogels slightly increases by increasing the molecular 

weight of the grafted polymer and density of aerogel composites. However for PSt reinforced 

aerogels, due to the low molecular weight of grafted polymer compared to the grafted PBA, 

the increasing in the thermal conductivity is less pronounced. 

The effects of grafting PSt and PBA to strengthen aerogels are evaluated from sample stress-

strain curves shown in Figure V. 13a. The values of the compression strength (maximum) 

obtained from these curves are summarized in Table V. 1. The RAFT-silica aerogel, which is 

that of the initiator modified with (no PSt and PBA), with average density of 0.091 g cm-3, is 

slightly weaker than pure silica aerogels (max. strength ∼ 30 kPa) with the same density. 
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a) 

 

 
b) 

Figure V. 13 a) stress strain curves of different developed reinforced and nonreinforced aerogels b) 

photograph of plain TMOS-derived aerogel and initiator-modified aerogel (RAFT-silica) along with 

reiforced PBA-silica and PSt-silica aerogels with 30 hours polymerization time. 

The reduction in strength is observed in other silica aerogels synthesized by other co-

monomers of trialkoxysilane [24]. The strength of the PBA and PSt–silica aerogel composites 

increases with the density of the composite aerogel and the molecular weight of the polymer. 

The sample photos at Figure V. 13b show that reinforced aerogels have enough structural 

integrity and high mechanical strength compared to the native TMOS based and RAFT 

modified aerogels. 

The brittle behavior of the silica aerogel remains after the introduction of RAFT initiator. 

However, even a low polymer content promotes a clear improvement of the mechanical 

properties of the material. The Young’s modulus increases, and the maximum compression 

strength become 5-9 times higher. Furthermore, the mechanical behavior improvement is 
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noticeable from the much higher energy that the hybrid aerogel is able to absorb up to the 

maximum compression strength (roughly the area under the stress-strain curve).  

The initiator-modified aerogels are transparent and less dense; the transparency somehow is 

retained in case of the PBA reinforced aerogels. The PSt aerogel looks opaque and stronger 

than RAFT-silica and PBA-silica aerogels. 

PBA–silica aerogel composite prepared from a polymerization time of 30 h with a grafted 

molecular weight of ∼20 kg mol-1 increased the compression strength to 98 kPa. This is 

approximately 7× stronger than the initiator modified aerogels with less than 2× increases in 

the density (ρ=0.17 g cm-3). The strongest PSt–silica aerogel composite had a density of 0.15 

g cm-3, a molecular weight (Mw) of 3 kg mol-1 and compression strength of 124 kPa. This is 

9× stronger than the initiator modified silica aerogel. As indicated at Figure V. 13a, despite of 

the low molecular weight of PSt compared to PBA, the PSt reinforced aerogels were at the 

same time stronger, tougher and stiffer than PBA reinforced aerogels for all polymerization 

time. For the same polymerization time and same density, these aerogels even were stronger 

than PMMA reinforced aerogels (48 kPa) with higher Mw of 63 kg mol-1 [24]. Therefore, from 

these results, it can be concluded that the molecular weight of the grafted polymer plays an 

important role in the composites mechanical properties and depending on the type and nature 

of growing polymers, different results can be achieved for mechanical strength of aerogels.   

V. 7 Conclusion  

In summary, we have demonstrated the controlled growth of grafted polymers from the 

surface of a silica gel, by implementing RAFT polymerization technique for the first time. The 

polydispersities were in the range 1.5-2.4. We established relationship of silica aerogel 

composites main properties (density, bulk mechanical properties and thermal insulation) and 
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the molecular weight of polymers used to reinforce the composite. It was found that, as the 

molecular weight increases, so do the composites mechanical properties, but many of the 

aerogel’s physical properties are retained.  

Although we only have briefly explored this methodology to prepare silica aerogel 

composites, this method should provide a versatile approach to prepare silica aerogel 

composites with tailored properties. The approach described herein for the synthesis of 

polymer-composite aerogels promises to be applicable to a wide variety of polymers that can 

be polymerized in a controlled way via RAFT. 
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Chapter VI. Conclusions and brief perspective on future directions 

 

The main focus of this work was to develop silica aerogel composites with improved 

mechanical properties while retaining the characteristic physical properties of the native 

aerogels. In this regard, we successfully established a one pot streamline synthesis procedure 

for the development of supercriticaly dried tri-methacrylate reinforced silica aerogels with 

different silica nanostructures (Chapter III). The same synthesis procedure but with safer 

drying conditions has been implemented to prepare different APD silica aerogels with 

different silica nanostructures and optimized properties. (Chapter IV). The property 

optimization of APD aerogels was accomplished by means of the statistical CCRD 

methodology, in order to develop monoliths with material properties near to their scCO2 dried 

aerogels counterparts. All aerogel and aerogel-like composites exhibited increases in 

compression strength. The strengths of the monoliths synthesized in this project compared to 

other previous reinforced aerogels, namely silica reinforced by addition of silica, cross-linked 

with polymer networks and reinforced by chemical vapor deposition of methyl cyanoacrylate 

(MCA-CVD) on amine modified silica aerogels at Figure VI. 1. This figure indicates that the 

composite aerogels and aerogels-like prepared here along with MCA-CVD aerogels are 

stronger at lower densities compared to the previous aerogels of the literature.  

Aerogel and optimized aerogel-like composite monoliths prepared in the present work along 

with aerogels prepared by methyl cyanoacrylate CVD on phenylene-bridged 

polysilsesquioxanes were stronger than any low density silica or silica-polymer aerogel 

composites ever prepared.  

The red box in the plot indicates materials that are stronger than the traditional native aerogels 
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and have lower density than other polymer reinforced silica aerogels. This result shows that 

our strategy to develop aerogels and their optimized APD counterparts was a successful in 

generating high strength aerogels with little change in the density. Excluding MCA-CVD 

approach, none of the other materials prepared by other researchers in this field come close to 

reaching the mechanical strength at the low densities defined by the red box in Figure VI. 1. 

 

 

	
  

Figure VI. 1 Mechanical strength of silica aerogel composites plotted against their density. Different 

polymer crosslinked silica aerogels are listed at Table II. 2 in Chapter II. 

Not only the aerogel composites and their aerogel-like counterparts prepared by one pot 

synthesis strategy are stronger, they were made faster than other polymer-modified aerogels 

(Figure VI. 2). Generally, the total processing time (gel formation, polymer reinforcement and 
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supercritical drying) for the preparation of silica aerogels and aerogel-like composites is under 

75 hours, which is even lower than preparation time of aerogels prepared by CVD of methyl 

cyanoacrylate which normally takes 200 hours. Preparation of the CVD-modified aminated 

silica aerogel (MCA-CVD) composites took approximately 380 hours because of the time 

spent exchanging solvents required for surface silylation to produce a relatively water free 

surface. Also, polymer-reinforced aerogels in multistep procedures, due to the time spent for 

exchanging solvents and post gelation washing and drying, often take ∼ 450 hours.  

 

	
  
Figure VI. 2 Strength of silica aerogel composites plotted against the processing time required to 

prepare them. 

Normalizing for density, our composites have mechanical strengths higher than previous 

aerogel composites reinforced by polymer and with the rapid processing time achieved in 

their preparation.  

The red box in Figure V. 2 maps out the strength versus processing time domain. It shows that 
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stronger aerogels prepared in minimum time, have preparation time approximately less than 

twice of their native counterparts’. Only the optimized APD and SCD aerogel and aerogel-

like monoliths with properties listed in Table IV. 7 have the processing time and mechanical 

strength to lie within the red box. The scCO2-BTESB derived aerogel-like composites are the 

strongest of the low density aerogels and are the most quickly prepared. 

Additionally, we developed the first approach to graft low polydispersity poly butyl acrylate 

and polystyrene (Chapter V) from the surface of initiator-functionalized silica gels, with 

control over the grafted polymers molecular weight, using Surface-Initiated Reversible 

Addition-Fragmentation Chain Transfer polymerization (SI-RAFT). Controlling the grafted 

polymers molecular weight allowed us to draw a correlation of the molecular weight of 

polymers used to reinforce the silica aerogel to the bulk composite mechanical properties. As 

expected, the strength increased as the molecular weight of the polymers attached to the 

surface increased. The PBA and PSt reinforcement of silica aerogels moderately improved the 

mechanical properties and to some extent, retained other characteristic physical properties of 

native aerogels.   

Evaluating our approaches and other approaches used to improve the mechanical properties of 

silica aerogels, it is concluded that the main key in further strength improvements of aerogels 

must start from a strong as possible aerogel aggregate structure. Additionally, our work has 

shown that the processing time required to prepare silica aerogel composites through a one 

pot single step is fast, thus, other systems must be explored using this methodology. 

Specifically, those in which the polymerization is conducted through free radical 

polymerization techniques. Lastly, for silica aerogels to become a viable material to be used 

in a number of applications, the supercritical dying step must be removed. Our work has 

shown a significant improvement in the field of reinforcing silica aerogels and drying 

approach, and contained meaningful results that will allow for future research to prosper. 
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