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Abstract 
 

 

 

Cardiovascular disease (CVD), a general name for a wide diversity of diseases, disorders 

and conditions that affect the heart and often the blood vessels, is the largest cause of 

death in the European Union. Since it is well known that heart health is linked to 

behaviour and lifestyle, the focus should be on prevention. In the context of preventive 

medicine, telemonitoring solutions are making a huge impact by enabling remote patient 

monitoring for the healthy and for those requiring management of chronic diseases.  

One of the projects that address CVDs management by means of telemonitoring is 

HeartCycle, a European Integrated Project (FP7-216695) that aims at researching, 

developing and clinically validating innovative solutions for this purpose. Particularly, 

the goal of HeartCycle is to improve the quality of care for coronary artery disease 

(CAD) and heart failure (HF) patients.  

Integrated in the third workpackage (WP3-Multi-parametric Analysis and Decision 

Support), the present thesis is centred on the development of specific clinical 

applications, which target cardiovascular conditions identified as relevant for the 

CAD/HF management, such as ischemia, arrhythmias and hypertension, based on the 

analysis and processing of the electrocardiogram (ECG) and blood pressure (BP) signals 

daily collected by home telemonitoring. Namely, investigation is made on techniques for 

the diagnosis of the referred conditions, and for the analysis of future trends of these 

signals enabling the early detection of critical events.  

Specifically, this thesis presents methodologies for similarity detection and prediction in 

biosignal time series, which are mainly founded on the representation of signals as linear 

combinations of a set of orthogonal basis and on the time-frequency analysis of those 

signals.  

Particularly, it proposes a new strategy for diagnosing ischemia comprising a measure 

for evaluating the ST deviation based on the time-frequency analysis of the ECG 

through the Wigner-Ville transform, and the use of Hermite basis functions to capture 

the most relevant morphologic characteristics of the QRS complex. This methodology 

was tested using the European Society of Cardiology ST-T public database, and the 

relevant results achieved, namely a sensitivity of 96.7% and a positive predictivity of 

96.2%, confirmed its potential. 

Additionally, a new similarity measure based on a combination of the wavelet transform 

with the Karhunen-Loève transform for temporal patterns detection in biosignal time 

series, mainly to support prediction methodologies, was developed. The respective 

validation was performed by quantitatively comparing the proposed measure with other 

three common measures through the use of data from a public dataset of Physionet 

(MIMIC-II) and from a private telemonitoring platform (TEN-HMS). The obtained 
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results confirm that the proposed similarity is particularly appropriate to deal with 

noise, trends and signals that are not perfectly aligned in time. Moreover, an iterative 

implementation allows for its efficient computational implementation.  

In terms of predictive strategies two approaches are explored.  

The first, based on generalized regression neural networks integrated into a multi-model 

structure is designed for the accurate prediction of time series future values. It was 

applied in the prediction of acute hypotensive episodes (AHE) and validated in the 

context of the 2009 Physionet/Computers in Cardiology Challenge using data from 

MIMIC-II dataset. A correct prediction of 10 out of 10 AHE for test set A and of 37 out 

of 40 AHE for test set B was achieved, corresponding to the best results of all entries in 

the two events of the challenge. 

The main advantage of the second approach is that it does not require the development 

of a model. It exploits the multi-resolution analysis provided by the wavelet transform to 

estimate future evolution trend of biosignals, based on the trend evolution of similar 

historic signals. Its validity was demonstrated by the comparison with other common 

predictive methodologies. It was employed in the evaluation of the hypertension risk 

using data from TEN-HMS and MyHeart studies. The obtained results, in terms of 

Sensitivity-Specificity, were of 84.2%-75.5% and of 85.7%-91.8%, respectively, for the 

TEN-HMS and the MyHeart datasets, confirming the capability of the approach in this 

type of application.  
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Resumo 
 

 

 

A doença cardiovascular (DCV), nome genérico para uma grande diversidade de 

doenças, distúrbios e condições que afectam o coração e muitas vezes os vasos 

sanguíneos, é a maior causa de morte na União Europeia. Como é um facto aceite que a 

saúde do coração está intimamente ligada ao comportamento e estilo de vida das 

pessoas, a aposta deve ser na prevenção. No contexto da medicina preventiva, as 

soluções de telemonitorização estão a ter um enorme sucesso, ao permitirem a 

monitorização remota e consequente gestão de indivíduos que padecem de doenças 

crónicas. 

Um dos projectos que tem como alvo a gestão de doenças cardiovasculares através de 

soluções de telemonitorização é o HeartCycle, um projecto europeu integrado (FP7-

216695), que visa pesquisar, desenvolver e validar soluções clinicamente inovadoras para 

esta finalidade. Particularmente, o objectivo do HeartCycle é melhorar a qualidade dos 

cuidados de saúde dos pacientes de doença arterial coronária (DAC) e insuficiência 

cardíaca (IC). 

Integrada na terceira workpackage – WP3 (Multi-parametric Analysis and Decision 

Support), a presente tese centra-se no desenvolvimento de aplicações clínicas específicas 

que têm como alvo condições cardiovasculares identificadas como relevantes para a 

gestão de DAC/IC, tais como a isquemia, arritmias e hipertenaão, principalmente com 

base na análise e processamento dos sinais de electrocardiograma (ECG) e pressão 

arterial (PA), adquiridos diariamente em casa do paciente através de telemonitorização. 

Nomeadamente, é feita investigação em técnicas que permitam o diagnóstico das 

condições cardiovasculares referidas, bem como a previsão da evolução futura dos 

mencionados sinais de modo a possibilitar a detecção precoce de situações críticas. 

Especificamente, esta tese apresenta metodologias para a detecção de similaridades e 

predição em séries temporais, que são fundamentalmente baseadas na representação dos 

sinais como combinações lineares de um conjunto de bases ortogonais, e na análise 

tempo-frequência dos mesmos. 

Em particular é proposta uma nova estratégia para o diagnóstico de isquemia. Esta 

envolve uma medida para avaliar o desvio do segmento ST baseada na análise de tempo-

frequência do ECG através da transformada de Wigner-Ville, bem como o uso de funções 

base de Hermite para capturar as características morfológicas mais pertinentes do 

complexo QRS. Esta metodologia foi testada recorrendo à base de dados pública 

European Society of Cardiology ST-T. Os resultados relevantes alcançados, 

correspondendo a uma sensibilidade de 96.7% e um valor positivo preditivo de 96.2%, 

confirmaram o seu potencial. 



vi 

 

Além disso, é desenvolvida uma nova medida de similaridade com base numa 

combinação das transformadas Wavelet e Karhunen-Loève, para a detecção de padrões 

(templates) em bio-sinais, com o objectivo de servir de suporte às metodologias de 

predição. A respectiva validação foi realizada através da comparação quantitativa da 

medida proposta com outras três medidas, através da utilização de dados de uma base 

de dados pública da Physionet (MIMIC II) e de uma plataforma de telemonitorização 

privada (TEN-HMS). Os resultados obtidos confirmam que a medida proposta é 

particularmente apropriada para lidar com ruído, tendências e sinais não alinhados no 

tempo. A implementação de um esquema iterativo permite reduzir consideravelmente a 

complexidade do algortimo. 

Em termos de estratégias preditivas são exploradas duas abordagens. 

A primeira, baseada em redes neuronais regressivas integradas numa estrutura de multi-

modelos, é projectada para a previsão precisa de valores futuros de uma série temporal. 

Foi aplicada na predição de episódios agudos de hipotensão (EAH) e validada no 

contexto da 9ª edição do Physionet/Computers in Cardiology Challenge, usando a base 

de dados MIMIC-II da Physionet disponibilizada para efeitos do concurso. A previsão 

correcta de 10 EAH dos 10 existentes no conjunto de teste A, e de 37 EAH dos 40 

existentes no conjunto de teste B, conduziu à obtenção do primeiro lugar da classificação 

nos dois eventos do desafio. 

A vantagem da segunda abordagem é não utilizar explicitamente um modelo. Esta, 

explorando a análise de multi-resolução proporcionada pela transformada Wavelet, tem 

como objectivo estimar a tendência de evolução futura dos bio-sinais com base nas 

tendencias de sinais similares identificados no histórico. A validade desta abordagem foi 

comprovada através da sua comparação com outras metodologias de predição. A mesma 

foi aplicada na avaliação do risco de hipertensão e validada utilizando dados de duas 

plataformas de telemonitorização privada (TEN-HMS e MyHeart). Os resultados obtidos 

em termos de sensibilidade-especificidade foram de 84.2%-75.5% e de 85.7%-91.8%, 

respectivamente para os dados dos estudos TEN-HMS e MyHeart, confirmando as 

potencialidades da abordagem neste tipo de aplicação. 

  



vii 

 

Table of Contents 
 

1. Introduction 1 

1.1 Motivation 1 

1.2 Hypotheses 5 

1.3 Objectives 7 

1.4 Contributions 8 

1.5 Thesis organization 9 

2. Similarity Detection in Time Series 11 

2.1 Introduction 11 

2.2 Clinical Relevance 15 

2.3 Background 17 

2.3.1 Time Series Similarity Measure and Indexing ............................................... 17 

2.3.2 Time Domain Methods .................................................................................. 18 

2.3.3 Transform-based Methods ............................................................................. 21 

2.4 Time-Frequency Transforms 27 

2.4.1 Short-time Fourier Transform ....................................................................... 28 

2.4.2 Wigner-Ville Distribution .............................................................................. 29 

2.4.3 Wavelet Transform ........................................................................................ 30 

2.4.4 Contractive Property ..................................................................................... 38 

2.5 Proposed Similarity Measure and Indexing Scheme 39 

2.5.1 Introduction ................................................................................................... 39 

2.5.2 Step 1: Vertical Shift Removal ...................................................................... 42 

2.5.3 Step 2: Wavelet Decomposition of the Template .......................................... 42 

2.5.4 Step 3: Optimal Basis Reduction ................................................................... 45 

2.5.5 Step 4: Similarity Measure ............................................................................ 50 

2.5.6 Step 5: Similarity Indexing ............................................................................ 58 

2.5.7 Complexity analysis ....................................................................................... 60 

2.5.8 Multi-dimensional Time Series ...................................................................... 67 

2.5.9 Applications of the Similarity Measure ......................................................... 68 

2.6 Conclusions 74 

 
 

 



viii 

 

 

3. Time Series Prediction 77 

3.1 Introduction 77 

3.2 Clinical Relevance 80 

3.3 Background 82 

3.3.1 System Modelling ........................................................................................... 83 

3.3.2 Time Series Prediction ................................................................................... 90 

3.3.3 Neural Network-based Time Series Prediction .............................................. 98 

3.3.4 Wavelet-based Time Series Prediction ......................................................... 104 

3.3.5 Non-decimated Wavelet Transform ............................................................. 112 

3.4 Proposed Prediction Strategies 115 

3.4.1 Main approach ............................................................................................. 115 

3.4.2 Scheme 1: Neural Network Multi-models ..................................................... 120 

3.4.3 Scheme 2: Wavelet Multi-resolution ............................................................ 125 

3.5 Conclusions 134 
 
 

 

4. Results 135 

4.1 Introduction 135 

4.1.1 Multi-parametric Analysis and Decision Support System ............................ 137 

4.1.2 Specific Clinical Applications ....................................................................... 138 

4.1.3 Detection of Acute Hypotensive Episodes .................................................... 141 

4.1.4 Implementation and Databases .................................................................... 141 

4.2 Similarity Measure Analysis 143 

4.2.1 Introduction ................................................................................................. 143 

4.2.2 Time Series Similarities and Variations ....................................................... 143 

4.2.3 Results .......................................................................................................... 149 

4.2.4 Conclusions .................................................................................................. 159 

4.3 Ischemia Detection 161 

4.3.1 Introduction ................................................................................................. 161 

4.3.2 Proposed Methodology ................................................................................. 164 

4.3.3 Results .......................................................................................................... 174 

4.3.4 Conclusions .................................................................................................. 183 

 



ix 

 

 

4.4 Prediction of Acute Hypotensive Episodes 184 

4.4.1 Introduction ................................................................................................. 184 

4.4.2 The 2009 Physionet/Computers in Cardiology Challenge ........................... 187 

4.4.3 Methodology ................................................................................................ 189 

4.4.4 Application to the Prediction of AHE ......................................................... 190 

4.4.5 Results ......................................................................................................... 193 

4.4.6 Conclusions .................................................................................................. 199 

4.5 Trend Prediction of Blood Pressure Signals 200 

4.5.1 Introduction ................................................................................................. 201 

4.5.2 Analysis of Evolution Trend ........................................................................ 203 

4.5.3 Evaluation of hypertension risk ................................................................... 230 

4.5.4 Conclusions .................................................................................................. 232 

4.6 Conclusions 233 

 

 

5. Conclusions and Perspectives 235 

5.1 Main research findings 235 

5.2 Future work 237 

 

6. References 239 

 

 

 

  



x 

 

 

 

 



xi 

 

Acronyms 
 

 

ABP Arterial blood pressure 

AC Accuracy 

AHE Acute hypotensive episode 

AIC An information criterion 

ANN Artificial neural network 

ANOVA Analysis of variance 

AR Autoregressive 

ARCH Autoregressive conditional heteroscedasticity 

ARIMA Autoregressive integrated moving average 

ARMA Autoregressive moving average 

ART Adaptive resonance theory 

ARX Autoregressive with exogenous input 

AVP Average of patterns 

BIM Bioimpedance monitor 

BP Blood pressure 

CA Cardiac arrest 

CAD Coronary artery disease 

CORC Pearson’s correlation coefficient 

CV Cardiovascular 

CVD Cardiovascular disease 

DCT Discrete cosine transform 

DFT Discrete Fourier transform 

DSS Decision support system 

DTW Dynamic time warping 

DWT Discrete wavelet transform 

ECG Electrocardiogram 

EEG Electroencephalogram 

ERP Event related potential 

ESC European Society of Cardiology  

EU European union 

FFNN Feed-forward neural network 

FFT Fast Fourier transform 

FN False negative 

FP False positive 



xii 

 

FPE Final prediction error 

FT Fourier transform 

GARCH Generalized autoregressive conditional heteroscedasticity 

GPT Glutamate pyruvate transaminase 

GRNN Generalized regression neural network 

HD Haemodialysis 

HF Heart failure 

HR Heart rate 

ICG Impedance cardio thoracic 

ICU Intensive care unit 

IFN Interferon 

KLT Karhunen-Loève transform 

kNN k-nearest neighbour 

LMS Least means square 

MAP Mean arterial blood pressure 

MAPE Mean absolute percentage error 

MIMIC-II Multiparameter Intelligent Monitoring in Intensive Care 

Databases 

MIMO Multiple input multiple output 

MLNN Multi-layer neural network 

MRA Multi-resolution analysis 

MSE Mean squared error 

NAR Non-linear autoregressive 

NARMA Non-linear autoregressive moving average 

NARMAX Non-linear autoregressive moving average with exogenous 

input 

NRMSE Normalized root mean squared error  

PCA Principal component analysis 

PCA-indexing Piecewise constant approximation indexing 

PDA Personal digital assistant 

PLR Piecewise linear representation 

PVC Premature ventricular contraction 

RBF Radial basis function 

RNN Recurrent neural network 

SC Subtractive clustering 

SE Sensitivity 

SISO Single input single output 

SP Specificity 



xiii 

 

SSE Sum of squared errors 

STFT Short-time Fourier transform 

SVD Singular value decomposition 

SVM Support vector machine 

SVR Support vector regression 

SWK Similarity measure based on wavelet decomposition+KLT  

TDNN Time-delay neural network 

TEN-HMS Trans-European Network Homecare Monitoring Study 

TN True negative 

TP True positive 

VF Ventricular fibrillation 

VT Ventricular tachycardia 

WMM Wavelet multi-resolution prediction scheme 

WP Workpackage 

WVD Wigner-Ville distribution 

 

 

 

 

 

 

 

 

 

 



xiv 

 



xv 

 

List of Figures 
 

 

Chapter 1 

Figure 1.1 - Schematic diagram of the HeartCycleproject. ....................................................... 3 

Chapter 2 

Figure 2.1 − Discrete time series definition. ............................................................................. 17 

Figure 2.2 − Time series similarity approaches. ....................................................................... 17 

Figure 2.3 − Similarity indexing problem. ............................................................................... 18 

Figure 2.4 − The first six Hermite functions (order n=0 to n=5, and scaling factor l=3). ..... 24 

Figure 2.5 − Wavelet decomposition tree. ................................................................................ 33 

Figure 2.6 − Examples of orthogonal wavelets (mother and father basis functions). .............. 36 

Figure 2.7 − Proposed similarity measure and indexing scheme. ............................................. 40 

Figure 2.8 − Number of detail basis in a wavelet decomposition. ............................................ 43 

Figure 2.9 − Signal approximation using the Haar wavelet decomposition. ............................ 49 

Figure 2.10 − Similarity measure between time series: same behaviour. ................................. 56 

Figure 2.11 − Similarity measure between time series: opposite behaviour. ............................ 57 

Figure 2.12 − Similarity indexing: iterative implementation. .................................................. 59 

Figure 2.13 − Effect of N, T and J variations in the number of operations. ........................... 66 

Figure 2.14 − Partitioning clustering of ECG time series. ....................................................... 71 

Figure 2.15 − Prediction of the time series future evolution. ................................................... 73 

Chapter 3 

Figure 3.1 − Dynamic system definition. ................................................................................. 83 

Figure 3.2 − Prediction of future instants. ............................................................................... 90 

Figure 3.3 − Prediction using a recursive strategy. .................................................................. 91 

Figure 3.4 − The multi-models scheme for the prediction of P future instants. ...................... 93 

Figure 3.5 − Multi-layer neural network with 2 hidden layers. ............................................... 98 

Figure 3.6 − Time-delay neural network. ............................................................................... 100 

Figure 3.7 − Recurrent neural network. ................................................................................. 101 

Figure 3.8 − Prediction using a multi-resolution decomposition scheme. .............................. 106 

Figure 3.9 − Wavelet coefficients used for the prediction of the next value. ......................... 109 

Figure 3.10 − Diagram of a wavelet process neuron model. ................................................... 110 

Figure 3.11 − Architecture of the wavelet neural network predictive scheme. ...................... 111 



xvi 

 

Figure 3.12 − Time steps used to compute the à-trous wavelet coefficients  

 at the different scales................................................................................................... 114 

Figure 3.13 − Proposed prediction methodology generic approach. ....................................... 116 

Figure 3.14 − Proposed multi-model prediction methodology. ............................................... 117 

Figure 3.15 − Proposed wavelet multi-resolution prediction methodology. ............................ 119 

Figure 3.16 − Neural network regression model. .................................................................... 121 

Figure 3.17 − Example of a GRNN architecture. ................................................................... 121 

Figure 3.18 − Model 1: Neural network multi-model scheme. ................................................ 123 

Figure 3.19 − Steps involved in the multi-resolution prediction methodology. ...................... 125 

Figure 3.20 − Template decomposition using the wavelet à-trous transform. ........................ 126 

Figure 3.21 − Wavelet decomposition of patterns at level l=5. ............................................. 127 

Figure 3.22 − Extraction of the representative trend for the decomposition level l=5. ......... 129 

Chapter 4 

Figure 4.1 − Heartcycle−WP3: Multi-parametric Analysis and Decision Support System. .... 136 

Figure 4.2 − Template or baseline. ......................................................................................... 147 

Figure 4.3 − Variations in the baseline................................................................................... 148 

Figure 4.4 − Blood Pressure (MIMIC)−Effect of baseline variation on similarity measures ... 152 

Figure 4.5 − Blood Pressure (TEN-HMS):  

 Effect of baseline variation on similarity measures ..................................................... 153 

Figure 4.6 − Heart rate (TEN-HMS): 

 Effect of baseline variation on similarity measures ..................................................... 154 

Figure 4.7 − Negative coefficients present in the  

 wavelet representation of modified baseline. ............................................................... 157 

Figure 4.8 − Average values of wavelet-KLT similarity measure and  

 respective 95% confidence intervals. ............................................................................ 159 

Figure 4.9 − Proposed ischemic episode detection methodology. ........................................... 164 

Figure 4.10 − Baseline removal. ............................................................................................. 165 

Figure 4.11 − Wigner−Ville transform of a cardiac beat. ........................................................ 167 

Figure 4.12 − Cardiac cycle and respective high frequency components. ............................... 168 

Figure 4.13 − Approximation of a cardiac beat using expansion in Hermite functions. ......... 170 

Figure 4.14 − Approximation of Segment1 and Segment 2 using Hermite functions. ............ 171 

Figure 4.15 − Approximation of a cardiac beat using Hermite expansion. ............................ 172 

Figure 4.16 − Proposed classification scheme. ........................................................................ 173 

Figure 4.17 − ST deviation. .................................................................................................... 176 

Figure 4.18 − First three coefficients of Hermite expansion: Segment1. ................................ 176 

Figure 4.19 − First three coefficients of Hermite expansion: Segment2. ................................ 177 



xvii 

 

Figure 4.20 − Non consistent beat classification examples..................................................... 178 

Figure 4.21 − Ischemic episodes validation (e0103 record). ................................................... 180 

Figure 4.22 − 2009 Physionet/Computers in Cardiology challenge goal. ............................... 187 

Figure 4.23 − Pre-processing stages. ...................................................................................... 190 

Figure 4.24 − Pre-processing phases: resampling of MAP signal (1sample per minute) ........ 191 

Figure 4.25 − Size and order parameters, estimated for training signals  

 (H and C dataset). ...................................................................................................... 194 

Figure 4.26 − GRNN training: testing signal H1_#4 (h1_a40834). ..................................... 194 

Figure 4.27 − Prediction of MAP signal A_#10 (a_110bnm) 

 using neural multi-models. .......................................................................................... 195 

Figure 4.28 − MAP prediction and AHE identification; testing signal  

 A_#10 (a_110bnm). .................................................................................................. 196 

Figure 4.29 − MAP signals incorrectly classified: predicted and actual values. ..................... 198 

Figure 4.30 − Trend analysis strategy. ................................................................................... 204 

Figure 4.31 − Variation in the number of patterns: M={5, 10, 15, 20, 25, 30}. .................... 210 

Figure 4.32 − Variation in the number of days before prediction: N={8, 16, 32, 64}. .......... 213 

Figure 4.33 − Comparison of the prediction methods  

 (SWK, CORC, NRMSE, and MAPE metrics) using TEN-HMS datset ..................... 216 

Figure 4.34 − Example of the prediction method result. ....................................................... 222 

Figure 4.35 − Decomposition of the template and the patterns. ............................................ 223 

Figure 4.36 − Comparison of the prediction methods  

 (SWK, CORC, NRMSE, and MAPE metrics) using MyHeart dataset. ..................... 224 

Figure 4.37 − Assessment of the hypertension risk. ............................................................... 230 

 

 

 

 



xviii 

 



xix 

 

List of Tables 
 

Chapter 4 

Table 4.1 - Variations of the parameters in the different experiments. ................................ 150 

Table 4.2 - Average values of wavelet-KLT similarity 

 measure and respective 95% confidence intervals. ...................................................... 158 

Table 4.3 - ST deviation – measuring point. ......................................................................... 166 

Table 4.4 - Features correlation analysis. ............................................................................. 175 

Table 4.5 - Correlation analysis for the e0103 record. .......................................................... 175 

Table 4.6 - Training and validation dataset. ........................................................................ 179 

Table 4.7 - Lead NN Structure. ............................................................................................ 180 

Table 4.8 - Beat classification performance. .......................................................................... 181 

Table 4.9 - Episodes detection performance. ......................................................................... 181 

Table 4.10 - AHE detection................................................................................................... 196 

Table 4.11 - Ambulatory blood pressure vs. clinic blood pressure thresholds. ...................... 202 

Table 4.12 - Critical values for the two-tailed Nemenyi test. ............................................... 209 

Table 4.13 - Nemenyi test with k=5. .................................................................................... 209 

Table 4.14 - Comparison of the number of patterns (M) – SWK metrics. ........................... 211 

Table 4.15 - Nemenyi test – SWT metric. ............................................................................ 212 

Table 4.16 - Comparison of the number of patterns (M) – all metrics. ................................ 212 

Table 4.17 - Comparison of SWK among the different  

 number of previous days (N). ..................................................................................... 214 

Table 4.18 - Comparison of the number of previous days (N) – all metrics. ........................ 215 

Table 4.19 - Comparison of SWK among the five prediction methods (TEN-HMS). ........... 217 

Table 4.20 - Nemenyi test (SWK metrics - TEN-HMS). ...................................................... 218 

Table 4.21 - Comparison of CORC among the five prediction methods (TEN-HMS). ......... 218 

Table 4.22 - Nemenyi test (CORC metrics - TEN-HMS). .................................................... 219 

Table 4.23 - Comparison of NRMSE among the five prediction methods (TEN-HMS). ...... 219 

Table 4.24 - Nemenyi test (NRMSE metrics - TEN-HMS). .................................................. 220 

Table 4.25 - Comparison of MAPE among the five prediction methods (TEN-HMS). ........ 220 

Table 4.26 - Nemenyi test (MAPE metrics - TEN-HMS). .................................................... 221 

Table 4.27 - Comparison of the prediction methods–all metrics (TEN-HMS). ..................... 221 

Table 4.28 - Comparison of SWK among the five prediction methods (MyHeart).. ............. 225 

Table 4.29 - Nemenyi test (SWK metrics - MyHeart). ......................................................... 226 

Table 4.30 - Comparison of CORC among the five prediction methods (MyHeart)............. 226 



xx 

 

Table 4.31 - Nemenyi test (CORC metrics - MyHeart). ....................................................... 227 

Table 4.32 - Comparison of NRMSE among the five prediction methods (MyHeart). ......... 227 

Table 4.33 - Nemenyi test (NRMSE metrics - MyHeart). ..................................................... 228 

Table 4.34 - Comparison of MAPE among the five prediction methods (MyHeart). ............ 228 

Table 4.35 - Nemenyi test (MAPE metrics - MyHeart). ....................................................... 229 

Table 4.36 - Comparison of the prediction methods–all metrics (MyHeart). ........................ 229 

Table 4.37 - Confusion matrix (TEN-HMS dataset). ............................................................ 231 

Table 4.38 - Confusion matrix (MyHeart dataset). ............................................................... 231 

 



1 

 

 

1. Introduction 
 

 

1.1 Motivation 

 

Cardiovascular disease (CVD), a general name for a wide diversity of diseases, disorders 

and conditions that affect the heart and often the blood vessels, is a major cause of 

disability and premature death throughout the world. Cardiovascular diseases can take 

many forms, such as raised blood pressure (hypertension), cardiac arrhythmias 

(abnormal heart rhythms), coronary artery disease, heart attack (myocardial infarction), 

heart failure, and cerebrovascular disease (stroke).  

According to data of the European Commission (Health-EU), CVDs are the largest 

cause of death in the European Union (EU) and account for approximately 40% of 

deaths (2 million) per year. In financial terms, the charges with the EU health care 

systems related to CVDs have been estimated to be just under € 110 billion (in 2006), 

which represent a cost per capita of € 223 per year, about 10% of the total health care 

expenditure across the EU.  

As it is well known, the heart health is linked to behaviour and lifestyle. Therefore, the 

focus should be on prevention, recognized by clinical professionals as the best method to 

avoid diseases from happening. Modern medicine mainly based on medical treatment, 

hospital care, and invasive surgery, transformed itself in a postmodern one, where the 

goal is to prevent illness, and to prolong and improve the quality of people’s life. In fact, 

the emphasis on therapeutic dimension has moved to the preventive one. The key idea is 

that to prevent is better than to treat. In fact, preventive medicine is more cost 

effective, that is, able to obtain the same outcome in terms of health, with smaller costs, 

less pain, and within a short time.  

In the context of preventive medicine, telemonitoring solutions are making a huge 

impact by enabling remote patient monitoring for the healthy and for those requiring 

management of chronic diseases. In that sense, European countries have implemented 

new and more efficient health care models, focused on the prevention of chronic diseases 

and their consequences. The use of information and communication technologies, and 

specially, home telemonitoring, allows extending the health care outside the hospital by 

virtual medical visits, combining the tracking of the patients with a cost reduction. 

Moreover, the information collected through the continuous monitoring of patients 

during long periods allows for advances in the diagnosing of a disease, for the description 
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of its evolution and for the prediction of possible complications, including the early 

prevention of the occurrence of severe events that may require hospitalization. Despite 

these advantages, the effectiveness of telemonitoring became more evident when mobile 

communications and wireless technologies were introduced. Originally, medical 

telemonitoring systems consisted of home telecare units that send biosignals or alarms to 

the medical team from a PC connected to the fixed telephony network. Resulting from 

the progress in the field of smart medical sensors, together with the expansion of wireless 

and mobile communications, a new type of monitoring systems based on the use of 

wireless sensors and smartphones or PDAs (Personal Digital Assistants), for forwarding 

the data received by the sensors to the monitoring points to be stored, reviewed and 

analysed by healthcare providers, has come up. More recently, telemonitoring systems 

perform data processing on the patient side, generating alarms and transmitting the 

corresponding data to the professional staff, whenever an abnormal situation is detected. 

In this context, personal Health (pHealth) systems are a new and fast growing concept. 

The patient is at the centre of the health delivery process and, through remote 

monitoring and management applications, pHealth systems aim the continuity of care at 

all levels of health care delivery. Several potential benefits may be achieved using this 

new paradigm, ranging from better adjustment of pharmacological treatments, to higher 

patient survival rates. 

One of the projects that address CVDs management by means of telemonitoring is 

HeartCycle, a European Integrated Project (FP7 – 216695) that aims at researching, 

developing and clinically validating innovative solutions for this purpose. Particularly, 

the goal of HeartCycle is to improve the quality of care for coronary artery disease 

(CAD) and heart failure (HF) patients. This can be achieved by using personalized 

systems for monitoring their condition at home, and involving them in the daily 

management of their disease, as well as by developing mechanisms to automatically 

report relevant monitoring data back to clinicians so that they can prescribe 

personalized therapies and lifestyle recommendations. The project assumes that the 

appropriate remote management of such patients at home is a promising solution to 

both the delivery of innovative healthcare, and the reduction of future healthcare cost. 

Considered as its major challenges are the detection of critical health status trends in 

time, the appropriate decision support for professionals to react to such trends, and 

supporting the motivation of patients to be compliant to treatment regimens and to 

adopt a beneficial lifestyle.  

Figure 1.1 depicts a schematic diagram of the care system to be developed under 

HeartCycle project. According to it, the system contains a patient loop interacting 

directly with the patient to support the daily treatment that shows the health 

development, including treatment adherence and effectiveness. The idea is that being 

motivated, compliance will increase, and health will improve. The system also contains a 

professional loop involving medical professionals, for example, alerting to revisit the care 
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plan. Finally, the patient loop is connected with hospital information systems, to ensure 

optimal and personalised care.  
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Figure 1.1 - Schematic diagram of the HeartCycle1project. 

 

In technical terms, the HeartCycle systems comprise innovative sensors for home use by 

patients, such as unobtrusive and easy-to-use wearable sensor technologies, and devices 

for communication and information exchange, such as smartphones or TV via set top 

boxes. The collected information on the health status is sent to medical backend systems 

where sophisticated algorithms analyse the patient data to detect alarms or alerts. This 

is achieved by multi-parametric monitoring and analysis of vital signs and other 

measurements such as lab results and symptom questionnaires. Furthermore, decision 

support algorithms provide recommendations in case of alarms and alerts. 

Among the various workpackages in which the overall work to be carried out under the 

project is divided, the third (WP3) – Multi-parametric Analysis and Decision Support, 

aims to provide patients and professionals with the essential information for an optimal 

management of heart failure and coronary artery disease. The main focus of interest is 

the development of algorithms able to assess relevant cardiovascular conditions (such as 

arrhythmias, ischemia, and hypertension) that allow to evaluate the patient’s 

cardiovascular health status. Fundamentally, the WP3 module consists of two main 

components: i) Algorithms for evaluating the cardiovascular status of a patient, and a ii) 

Decision support system, which using the results of these algorithms, is responsible for 

                                           
1 www.heartcycle.eu 
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the implementation of strategies describing the expert knowledge to support clinical 

decisions.  

Integrated in WP3, the present thesis is centred on the development of specific clinical 

applications, which target cardiovascular conditions identified as relevant for the 

CAD/HF management by the clinical partners, mainly based on the analysis and 

processing of the electrocardiogram (ECG) and blood pressure (BP) signals daily 

collected by home telemonitoring.  

For this effect, investigation is made on techniques for diagnosis able to detect the 

referred conditions, and prediction methodologies for the trend analysis of these signals 

and consequent early detection of their critical evolution. From the clinicians’ viewpoint 

these applications represent valuable tools both in terms of diagnosis and prognosis, 

which allow for an effective management of patients. In effect, together with other 

information sources (such as symptoms and biomarkers), they contribute for the 

evaluation of patient's cardiovascular health status by detecting the occurrence of 

specific conditions (such as ischemia and hypertension), and thus providing the medical 

staff with an idea of the patient’s general state. Furthermore, the clinicians have access 

to the individual conditions assessment that may use as support in diagnosis 

formulation. On the other hand, by analysing the evolution trend of individual vital 

signs, the developed applications can generate alerts in face of dangerous progressions of 

the same, enabling clinicians to timely intervene (for example, adjusting medication) so 

as to avoid situations of extreme risk for the patient. 

As conclusion, the use of new telemonitoring solutions, together with adequate diagnosis 

and prediction methodologies is of extreme significance for the conception of early 

prevention systems, providing professionals with adequate tools to evaluate and diagnose 

specific cardiovascular conditions. Several benefits might be achieved using this new 

health delivery paradigm, ranging from the prompt detection of forthcoming clinical 

severe conditions to better adjustment of pharmacological treatments. The awareness 

that these methodologies represent a central part of the professional loop, namely in 

helping medical decision making, contributing to the success of the whole care system of 

HeartCycle, is the major stimulus for the work to develop in the present thesis. 
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1.2 Hypotheses 

Hospitals, healthcare centres, and clinics, accumulate numerous datasets with patients 

data, namely physiological time series routinely collected in intensive care units by the 

continuous monitoring of patients, or resulting from telemonitoring systems. On the 

other hand, given the population aging and the growth of health expenditures, the need 

for high quality and efficient healthcare, both at home and in hospital, is becoming more 

and more important. One way to achieve this is by taking advantage of the existing 

data to develop algorithms for the automatic evaluation of clinical conditions and their 

progression, that allow for the prompt detection of forthcoming clinical severe events 

and, thus, for the prompt intervention of clinicians in order to avoid critical situations 

for the patients. 

From the clinical perspective, it is assumed that similarities between physiological 

temporal series can be used to detect and predict specific clinical conditions that 

contribute to the global cardiovascular assessment of the patient. For this effect, it is 

recognized that a relevant source of information could be the patient’s historical or, as 

an alternative, the historical of other patients that have experimented similar behaviours 

in their health data.  

Consequently, the research to be conducted under this thesis is founded on three main 

hypotheses.  

� Firstly, it starts from the assumption that the cardiovascular status can be 

characterized based on the evaluation of specific cardiovascular conditions, such 

as hypertension, myocardial ischemia, arrhythmias, desynchronization, and 

pulmonary oedema, which are defined through literature or by clinical expertise. 

In fact, this hypothesis reflects the way the clinician assesses CV status, which 

is centred on well-known specific CV conditions, such as those referred above, 

evaluated from signals, symptoms, and laboratory results. 

� On the other hand, it is assumed that characteristic patterns in biosignals (such 

as electrocardiogram and blood pressure) common to patients with a similar 

disease may have diagnostic/prognostic value in terms of clinical assessment. 

Therefore, algorithms to search similarities in biosignal time series may help in 

identifying the presence of a certain cardiovascular condition.  

� Finally, it is presupposed that the estimation of biosignals future evolution 

trend by predictive methodologies, based on current and past measurements 

taken from historical data of a group of patients (including the patient under 

study), may help clinicians in the management of a cardiovascular disorder. 

These hypotheses will be tested under HeartCycle project through the development of 

algorithms for the diagnosis and prognosis of relevant cardiovascular conditions with 

impact on the CV status. Two of these conditions, ischemia and hypertension, will be 
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particularly addressed by this thesis, although others such as ventricular arrhythmias 

and desynchronization have also been implemented by the candidate but not included in 

this document. Thereby, through the integration of the referred algorithms into the 

professional loop of HeartCycle, the cardiovascular health status of a patient may be 

evaluated based on their results and other sources of information, namely symptoms and 

lab results. On the other hand, the diagnosis of ischemia and the prediction of 

hypertension risk will allow testing the other two hypothesis, involving similarities 

searching and evolution trend analysis in blood pressure signals. 
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1.3 Objectives 

 

The objectives outlined for the present thesis can be divided into scientific and clinical 

ones. In effect, in scientific terms the following goals are identified:  

� Development of techniques for similarity searching in a set of biosignal time 

series to detect the occurrence of particular patterns, which will serve two 

purposes: helping diagnosis if patterns are characteristic of specific 

cardiovascular conditions, or being the starting point of predictive 

methodologies. These techniques should be efficient in view of the possible long 

duration of biosignal time series, and able to deal with trends (one the main 

characteristics of biosignals to be addressed in this thesis). For this end, the 

representation of signals in terms of a reduced set of orthogonal basis, and 

methodologies that exploit their time-frequency characteristics, will be 

investigated.  

� Implementation of predictive strategies to be applied in the forecast of biosignal 

time series. For this end, two approaches will be explored: the first, involving 

the development of models for the accurate prediction of time series future 

values; the second, consisting in algorithms able to estimate the evolution trend 

of biosignals. In both approaches the first step corresponds to a similarity 

analysis procedure performed by the previously referred technique. Solutions 

based on neural network multi-models and multi-resolution analysis will be 

considered.  

 

In clinical terms the main goal is to assist the clinical staff in the management of the HF 

and CAD patients by including the developed algorithms in the decision support system. 

Particularly, the support to the clinicians will consist in: 

� Helping them in the correct diagnosis of cardiovascular conditions that are 

relevant for the cardiovascular health status of the patients, like ischemia and 

hypertension. 

� Enabling them to timely intervening in order to prevent risk situations for the 

patients, by predicting the evolution of vital signs such as blood pressure. 
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1.4 Contributions 

 

The present thesis basically provides methodologies for similarity search and prediction 

in biosignal time series, which are mainly founded on the representation of signals as 

linear combinations of a set of orthogonal basis, and on the time-frequency analysis of 

those signals. The specific contributions are: 

� A new strategy for diagnosing ischemia, which comprises a measure for 

evaluating the ST deviation based on the time-frequency analysis of the ECG 

through the Wigner-Ville transform, and the use of Hermite basis functions to 

capture the most relevant morphologic characteristics of the QRS complex and 

T wave. This methodology will be tested using the European Society of 

Cardiology ST-T public database. 

� A new technique for similarity searching in biosignal time series, which involves 

a new similarity measure and an efficient indexing scheme, based on a reduced 

set of basis resulting from the combination of the wavelet with the 

Karhunen-Loève transforms. This is particularly adequate to deal with biosignal 

trends. This technique, applied in the detection of patterns in biosignal time 

series, may be used to support classification, clustering and, mainly, predictive 

methodologies. The validation of the proposed similarity measure will be 

performed using MIMIC-II and TEN-HMS datasets. 

� A new predictive methodology based on a multi-model scheme of neural 

networks, which allows for the accurate forecast of time series future values. 

This methodology, validated in the context of the 2009 Physionet/Computers in 

Cardiology challenge, in the prediction of acute hypotensive episodes using data 

from MIMIC-II dataset, obtained the best results of that challenge. 

� A new approach for the prediction of biosignal time series based on evolution 

trends, without involving explicit modelling, through which a rough estimative 

of the biosignal’s future values is possible. This will be applied in the prediction 

of blood pressure signals, namely in the assessment of hypertension risk, and 

validated using TEN-HMS and MyHeart datasets. 

 

Furthermore, the developed work will be integrated in a clinical decision support system, 

to assist health professionals in the management of heart failure patients, monitored by 

a telemonitoring system. This decision support system, developed by Philips Research 

Eindhoven, implements a rule-based system fundamentally defined from clinical evidence 

knowledge and from specific clinical guidelines.  
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1.5 Thesis organization 

 

The present thesis is organized into five chapters.  

Following the general introduction in this chapter, Chapter 2 deals with methods that 

detect similarities in long time series data. It starts by presenting an overview over the 

most common similarity measures and indexing algorithms and it shows the clinical 

relevance of similarity searching methods when applied to biosignals. The rest of the 

chapter is dedicated to the introduction of a new similarity measure based on the 

wavelet and Karhunen-Loève transforms, and of an innovative and efficient indexing 

scheme.  

Chapter 3 addresses the research and implementation of methodologies for time series 

prediction, proposing two strategies: the first based on neural network multi-models 

aiming to achieve an accurate prediction of future time series values, and the second 

based on the multi-resolution analysis provided by wavelet transform targeting the 

estimation of the time series future evolution trend. This chapter starts by justifying the 

clinical relevance of the predictive methodologies and then presents their underlying 

theoretical background. Following, the proposed methodologies are explained in detail 

and, finally, some conclusions are drawn.  

Chapter 4 presents and discusses the results related with the methodologies proposed 

through the thesis. Regarding similarity measures, a comparison in terms of the 

sensitivity of several approaches (including the proposed one) is, in a first phase, 

performed. Subsequently, this chapter exploits the capacity of the developed 

methodologies for both the diagnosis and prognosis of cardiovascular conditions, 

applying them to the specific cases of ischemia detection, hypotensive episodes and 

hypertension risk prediction.  

In Chapter 5, a general assessment of the research outcomes in face of the goals 

established in the first chapter is performed, followed by conclusions and possible 

directions of future work. 
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2. Similarity Detection in 
Time Series 

 

 

 

his chapter deals with methods that effectively detect patterns in long time 

series data. A new similarity measure based on wavelet and Karhunen-Loève 

transforms is introduced. Basically, a data transformation procedure is 

carried out by means of a set of orthogonal wavelet basis functions, which is then 

reduced to an optimal subset through the application of the Karhunen-Loève 

transform. As result, the time series is efficiently described by a linear combination 

of a reduced set of wavelet basis with the corresponding coefficients reflecting the 

main dynamic patterns of the biosignal. These coefficients are later employed to 

derive a temporal index that enables to effectively identify similarities between a 

particular template and a time series. An iterative implementation allows for the 

reduction of the computational complexity of the method. When applied to 

biosignals, the main assumption is that similar physiological temporal patterns can 

be used in the characterization and evolution analysis of a patient status. 

 

 

 

 

2.1 Introduction 

Large amounts of time series data are regularly produced in multiple application areas, 

such as industry, finances, and medicine. If available, automatic analysis tools of such 

data will be, unquestionably, an important instrument for professionals working in these 

areas. Among the several research lines, the discovery of relationships between time 

series is a central issue, recognized as a decisive investigation area. Moreover, given the 

vast quantity and length (time duration) of such time series, the development of 

similarity detection methods that are not only effective but also efficient, is a 

fundamental requisite (Hetland, 2004)§1, (Park et al., 2000)§2, (Agrawal and Srikant, 1995)§3, 

(Agrawal et al., 1993)§4. On the other hand, given that similarity detection methods 

support other time series subjects, such as clustering, classification or prediction, their 

study is, definitely, of general importance.  

T
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The problem of similarity between biosignal time series aims at finding whether different 

time series present, or not, a similar behaviour. A generalization of the similarity 

assessment is the similarity indexing problem, which intends to determine the 

subsequences of a time series that are similar to a given template. In this framework, 

one of the main scientific goals of the present thesis is the development of algorithms 

able to find segments of a time series (subsequences) that present the same dynamics of 

a given temporal template. The main clinical hypothesis is that characteristic patterns of 

biosignals and their interrelationships, common to patients with similar disease 

progressions, may have prognostic value in the medical assessment process. In effect, 

these algorithms may help in finding groups of patients with similar clinical behaviour, 

thus, in the identification of temporal patterns that may be suggestive of different 

clinical events. In terms of predictive algorithms, to be detailed in the next chapter, the 

objective is to estimate significant clinical trends or outcomes, based on current 

physiological measurements. The predictions can be useful in simple future events 

detection, in alerts generation when integrated in clinical decision support systems, as 

well as in helping clinicians to optimize care plans for critically-ill patients.  

The biosignals under consideration are assumed to be regularly collected by means of 

monitoring applications, such as in intensive care units (ICU) or through home 

telemonitoring. In particular, the use of new continuous telemonitoring solutions and 

specialized processing methodologies, offer professionals the adequate information for 

evaluating cardiovascular conditions and symptoms progression that enable the prompt 

detection of forthcoming severe clinical disorders.  

Of particular importance is the management of cardiovascular (CV) diseases, the leading 

group of conditions that cause death worldwide, which include coronary artery disease 

(CAD) and heart failure (HF) disorders. In this specific domain, HeartCycle intends to 

improve the life quality of patients with CAD or HF, by monitoring their condition and 

involving them in the daily management of their disease (Reiter and Maglaveras, 2009)§5. 

Integrated in HeartCycle, the third workpackage (WP3) is the responsible for the 

research and development of models to assess some specific cardiovascular conditions. 

Basically, these models assume that the referred conditions can be characterized based 

on the analysis of biosignals collected during daily home monitoring process. Examples 

of these CV conditions are arrhythmias (Rocha et al., 2008)§6, (Henriques et al., 2008)§7 

myocardial ischemia (Rocha et al., 2010)§8, hypertension episodes (Rocha et al., 2011)§9 and 

congestion. 

In face of a collection of biosignal time series, the first step to be accomplished is to 

determine whether time series present similar behaviours. This topic, the assessment of 

similarity between time series, is a central concept in knowledge discovery and consists 

of evaluating the similitude between two different time series, by means of a measure of 

similarity or dissimilarity. The indexing problem aims at finding the sequences in a time 

series that exhibit temporal correspondences with a given template. In general, the 

similarity problem is intrinsically related to the indexing problem. In fact, simple 
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similarity measures usually allow for an easy derivation of index values, while more 

sophisticated similarity measures cause the indexing problem to be more complex. 

Significant advances have been made in the development of methods for the detection of 

similarities in time series. From those that have been proposed, two main groups of 

algorithms can be identified: time domain and transform-based methods. The former 

work directly with the raw signals (eventually with some pre-processing) and the main 

goal is to derive a measure (scalar) based on the comparison of the original time series. 

Euclidean distance for signals with the same length and dynamic time warping (DTW) 

technique for signals with different lengths, are well-known examples of such algorithms 

(Liao, 2005)§10, (Li et al., 2002)§11. The second group includes, among others, the Fourier 

transform, the singular value decomposition, the Karhunen-Loève transform, the wavelet 

decomposition, the Wigner-Ville transform, and the multi-dimensional scaling.  

In the context of this work, the time-frequency analysis methods included in the second 

group of algorithms assume a particular interest. The transformation of a signal from 

one-dimensional time domain to two-dimensional time-frequency domain can reveal more 

details of the referred signal and, thus, help to characterize it (Carreño and Vuskovic, 

2005)§12, (Liu and Motoda, 1998)§13, (Aussem et al., 1998)§14, (Cohen, 1995)§15. Another important 

advantage of these methods consists in their capability to deal with the nonstationarities 

that are typical of biosignal time series.  

In particular, the wavelet transform of a time series is investigated in this work. 

Basically, this transform produces features that describe properties of the time sequence 

both at various locations and at numerous time granularities (detail levels), which is 

extremely important when dealing with the similarity assessment problem. Moreover, 

the wavelet transform is a dimensionality reduction technique that, consequently, 

improves indexing performance. In fact, indexing applied to a long time series is usually 

inefficient mainly due to the very high dimensionality of the search. Therefore, through 

the description of the time series in a lower dimensional space, efficient indexing 

solutions can be achieved. That is the case of the wavelet transform, in which the time 

series is described by a set of coefficients that correspond to the contribution of each 

wavelet basis. These coefficients, which reflect the dynamical patterns of the time series, 

are employed to effectively compute the similarities between a particular template and 

the given time series.  

In alternative to the wavelet basis functions, another basis sets may be used to represent 

time series, such as Gaussian kernels, polynomials basis, Hermite basis, etc. In fact, 

although wavelets are of general application, there are particular situations where other 

basis are more appropriate to capture signal-specific features. In truth, the choice of the 

correct basis can significantly increase the ability of an algorithm to identify the 

meaningful characteristics of a signal. 

For instance, in the case of algorithms for detecting ischemic episodes, the isoelectric line 

and the ST segment deviation point (J point) are typically determined based on the 

QRS complex wave. In this situation, the use of a basis set able to generate features that 
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adequately describe the QRS morphology, makes possible an accurate estimation of 

these points of interest. In that sense, Hermite basis functions are appropriate. 

Moreover, in this particular case, the determination of the subsequences (QRS complex) 

in the time series (ECG) is a well-known problem, easily solved by specific methods. As 

a consequence, the search for the QRS complexes is not relevant (achieved with a 

regular R peak detector), being the main goal to identify subtle variations in their 

morphology. Supported in this principle, a strategy for the automatic detection of 

ischemic episodes will be presented in Chapter 4. A measure for evaluating the ST 

deviation based on the time-frequency analysis of the ECG through the Wigner-Ville 

transform, and the use of Hermite basis functions to capture the most relevant 

morphologic characteristics of the QRS complex, will be the key points of the proposed 

methodology.  

Apart from the referred advantages in terms of similarity detection, the motivation to 

apply wavelet transform is also founded in the time series prediction, namely in 

situations where a given template has been observed in a given physiological signal. In 

this case, a two steps methodology is considered. In the first phase, a set of conditions 

similar to a current one (template) are searched using the proposed indexing technique. 

Since it is hypothesized that patients present similar physiological temporal patterns 

prior to a specific clinical event, the similarity assessment is performed in historical data 

sets of several patients. In a second phase, the most representative similar patterns are 

employed in the predictive approach that uses wavelet decomposition to forecast the 

future of the physiological under consideration (prediction will be the focus of the next 

chapter). 

The structure of this chapter is as follows: in section 2, an overview over the most 

common similarity measures and indexing algorithms for time series is made. Section 3 

introduces the wavelet transform method and points out the important properties that 

make it suitable for the approach presented in this thesis. Section 4 is concerned with 

the proposed similarity measure and indexing algorithms themselves. Finally, in section 

5, some conclusions are drawn. 
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2.2 Clinical Relevance 

 

As previously referred, one of the main scientific goals of the present thesis is the 

development of algorithms able to find segments of a time series that present the same 

dynamics of a given temporal template. This development is done under the clinical 

hypothesis that characteristic patterns of biosignals and their interrelationships, common 

to patients with similar disease progressions, may have prognostic value in the medical 

assessment process. Consequently, these algorithms may help in finding groups of 

patients with similar clinical behaviour or, equivalently, in the identification of temporal 

patterns that may be suggestive of different clinical events.  

This idea has been explored by several authors which works demonstrate the existence 

of a relationship between temporal patterns (extracted from biosignal time series) and 

clinical events or conditions, confirming the relevance that the similarity search process 

assumes in clinical contexts. 

In effect, Lehman et al., (2008)§16, Saeed (2007)§17, Saeed and Mark (2006)§18, identified similar 

physiological patterns in hemodynamic time series from intensive care units patients. 

They considered that the similarities between different patient’s time series could have a 

meaningful physiologic interpretation in the detection of impending hemodynamic 

deterioration, and could be of potential use in clinical decision-support systems. In fact, 

they hypothesized that hemodinamically unstable patients could have similar 

physiological patterns prior to severe decompensation.  

On the other hand, Hirano and Tsumoto (2005)§19, , Hirano and Tsumoto (2002)§20, developed 

a method for finding similar patterns in temporal sequences and demonstrated the 

usefulness of the method on chronic hepatitis datasets, containing long time series data 

on laboratory examinations of patients with hepatitis B and C. They found some 

interesting patterns in their study. In effect, on glutamate pyruvate transaminase (GPT) 

sequences, they identified patterns that could represent the effectiveness of interferon 

(IFN) treatment. On platelet count sequences they found that if IFN treatment was 

ineffective, the count kept decreasing following the progress of liver fibrosis. On the 

contrary, if the IFN treatment was effective the platelet count started increasing. 

In the neurology field, Gandhi and Green (2006)§21 investigated the feasibility of a pattern 

recognition based approach using time-frequency representations of event related 

potentials (ERPs) of the electroencephalograms (EEGs) for the early diagnosis of 

Alzheimer’s disease. In effect, numerous studies established a strong relationship 

between patterns of the ERPs and mental ability. 

In turn, Noren et al. (2009)§22 presented a framework for pattern discovery in large patient 

record repositories and demonstrated its usefulness through a set of examples from a 

collection of over two million patient records in the United Kingdom. The identified 

patterns included temporal relationships between drug prescriptions and medical events 

suggestive of persistent and transient risks of adverse events, possible beneficial effects of 
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drugs, periodic co-occurrence, and systemic tendencies of patients to switch from one 

medication to another. 

Regarding renal diseases, Montani et al. (2006)§23, and Leonardi et al. (2007)§24, developed an 

auditing system to assess the performance of Haemodialysis (HD) treatments, which 

resorts to temporal data mining techniques for discovering relationships between the 

time patterns of the data automatically collected during HD sessions and the 

performance outcomes. On the other hand, they used case based reasoning to retrieve 

similar time series within HD data in order to evaluate critical patterns. The overall 

strategy showed to be appropriate for knowledge discovery and critical patterns 

similarity assessment on real patients’ HD data, helping clinicians in improving their 

understanding of patients’ behaviour.  

In cardiology domain, Manocha and Singh (2011)§25 made a review of the algorithms 

developed for ischemia detection from ECG, the mostly and commonly recorded signal 

in the patient monitoring and examination process. In effect, ischemia causes a decreased 

blood flow to muscle tissues of the heart which is manifested in ECG by elevated or 

depressed ST segment and T wave flattening or inversion. It is referred in literature that 

these abnormal patterns are suggestive of myocardial ischemia. As a result, despite of 

using different approaches, all the methodologies assume that detection of ischemia can 

be achieved by analysing the ST-T complex of the ECG.  

Still in the field of cardiology, Crespo (2002)§26, Wang et al. (2010)§27, hypothesised that 

changes in arterial blood pressure signal morphology could be detected prior to the onset 

of hypotension. In that sense, they carried out a study in order to quantify, examine, 

and assess the statistical sensitivity of some of the possible changes in morphology. In 

turn, Frolich and Caton (2002)§28 published a study in which they stated that baseline 

heart rate could be predictive of obstetric spinal hypotension. In fact, they concluded 

that higher baseline heart rate, possibly reflecting a higher sympathetic tone, could be a 

useful parameter to predict postspinal hypotension.  
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2.3 Background 

 

2.3.1 Time Series Similarity Measure and Indexing 

Essentially, a discrete time series { }( ) (1),  ,  ( ),  , ( )X t x x t x N= … …  is a sequence of real 

numbers ( )x t ∈ � , assumed to be collected at regular intervals over a period of time (N 

instants), as illustrated in Figure 2.1. 

(2)x(1)x

( )x t

( )x N

time

A
m
p
li
tu
d
e

 

Figure 2.1 − Discrete time series definition. 

 

The majority of the algorithms that have been proposed for the assessment of similarity 

between time series can be generally grouped in two main sets: time domain and 

transform-based methods (Liao, 2005)§29, (Alonso et al., 2003)§30, (Keogh et al., 2001)§31. In 

addition, the latter can be sub-divided as feature extraction and model-based methods. 

Figure 2.2 depicts these different techniques: time domain, feature-based and model-

based approaches. 

 

1( )X t

2( )X t

 

Figure 2.2 − Time series similarity approaches. 
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The first group of methods (time domain) works directly with the raw time series data, 

possibly with some pre-processing procedure, thus, they are also called raw-data-based 

techniques. In turn, the second group firstly derives a set of features or model 

parameters of lower dimension from the raw time series data and, then, use these 

features or parameters to calculate the similarity measure. The basic principle of 

transform-based methods is to convert data in a way that allows to extract additional 

characteristics, otherwise difficult to detect.  

An issue related with the similarity assessment is the similarity indexing (illustrated in 

Figure 2.3), in which the main goal is to identify the subsequences in a time series that 

are similar to a specific template. Given a time series ( )T t  of length T, 

{ }( ) (1),  ..., ( )T t t t T= , and a template ( )X t  of length N, { }( ) (1),  ...,  ( )X t x x N= , the 

objective is to detect the subsequences ( )Y t  of length N (N T< ), that are similar to 

( )X t . 

 

Figure 2.3 − Similarity indexing problem. 

The problem of similarity indexing can be extended and, instead of performing the 

search in only one time series, a historic collection of S time series 

{ }1 2( ) ( ),  ( ),   , ( )St T t T t T t=S …  can be considered. In this context, the subsequence 

indexing problem consists of finding the particular time series in the historic ( )tS  which 

subsequences are similar to ( )X t . 

 

2.3.2 Time Domain Methods 

The simplest algorithms for computing a similarity metric between time series are the 

time domain approaches, such as the Euclidean distance, root mean square distance, 

Minkowski distance and correlation coefficient values. Given two discrete time series of 

length N, { }1 1 1( ) (1),  ...,  ( )X t x x N=  and { }2 2 2( ) (1),  ...,  ( )X t x x N= , the Euclidean 

distance, 0ED
+∈ � , between them, is defined based on their individual values, 1( )x t  and 

2( )x t , as: 

( ) ( )21 2 1 2

1

( ), ( ) ( ) ( )

N

E

t

D X t X t x t x t

=

= −∑  (2.1) 
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The Minkowski distance, 0MD
+∈ � , is a generalization of the Euclidean distance, 

defined as (2.2), where q is a positive integer. 

( ) ( )1 2 1 2

1

( ), ( ) ( ) ( )

N
q

q
M

t

D X t X t x t x t

=

= −∑  (2.2) 

The linear correlation coefficient, CC ∈ � , sometimes referred as Pearson’s correlation 

coefficient, which evaluates the strength of a linear relationship between two variables, is 

another typical time domain approach for similarity estimation. It is computed by (2.3), 

where 1X  and 2X  are, respectively, the average values of time series 1( )X t  and 2( )X t . 

1 1 2 2

1

2 2
1 1 2 2

1 1

( ( ) ) ( ( ) )

( ( ) )   ( ( ) )

N

t

N N

t t

x t X x t X

CC

x t X x t X

=

= =

− −

=

− −

∑

∑ ∑
 (2.3)

1

1
( ),   1,2

N

i i

t

X x t i
N

=

= =∑  (2.4)

This correlation value ( )CC  is a number in the range [ 1,1]−  that, as referred, assesses 

the degree of association between two time series. In case of 1CC =+ , a perfect positive 

linear relationship (correlation) occurs; in case of 1CC =− , a perfect negative linear 

relationship (anti-correlation) occurs; in case of 0CC =  (zero), there is no correlation 

between signals (uncorrelated).  

Despite their recognized value, some limitations of the Euclidean distance and 

correlation measures have been identified by several authors. In effect, Shasha and Zhu 

(2004)§32 showed that the Euclidean distance is not a flexible similarity measure between 

time series. First of all, it can not be applied to time series of different lengths, even 

though these time series are similar to each other. In fact, this distance metric, as well 

as the correlation measures, assumes that both sequences have the same length and are 

uniformly sampled. To overcome these constraints, modifications have been introduced 

based on the principle of dynamic time-warping (DTW), where signals are “stretched” 

or “compressed” so that they can be compared (Keogh et al., 2001)§33.  

On the other hand, two time series can be similar even though they have very different 

baselines (mean values) or amplitudes. Euclidean distance algorithms in particular, and 

most time series similarity metrics in general, assume that signals are aligned so that 

“similar” signals will have analogous dynamics at the same points in time. Windowing 

and segmentation techniques are examples of alternatives that have been developed to 

divide a signal into a set of subsequences, which allow for a greater flexibility in 

matching time series by means of shifting operations (Hetlan, 2004)§34. 
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Moreover, the use of the linear correlation coefficient is limited to cases where there 

exists a linear transformed relationship (Bernhard and Darbellay, 1999)§35. Since every 

real-world time series, such as clinical biosignals, present non-linear dependencies, 

measurements of non-linear relationships have been therefore developed. Mutual 

information, originated from the Shannon’s theory of communication, has been proposed 

as a global effective similarity measure for time series (Bernhard and Darbellay, 1999)§36. 

Mutual information is derived from the computation of the entropy of a variable ( )X k , 

( )( )H X k , defined as the uncertainty about ( )X k . For discrete distributions the entropy 

is given by (2.5). 

( )
1

( ) log

N

k k

k

H X k p p

=

= −∑  (2.5) 

In the previous equation the variable ( )X k  is a discrete random variable (time series) 

defined in the range specified by (2.6), and kp  is the probability defined according to 

(2.7). 

{ }( ) ( ) | 1,  2,  ...,  X k x k k N= =  (2.6) 

( )( ) ( )kp P X k x k= =  (2.7) 

Considering discrete time variables 1( )X k  and 2( )X k , defined as ( )X k , equation (2.6), 

the so-called joint entropy ( )1 2( ), ( )H X k X k , simplified to ( )1 2,H X X , is given by 

equation (2.8). 

1 1 2 2

1 2 1 2 1 2( , ) ( , ) log ( , )

x X x X

H X X p x x p x x

∈ ∈

= −∑ ∑  (2.8) 

In the expression above, 1 2( , )p x x  is the joint probability density function. Given these 

definitions, the mutual information between the two time series is obtained through 

(2.9). 

1 2 1 2 1 2( , ) ( ) ( ) ( , )I X X H X H X H X X= + −  (2.9) 

Based on mutual information, standard (normalized) similarity measures have been 

derived (Cheong, 2004)§37. One of such measures is the global correlation coefficient 

defined as (2.10), where the MID  is a value in the range [0,1] .  

1 2( , )
1

I X X

MID e
−

= −  (2.10) 

This measure, that is able to capture the global dependence of 1X  and 2X , is composed 

of both linear and non-linear components. 
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In any case, the explicit use of time domain methods, such as Euclidean distances and 

linear and non-linear correlations, is usually a very demanding computational task (order 

of 2( )O N ). In fact, a time series of length N can be seen as a tuple in the N-dimensional 

space. Consequently, working directly in this space is inefficient given its high 

dimensionality. Therefore, a possible alternative is the use of dimensionality reduction 

techniques, that map the N dimension time series into a lower M dimensional space 

(ideally, M N� ). In addition to this, other advantages have been recognized to the 

transform-based techniques. In fact, the direct time domain comparison between two 

time series can be complex, since the discrimination of the relevant characteristics may 

be not straightforward. This shortcoming can be overcome by transforming the time 

series into a different space where any similarity matching is more meaningful. Another 

direct benefit relates to noise reduction. Since time series data are normally deteriorated 

by noise, one positive consequence of dimensionality reduction is noise attenuation, 

which can considerably contribute to improve the similarity search process. 

2.3.3 Transform-based Methods 

As mentioned, the transform-based techniques map high-dimensional vectors (time 

series) into lower-dimensional ones (features or parameters). Since the data 

transformation reduces the dimensionality of the original signal, it facilitates the 

development and use of algorithms for matching similar time series. The main goal is to 

extract specific characteristics of data that can reveal valuable information of the time 

series, otherwise hidden or inaccessible. 

Numerous transforms have been introduced and several possible classification approaches 

have been proposed to categorize them. In one of these, transforms can be simply 

classified as quantitative or qualitative techniques (Bravi et al., 2011)§38. All the methods 

belonging to the first category make use of specific mathematical models to transform 

the time series. The second group, composed of the qualitative transforms, aims to 

quantize the time series without imposing any particular models. Because quantization is 

a many-to-few mapping, where a large set of input values is mapped into a smaller set, 

its potential advantage is to make easier handling problems associated with noise in the 

data and make the analysis more robust to artefacts. Conversely, the loss of potentially 

valuable information is, probably, the major drawback. 

On the other hand, from the data mining perspective, data dimensionality reduction 

techniques can be classified in two groups: feature extraction and feature selection (Liu 

and Motoda, 1998)§39. Feature extraction approaches (that include feature-based and 

model-based methodologies) derive a set of features (or parameters) from the original 

time series through some procedure or transform (Wyse et al., 1980)§40. Ideally, these 

features should be representative of the main characteristics of the original data. Feature 

selection is a process that selects a subset of the extracted features.  
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Numerous feature extraction algorithms have been proposed. Examples of these are the 

Karhunen-Loève transform (KLT), also known as singular value decomposition (SVD) or 

principal component analysis (PCA), the discrete Fourier transform (DFT), the discrete 

wavelet transform (DWT), the piecewise linear representation (PLR), (Keogh and 

Pazzani, 1998)§41, and the piecewise constant approximation indexing (PCA-indexing), 

(Keogh and Pazzani, 2000)§42, (Keogh et al., 2001)§43. 

In parallel, numerous modelling approaches have been presented. Namely, the power of 

autoregressive (AR) and autoregressive moving average models (ARMA), linear or non-

linear, has been extensively exploited in this context. Of the non-linear methods, neural 

networks have become very popular. Many different types of neural networks, such as 

multi-layer perceptron and radial basis function, have been proven to be universal 

function approximators, which make them attractive for classification and for time series 

modelling and prediction. Fuzzy approaches have also been valid alternatives for 

modelling purposes, mainly given their interpretability and their capacity to express and 

incorporate human reasoning.  

Given that feature extraction procedures, by means of some quantitative transform 

method, are the most common approaches for time series analysis, they represent a 

central focus of this work. As a consequence, some of them will be subsequently 

described. 

Karhunen-Loève transform 

Among the proposed feature extraction techniques, Karhunen-Loève transform also 

known as Singular Value Decomposition and Principal Component Analysis in statistical 

literature, is one of the most effective algorithms, guaranteeing a minimal reconstruction 

error (in the sense that it minimizes the total mean squared error). Basically, a time 

series is mapped into an orthogonal space, where variables composing the base are 

orthogonal to each other. Using this space representation, time series can be 

approximated by a reduced set of basis, by discarding the variables with lower energy. 

The key idea is that the coefficients associated to these fundamental basis, can be 

employed to support the similarity search process, avoiding the use of the signal itself.  

Given a time-series signal 1,( ) NX t ∈ � , the goal is to determine a set of J orthogonal 

basis, 1,( ) N
j tϕ ∈ � , 1, ,j J= … , and the respective coefficients, 1 2{ , ,..., }Jc c c , such that 

the signal ( )X t  can be described as (2.11). 

1

( )  ( )

J

j j

j

X t c tϕ

=

=∑  (2.11) 

 

Fundamentally, these orthogonal basis functions are obtained as the eigenvectors (also 

known as principal components) of a covariance matrix ,N NR ∈ � , composed of all 

possible N-dimensional basis. From this matrix, N eigenvectors, 1,N
kυ ∈ � , and the 

respective eigenvalues, kλ  ( 1,...,k N= ), are obtained by solving (2.12). 
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  T
k k kR υ λ υ=  (2.12) 

The eigenvectors, { }1 2, , , Nυ υ υ… , form an orthogonal base. The vectors to be employed 

as basis can be established by considering the descending order of magnitude of the 

corresponding eigenvalues kλ , that is,  

1 2 J Nλ λ λ λ≥ ≥ ≥ ≥ ≥… …  (2.13) 

Assuming this order, the optimal set of basis (eigenvectors) is obtained by taking the 

first J coefficients, { }1 2,  ,  ,  Jλ λ λ… , containing most of the information about the signal 

to be represented. The main aspect is that KLT expansion is optimal in the sense that it 

minimizes the mean squared error approximation. This means that the best 

approximation of a signal ( )X t  can be achieved through a linear combination of the J 

basis that corresponds to the highest J eigenvalues.  

When applied in time-series indexing, KLT presents a time complexity 2( )O MN , where 

M  is the number of time series in a dataset collection and N  is the length of each time 

series.  

Hermite transform 

Similarly to the KLT, the Hermite transform decomposes a signal as a linear 

combination of orthogonal basis functions. However, unlike the former that is signal 

dependent, Hermite transform has the advantage to be signal independent, since the set 

of basis functions are predefined and do not require any prior knowledge of the dataset. 

This reason, coupled with its ability in capturing specific morphologic changes using a 

low number of basis functions, has led to the employment of the Hermite expansion, 

namely to identify subtle variations in a signal (Lagerholm, 2000)§44. These properties will 

be explored in the detection of ischemic episodes, where the main goal is to identify 

variations in the morphology of the QRS complex in an electrocardiogram. In fact, given 

the similarity of some of the Hermite basis functions with the QRS complex, ischemia 

detection is a typical application where they can be successfully employed to capture 

small morphologic alterations. 

Basically, the Hermite functions represented by ( , )nH t l , where t denotes time and l  a 

scaling factor, form an orthonormal base of 2( )L � , the space of square-integrable 

functions. They can be determined as the product of a Gaussian by the Hermite 

polynomials with some normalization constants (Fedoryuk, 2001)§45, as described by (2.14).  

2

22
1

( , ) ( / )
!2

t
n nl

n
H t l e P t l

n lπ

−

=  (2.14) 

In the previous equation, ( / )nP t l  represents the Hermite polynomial of order n, and l  a 

scaling factor that allows width adjusting.  
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The Hermite polynomials at a time instant t, can be determined by the following 

recursive relations:  

( ) 1oP t =  
1( ) 2P t t=  
1 2( ) 2 ( ) 2( 1) ( )n n- nP t tP t n P t−= − −  

(2.15) 

As an example, Figure 2.4 shows the first six Hermite functions ( 0,1, ,5n = … ), 

considering the scaling factor l=3. 
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Figure 2.4 − The first six Hermite functions (order n=0 to n=5, and scaling factor l=3). 

 

In the context of similarity assessment, the goal is to transform a high-dimensional 

vector (time series), ( )X t , into a lower-dimensional space, by describing it as a linear 

combination of Hermite basis functions ( , )jH t l , with coefficients jc  (similarly to the 

representation in (2.11)), as described by equation (2.16). 

1

0

( )  ( , )

J
j

j

j

X t c H t l

−

=

=∑  (2.16) 

The reduced set of coefficients, jc , that reflect the main dynamics of the signal, can 

then be straightforwardly employed to support the assessment of similarity. 
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Discrete Fourier transform 

The discrete Fourier transform (DFT) is, definitely, one of the most powerful signal 

processing techniques. Basically, the DFT decomposes a sequence of values (time series) 

into components of different frequencies, enabling to identify similarities between time 

series. Moreover, fast computational algorithms, such as the fast Fourier transform 

(FFT), can compute the DFT coefficients in ( log )O N N  times, being N the length of the 

time series (computing DFT through the Fourier definition takes 2( )O N  arithmetical 

operations). 

The original work of Agrawal et al. (1993)§46 utilizes the DFT to perform dimensionality 

reduction on the data. They suggest the use of the DFT for feature extraction, arguing 

that most of the real signals need only the first few Fourier coefficients to approximate 

them. Then, by means of methods in the transformed space (frequency domain), it is 

possible to improve (speed and accuracy) the similarity searching process. Faloutsos et 

al. (1994)§47 extended the work of Agrawal to perform subsequence similarity indexing 

using a discrete Fourier transformation. The scheme considers the mapping of each time 

series into a small set of multi-dimensional rectangles in feature space. Subsequently, 

these rectangles are easily indexed using traditional spatial access methods, like R-tree. 

A sliding window over the data sequence is used to extract features. Moon et al. (2002)§48 

used a generalized window procedure to reduce the false negatives of Faloutsos method. 

The algorithm, called general match, divides data sequences into generalized sliding 

windows and the query sequence into generalized disjoint windows, thus achieving no 

false dismissal.  

Wavelet transform 

The discrete wavelet transform (DWT) is a powerful and efficient technique for 

decomposing, denoising, compressing and analysing time series signals. Unlike DFT, 

which takes the original signal from the time domain and transforms it into the 

frequency domain, DWT transforms the time series from the time domain into 

time-frequency domain. It has the time-frequency localization property, which means 

that it is able to give locations in both time and frequency. Basically, the DWT breaks a 

signal into several time-frequency components enabling the extraction of features 

suitable for signal analysis, namely, for similarities evaluation. Moreover, if some 

particular type of wavelets are considered (such as the Haar wavelet), it is possible to 

achieve linear time complexity, ( )O N , which makes DWT more efficient than DFT. 

Given these properties, wavelet transform has been extensively used as a feature 

extraction methodology (Carreño and Vuskovic, 2005)§49, (Percival and Walden, 2000)§50. 

Huhtala et al. (1999)§51 proposed a wavelet transformation to produce a natural set of 

features in order to search similarities in aligned time series. The time series can have 

different vertical positions, scales, and overall trends but still presenting related features 

at the same locations. Chan and Fu (1999)§52 proposed the use of the Haar wavelet 

transform for time series indexing, showing that Euclidean distance is preserved in the 

Haar transformed domain and that no false dismissals occur. Additionally, they 
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concluded that Haar transform can outperform DFT and that the method is able to 

accommodate vertical shift of time series. Gilbert et al. (2003)§53 presented techniques for 

computing small space representation of massive data streams using wavelet-based 

approximations that consist of specific linear projections of underlying data. By means of 

various linear projections of the data and using them to provide point wise and range 

sum estimation of data stream, the method uses small amount of space and per-item 

time, as well as provides accurate representation of data. In the same context, Chan et 

al. (2003)§54 used the Haar wavelet for time-series classification and showed performance 

improvement over DFT. Popivanov and Miller (2002)§55 proposed an algorithm using the 

Daubechies wavelet for efficient similarity over time series. 
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2.4 Time-Frequency Transforms 

 

The emergence of the time-frequency transforms was a consequence of the limitations 

that have been recognized to the Fourier transform. These techniques are applicable in 

situations where the time localization of the spectral components of a signal is useful, 

since they allow for the representation of a signal in terms of time and frequency, 

simultaneously, unlike the Fourier transform that only gives information about what 

frequency components exist.  

Two classes of time-frequency transforms can be considered. In the first class, the 

transforms decompose the signal into basic components, well localized in time and in 

frequency (also known as linear time-frequency representations). The short-time Fourier 

and Wavelet transforms are examples of these types of methodologies. In the second 

class, the approach is to develop a joint function of time and frequency, known as 

time-frequency distribution that can describe the energy density of a signal in both time 

and frequency, simultaneously. The Wigner-Ville transform belongs to this second class. 

 

Essentially, the Fourier transform uses a sum of sine and cosine functions of different 

wavelengths to represent a given time series signal. Since sine and cosine are global 

periodic functions, they are inherently non-local. In fact, as they extend over the entire 

real axis, any change at a particular point in the time domain has an effect on the entire 

signal. Thus, it is assumed that the frequency content of the function is stationary along 

the time axis. This limitation has led to the development of the Short Time Fourier 

transform, in which data is divided into several windows along the time axis and the 

Fourier transform is taken for each window separately. Since it is supposed that the 

signal inside a window is stationary, the size of the window is very important for 

obtaining accurate results. The drawback of this technique is that the window size is 

fixed.  

As referred, the development of time-frequency methods, namely the Wigner-Ville and 

wavelet transforms, allowed overcoming the referred limitations. In particular, wavelet 

transform, by means of a scalable windowing technique, enables to adjust window size 

depending on if the focus is on frequency resolution or on time resolution. It makes use 

of long time intervals if the interest is on precise low-frequency information, or short 

time intervals if the goal is to capture high-frequency information. One major advantage 

of the wavelet transform is its capacity to analyse a localized area in a large signal. In 

fact, in opposition to other signal analysis techniques, it allows that some aspects of 

data, as trends, breakdown points, and self-similarity, can be revealed.  
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2.4.1 Short-time Fourier Transform 

Fourier transform  

The Fourier transform (FT) is the oldest frequency domain technique available for 

analysing time series data. It consists in a mathematical tool that transforms a given 

signal from the time domain to the frequency domain. According to the Fourier theory, 

a signal may be decomposed in several sinusoidal components (also known as basis 

functions), possibly with different amplitudes, phases and frequencies. For a continuous 

signal, ( )X t , the Fourier transform is given by: 

2( ) ( ) j ftX f X t e dtπ

+∞

−

−∞

= ∫  (2.17) 

In the previous equation ( )X f  is the Fourier transform of the signal ( )X t  and 
2 cos(2 ) sin(2 )j fte ft j ftπ π π− = +  gives the frequency components of the signal.  

In the case ( )X t  is a discretely sampled signal or time series, the discrete version of the 

Fourier transform (DFT) is computed as: 

2( ) ( ) j ft

t

X f X t e π

+∞
−

=−∞

= ∑  (2.18) 

As referred before, the limitation of the Fourier transform is that it only gives 

information about what frequency components exist in the signal but no indications 

about where those spectral components appear in time. Therefore, it is not a suitable 

technique for non-stationary signals, whose frequency content changes with time. 

Short-time Fourier transform 

In an attempt to overcome the limitation presented by the Fourier transform, a 

windowed version of the FT was developed which was called Short-Time Fourier 

transform (STFT). Basically, the STFT extracts several sections of the signal to be 

analysed by means of a sliding window along the time axis. If the time window is 

sufficiently narrow, each extracted section can be considered as stationary so that 

Fourier transform can be applied. Each resultant frequency spectrum shows the 

frequency content during a short time, and, so, the successive spectra show the evolution 

of frequency content with time. The STFT of a continuous signal ( )X t  is a function of 

two variables, time and frequency, and is calculated by: 

2( , ) ( ) ( ) j ftX f X t g t e dtπτ τ

+∞

−

−∞

= −∫  (2.19) 

In the previous equation, ( )g t  is a window function and ( , )X fτ  is the Fourier transform 

of ( ) ( )X t g t τ− , a complex function that represents the phase and magnitude of the 

signal over time and frequency.  
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As previously stated, the weakness of the Short Time Fourier transform is the time 

window fixed length. In fact, the shorter the window is, the higher the time resolution is. 

Nevertheless, this is usually accompanied by a poor frequency resolution. For a long 

window, the frequency resolution is high, but the time resolution is low. This 

phenomenon reflects the Heisenberg's uncertainty principle. Therefore, there is always a 

trade-off between time resolution and frequency resolution in STFT.  

One possible solution to overcome this drawback is to use time-frequency approaches, 

namely Wigner-Ville and Wavelet transforms. 

 

2.4.2 Wigner-Ville Distribution 

Following a different approach, the Wigner-Ville transform (or distribution) is an energy 

distribution methodology that fundamentally describes a signal, simultaneously in time 

( )t  and in frequency ( )f , by considering the autocorrelation function. The Wigner-Ville 

distribution (WVD) ( , )XW t f  of a continuous time signal ( )X t , is defined as (2.20), 

* 2( , ) ( ) ( )  
2 2

j f
XW t f X t X t e dπ ττ τ

τ
∞

−

−∞
= + −∫  (2.20) 

where *( ) ( ) ( )
2 2

r X t X t
τ τ

τ = + −  is the instantaneous autocorrelation function and the 

operator ( )∗  indicates the conjugate operation.  

In an analogy to the STFT, in the case of the WVD the window is basically a shifted 

version of the signal itself. In fact, the WVD is obtained by comparing the information 

of the signal with its own information at other times and frequencies.  

The related discrete time transform ( , )XW nT f  is given by equation (2.21). 

* * 4  
X( , ) 2 ( ) ( ) ( ) ( )  

L
j f k

k L

W nT f T X n k X n k w k w k e π−

=−

= + − −∑  (2.21) 

In the previous equation, T  represents the sampling period and w is a sliding window, 

symmetrical and with finite-length duration, verifying ( ) 0w kT =  for ( )abs k L> . This 

relationship defines the discrete WVD at the time origin. At any other point in time, the 

discrete WVD can be obtained by shifting the signal ( )X t , so that is mapped on the 

time origin.  

This distribution satisfies several desirable mathematical properties. In particular, the 

WVD is always real-valued, it preserves time and frequency shifts and has the ability to 

provide a high-resolution representation in both time and frequency for non-stationary 

signals. Additionally, the Wigner-Ville transform presents a constant resolution. Thus, 

specifically in the low frequencies, this transform preserves a good time-frequency 

resolution, while not presenting serious artefacts as in higher frequencies. 
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Although WVD does not suffer from interaction between time and frequency resolutions, 

it presents some other undesired properties, such as cross-term interferences. Because 

WVD is a linear combination of auto and cross correlation terms, each pair of signal 

components creates one additional cross-term in the spectrum, which introduces 

difficulties in obtaining the desired time-frequency representation. One way of lowering 

cross-term interference is to apply a low-pass filter to the WVD, but such smoothing 

reduces its frequency resolution (Qian and Chen, 1996)§56. Another alternative is to use the 

WVD of the analytic signal, which avoids all cross-terms associated with negative 

frequency components.  

Considering a real time signal, the equivalent analytic signal can be obtained by adding 

to the real signal, its Hilbert transform as the imaginary part, as described by equation 

(2.22). 

[ ]( ) ( )  ( )aX t X t j H X t= +  (2.22) 

In the above equation, ( )X t  represents the real signal, ( )aX t  denotes the equivalent 

analytic one, and [ ]H ⋅  corresponds to the Hilbert transform. This definition has a simple 

interpretation in the frequency domain, since ( )aX t  is a single-sided Fourier transform 

where the negative frequency values have been removed and the strictly positive ones 

have been doubled. However, the analytic function differs from the original signal in 

several ways. For example, its instantaneous properties may substantially diverge from 

those of the original signal (Martin and Flandrin, 1985)§57. In fact, the cross-terms must be 

present to guarantee the notable properties of the WVD. Thus, there is trade-off 

between the interferences and the desirable properties of the WVD.  

 

2.4.3 Wavelet Transform 

The general idea behind wavelet transform is very similar to the Fourier analysis in the 

sense that both approximate a signal by means of a set of basis functions that, in the 

case of wavelet transform, are called wavelets. In mathematical terms, wavelets are 

orthogonal bases consisting of small waves. In comparison to the sinusoidal waves of the 

Fourier transform, which are smooth and of infinite length, the wavelets are irregular in 

shape and compactly supported (they have non-zero values only in a finite time 

interval). These characteristics make wavelets an ideal tool for analysing signals of non-

stationary nature. In fact, their irregular shape makes them suitable to analyse signals 

with discontinuities or sharp changes, while their compact support enables the temporal 

localisation of signal features.  

It was referred that the Fourier transform has no capacity to associate features in the 

frequency domain with their time location, since an alteration in the frequency domain 

causes changes throughout the time axis. On the contrary, the wavelet transform allows 
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the localisation in both the time and the scale domain through translations and dilations 

of a wavelet function ( )tψ , called the mother wavelet (Akay, 1997)§58.  

It is important to refer that scale is inversely related with frequency. In fact, a low scale 

corresponds to a high frequency, while a high scale corresponds to a low frequency.  

Continuous wavelet transform 

The continuous wavelet transform (CWT) is defined as the sum over all time of the 

signal multiplied by a set of basis functions, or wavelets, that are scaled, shifted versions 

of the wavelet function, or mother wavelet, ( )tψ . Wavelets, represented by , ( )a b tψ , can 

be generated as follows: 

,
1

( )  a b
t b

t
a a

ψ ψ
 − =   

 (2.23) 

In the previous equation, the parameter a +∈�  reflects the scale, that is, the width of a 

particular basis function, and is defined as (1/frequency); the parameter b ∈ �  specifies 

the translated position along time axis and the factor (
1

a
) guarantees that wavelets are 

normalized, that is, at every scale all wavelets have the same energy. Therefore, 

continuous wavelet transform of ( )X t  can be defined as: 

*
,( , ) ( ) ( ) a bW a b X t t dtψ= ∫  (2.24) 

where the character (*) denotes the complex conjugation. To summarize, the continuous 

wavelet transform is calculated by continuously shifting a continuously scalable function 

over a signal and calculating the correlation between them. This process represents a 

considerable amount of work and originates data redundancy since collected information 

is more than enough for reconstructing the original signal. 

Discrete wavelet transform 

To overcome the problem of data redundancy, discrete wavelets were introduced. These 

are not continuously scalable and translatable but can only be scaled and translated in 

discrete steps. They can be defined by: 

,

1
( )  

j
o o

j k jj
oo

t k s
t

ss

τ
ψ ψ

 −  =    
 (2.25) 

Although they are called discrete wavelets, usually they are continuous functions by 

sections. In the previous equation, j and k are integers, 1os >  is a fixed dilation step 

and oτ  is a translation factor that depends on os .  

The wavelet discretization originates the segmentation of the time-scale space into 

discrete intervals. Usually scales and positions are chosen to be based on powers of two 

( 2os =  and 1oτ = ), resulting in a dyadic time-scale grid sampling. In this case, from 
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(2.25), the wavelet basis functions originated from dilations and translations of the 

mother function ( )tψ , form an orthonormal set represented by (2.26). 

,

1  2
( )  

22

j

j k jj

t k
tψ ψ

 −  =    
 (2.26) 

In the previous equation, j and k are integers that control the wavelet dilation and 

translation, respectively. Typically this equation (2.26) is presented in a equivalent form, 

as follows (2.27). 

( )
 
2

, ( ) 2  2
j

j
j k t t kψ ψ

− −= −  (2.27) 

Using this set of orthonormal basis functions, , ( )j k tψ , it is possible to describe a time 

series signal as (2.28), where ,j kc  are the coefficients corresponding to each wavelet basis 

, ( )j k tψ . 

, ,( ) ( )j k j k

j k

X t c tψ=∑∑  
(2.28) 

Multi-resolution analysis 

For the practical implementation of the DWT, an efficient method was developed by 

Mallat (1989)§59, which uses a technique called quadrature mirror filters (a pair of high and 

low-pass filters). Mallat showed that using this multi-resolution analysis (MRA) 

technique, any discrete wavelet transform could be efficiently performed by means of a 

pyramid algorithm. In fact, wavelet transform based on multi-resolution algorithm has 

linear computational complexity of ( )O N  (clearly more efficient than the discrete 

Fourier transform, which has a complexity of order 2( )O N ).  

In MRA, firstly the original signal { }( ) (1),  ,  ( ),  X t x x t= … …  is separately passed 

through a highpass filter ( 0 1,  ,  
ff nH h h −

 =   
… ), as well as through a lowpass filter

0 1( ,  , )
ff nL l l −

 =   
… . The parameter fn  represents the filter length, that is, the number 

of non-zero coefficients, and the parameters ih  and il  represent the filter coefficients. 

From this procedure two sequences are generated: i) by convolving the signal ( )X t  with 

the lowpass filter ( fL ), equation (2.29), a sequence 1( )A t  is obtained; ii) by convolving 

the signal ( )X t  with the highpass filter ( fH ), equation (2.30), a sequence 1( )D t  is 

achieved.  

1( )  ( )t k

k

A t l x t−=∑  (2.29) 

1( )  ( )t k

k

D t h x t−=∑  (2.30) 
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The application of the referred filters to a signal (vector) with N elements originates two 

vectors with /2N  elements each: one containing the data smoothed by the low-pass 

filter ( 1( )A t ), which represents the signal approximation, and the other holding the 

removed detail information ( 1( )D t ). Successively applying such filters to the 

approximation, the subsequent scales are generated, following a decomposition tree 

scheme, as illustrated in Figure 2.5. In this way, a multi-level decomposition process can 

be achieved (with L levels, being 2log ( )L N= ) where, at each level J, the approximation 

( ( )JA t ) is successively decomposed into approximation ( 1( )JA t+ ) and detail 1( ( ))JD t+

components. 

 

( )X t

1( )D t1( )A t

2( )D t2( )A t

�
1( )LA t−

( )LD t( )LA t
 

Figure 2.5 − Wavelet decomposition tree. 

 

Using this procedure, the original signal can be described, at any level J of 

decomposition, as a function of the current approximation, ( )JA t , and the current and 

previous detail components, ( )JD t , 1 1( ),  ...,  ( )JD t D t− . 

( )1 1( ) ( ), ( )X t f A t D t=  (2.31) 

( )2 2 1( ) ( ), ( ), ( )X t f A t D t D t=  (2.32) 

( )1 1( ) ( ), ( ), ( ), ..., ( )     1, ,J J JX t f A t D t D t D t J L−= = …  (2.33) 

The reconstruction of the signal can be achieved by, at every level, upsamplig the signals 

by two, passing them through reconstruction filters and, finally, adding them. 

This hierarchical decomposition via filter banks essentially describes a signal in terms of 

basis. In fact, the decomposition procedure can be achieved by means of wavelet and 

scaling functions, respectively, ( )tψ  and ( )tφ . The first, known as mother wavelet 

effectively represents the detail and high-frequency parts of time series, while the latter, 

known as father wavelet, represents the smooth and low-frequency components. Just as 

the wavelet functions (equation (2.27)), scaling functions ( )tφ  can be derived by (2.34). 
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( )
 
2

, ( ) 2  2
j

j
j k t t kφ φ

− −= −  (2.34) 

According to (2.33), the signal ( )X t  can be rewritten at any level J of decomposition, 

using scaling and wavelet basis functions, as follows: 

1 02 1 2 1 2 1

0,0 0,0 , , 1, 1, 0, 0,

0 0 0

( ) ( ) ( ) ( ) ( )

J J

J k J k J k J k k k

k k k

X t c t d t d t d tφ ψ ψ ψ

−− − −

− −

= = =

= + + + +∑ ∑ ∑…  (2.35) 

where , , 1,, , ....,J k J k kc d d  are the wavelet transform coefficients, and , ( )j k tφ , , ( )j k tψ  are 

the basis functions, respectively scaling and wavelets. Since the basis are orthonormal, 

the coefficients ,J kc  and , 1,, ....,J k kd d  can be easily computed by the inner product of the 

signal with the appropriate function, according to (2.36) and (2.37). 

, ,( ) ( )j k j k

t

c x t tφ=∑  (2.36) 

, ,( ) ( ) j k j k

t

d x t tψ=∑  (2.37) 

Mother and father functions 

The starting point of the wavelet decomposition is the so-called father wavelet (or 

scaling function), ( )tφ , from where mother wavelet (or wavelet function), ( )tψ , can be 

derived. As referred, the former represents the smooth and low-frequency components, 

while the latter represents the detail and high-frequency parts of the time series. 

Therefore, father wavelet can be used for the identification of trend components and 

mother wavelet for identifying deviations from the trend. According to the definition, 

the scaling and wavelet functions verify the relationship:  

( ) 1t dtφ =∫ , ( ) 0t dtψ =∫  (2.38) 

Moreover, the scaling function must obey to the dilation equation (2.39), where kl  

represents the scaling filter coefficients, as well as to equation (2.34). 

( ) 2  (2 )k

k

t l t kφ φ= −∑  (2.39) 

For the mother wavelet function ( )tψ , a similar relationship is obtained from the father 

wavelet, where kh  represents the wavelet filter coefficients.  

( ) 2  (2 )k

k

t h t kψ φ= −∑  (2.40) 
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Since basis functions are orthonormal, the coefficients kl  and kh , corresponding to 

lowpass filter ( 0 1,  ,
ff nL l l −

 =   
… ) and to highpass filter ( 0 1,  ,  

ff nH h h −
 =   
… ), can be 

computed as follows: 

1
( ) (2 )

2
k

t

l t t kφ φ= −∑  (2.41) 

1
( ) (2 )

2
k

t

h t t kψ φ= −∑  (2.42) 

Moreover, these coefficients are related through equation (2.43).  

1( 1) , 0, 1, ..., 1
f

k
k n k fh l k n− −= − = −  (2.43) 

Firstly, the scaling function is chosen to preserve the area prerequisite (2.38), known as 

stability condition. The following equality can thus be derived for scaling coefficients: 

1

0

2

fn

k

k

l

−

=

=∑  (2.44) 

Secondly, the convergence of wavelet expansion requires that (2.45) is verified, where 

0,1,2,  , 1
2

fn
m = −… . 

1

0

( 1) 0

fn

k m
k

k

k l

−

=

− =∑  (2.45) 

Subsequently, the orthogonality of wavelets is guaranteed by (2.46). 

1

2

0

0

fn

k k m

k

l l

−

+

=

=∑  (2.46) 

Finally, the scaling function has to be orthogonal, thus, equation (2.47) should be 

verified. 

1

2

0

1

fn

k

k

l

−

=

=∑  (2.47) 

Typical wavelets 

Although wavelets can present considerably different configurations, they all share the 

same basic structure. In fact, generically a wavelet basis consists of a father wavelet, 

( )tφ , that represents the smooth baseline trend, and a mother wavelet, ( )tψ , that is 

dilated and translated to generate different levels of detail. Several families of wavelets 

have proven to be especially useful in various applications. They differ with respect to 

orthogonality, smoothness and other related properties, such as vanishing moments or 

size of the support. Among others, examples of well-known wavelets are the Haar, 
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Daubechies, Symmlets and Coiflets wavelet families. Figure 2.6 shows some of these 

wavelets, their corresponding mother and father functions. The Haar wavelet is a square 

wave and, contrasting with the others, it is not continuous. It is the only one that is 

simultaneously orthogonal and symmetric.  

  

( )tψ
( )tφ

A
m
p
li
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de

A
m
p
li
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d
e

 

( )tφ ( )tψ

 

( )tφ ( )tψ

 

Figure 2.6 − Examples of orthogonal wavelets (mother and father basis functions). 

 

i. Haar wavelet 

The filter coefficients of the Haar wavelet ( 2fn = , 0m= ), verifying equations (2.44), 

(2.45) and (2.47), are the following (Li et al., 2002)§60: 

0 1

0 1

2 2
0 1

2

0

 1

l l stability

l l convergence

scaling orthogonalityl l

 + = − = + =
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The solution (unique) is given by 

0 1

1

2
l l= =  (2.48) 

From (2.43) it is possible to compute the corresponding wavelet coefficients: 

0 1

1 1
     

2 2
h h= =−  (2.49) 

The Haar scaling function satisfies (2.39), while wavelet function verifies the equation 

(2.40). In particular, for 0,1k =  and using the values of 0 1 0 1,  ,  ,  l l h h , it follows: 

( ) (2 ) (2 1)t t tφ φ φ= + −  (2.50) 

( ) (2 ) (2 1)t t tψ φ φ= − −   (2.51) 

The solution for this recurrence is the Haar scaling function (2.52), and the 

corresponding wavelet function (2.53), as shown in Figure 2.6a). 
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(2.53) 

 

ii. Daubechies (db2) wavelet 

The filter coefficients of the Daubechies wavelet (db2) ( 4fn = , 0,  1m = ), result from 

the following set of equations (Li et al., 2002)§61: 
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(2.54) 

The solution for the scaling coefficients is 

0 1

2 3

1 3 3 3
;        

4 2 4 2

3 3 1 3
;        

4 2 4 2

l l

l l

+ +
= =

− −
= =

 (2.55) 
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From (2.43), the resulting wavelet coefficients are:  

0 3 1 2

2 1 3 0

;        

;        

h l h l

h l h l

= =−

= =−
 (2.56) 

The corresponding scaling and wavelet functions are illustrated in Figure 2.6b). 

 

2.4.4 Contractive Property 

One of the first works in the domain of time-series similarity was presented by Agrawal 

et al. (1993)§62. They proposed the use of DFT for feature extraction and introduced an 

indexing mechanism for similarity search, designated by F-Index. This mechanism was 

used as the framework for a majority of the subsequent works, being meanwhile 

generalized for subsequence similarity index search by Faloutsos et al. (1994)§63. Basically, 

by introducing the F-Index, Agrawal et al., (1993) proved that to guarantee no false 

dismissals, the distance measure of any two objects (time series), ( )X t  and ( )Y t , and 

their corresponding transforms, ( ( ))X tℑ  and ( ( ))Y tℑ , must satisfy the following lower 

bounding lemma: 

( ) ( )( ( )), ( ( )) ( ), ( )feature timeD X t Y t D X t Y tℑ ℑ ≤  (2.57) 

This property, referred to as the contractive property of the transform ()ℑ ⋅ , ensures no 
false dismissals. The key idea is that the computed distance based on the transformed 

features may have false positives but no false negatives (or false dismissals).  

 

One of the main requirements when applying the general wavelet transform to similarity 

search problems, is the ability to preserve the contractive property and, thus, to 

guarantee no false dismissals. Fukanaga (1990)§64 presented a proof that the Euclidean 

distance is preserved for the class of orthonormal transforms. The Haar wavelet, as well 

as other wavelets, belongs to the class of orthonormal transforms. Therefore, based on 

this principle, Chan and Fu (1999)§65 showed that the contractive property can be 

established for the Haar wavelet. Later, Popivanov and Miller (2002)§66 showed that a 

wider class of wavelet transforms can be used to support similarity search, extending the 

contractive property for a class of bi-orthonormal wavelets. 

To summarize, the application of the Haar wavelet transform ensures the preservation of 

the Euclidean distance between any two time-series in the transformed space, which is 

an extremely important property to support dimension reduction of time series data. In 

effect, it guarantees that no qualified time sequence will be rejected or, in other words, 

that no false dismissal occur when searching for similarities in time series. 
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2.5 Proposed Similarity Measure and 
Indexing Scheme 

2.5.1 Introduction 

The matching of similar patterns in long sequences is an important topic in time series 

analysis field. Some transform-based methods, such as the Fourier transform, can be 

used for dimension reduction, but can not provide any features specific for a given local. 

One of the main hypotheses to be explored in this work is motivated by the wavelet 

transform property of time-frequency localization. In fact, contrasting with other 

methods, wavelet transform enables to distinguish characteristics of the sequence both at 

various locations and at varying time granularities. Since the basis functions are local in 

both time and frequency, description of a time series is possible by the analysis of the 

weights associated with the relevant basis. 

This work introduces a similarity measure based on the natural set of features generated 

by the wavelet transform (coefficients of the basis functions), which reflect the 

fundamental dynamics of a time series. Through a dimension reduction performed by the 

Karhunen-Loève transform (KLT), an optimal number of wavelet basis is obtained. The 

coefficients corresponding to the reduced set of basis are the origin of the comparison 

scheme. Basically, by the referred reduction procedure, an effective description of the 

time series in the most representative regions (local wavelets basis) is achieved, enabling 

a practical comparison between time sequences. In addition to the locality, the proposed 

wavelet scheme makes possible to obtain a rough estimation of the signal (behaviour) at 

a predefined degree.  

In this particular framework, the specific Haar wavelet can be efficiently used in the 

proposed similarity search scheme. Several studies have addressed the Haar wavelet 

transform as a dimensionality reduction technique within the context of similarity 

detection, showing that it captures the shape of time series better than Fourier 

transform, (Chan and Fu, 1999)§67, (Wu et al., 2000)§68. On the other hand, a major 

drawback that has been pointed to Haar wavelet relates with the basis functions that 

are not smooth, that is, are not continuously differentiable. As result, this wavelet 

approximates any signal by a ladder-like structure that may be not adequate for smooth 

functions. However, in the particular case of the present thesis, the final goal is to 

identify the main characteristics of the signal, that is, the main trends or behaviour 

(possibly in some specific time regions). Thus, this inconvenience is not significant. 

Moreover, although taking as the starting point the Euclidean distance as the similarity 

measure, the proposed scheme is able to circumvent some of its major weaknesses: i) 

high computational complexity, ii) not applicable to time series that are not aligned in 

time (dissimilar dynamics at the same points in time); iii) not adequate if signals have 

different baselines (mean values); iv) limited to cases where there exists a linear 

relationship. In effect, the proposed methodology provides a significant complexity 

decrease by implementing a reduction procedure that results in an optimal reduced set 
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of orthogonal basis. Additionally, the rough estimation of the signal achieved by the 

Haar wavelet transform, allows to define a similarity measure based on the signal trend, 

thus enabling, to some extent, the comparison of signals not aligned in time. Another 

benefit is the inherent ability of wavelets to deal with the non-stationarity and non-

linearity present in the signals. Furthermore, another positive consequence of the 

proposed wavelet decomposition is its capacity to cope with the presence of noise in the 

signal. In effect, since only an approximation of the signal is used, a noise reduction is 

naturally achieved, which significantly contributes to improve the similarity searching 

process.  

 

Main steps  

The Figure 2.7. depicts the main steps involved in the proposed similarity measure and 

indexing scheme.  
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Figure 2.7 − Proposed similarity measure and indexing scheme. 
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Basically, the following steps are accomplished: 

� Step 1. Vertical shift removal: To guarantee that similarity assessments are 

independent of variations in the vertical position, a vertical shift removal 

procedure is employed.  

� Step 2. Wavelet decomposition of the template: In this step, the decomposition 

of the template (pattern) to be compared with the time series is achieved by 

means of a set of orthogonal (or orthonormal) wavelet basis.  

� Step 3. Optimal dimension reduction (KLT): Based on the localisation property 

of the wavelet basis, those that significantly reflect the dynamical patterns of 

the template are chosen to compose the reduced set of basis. In the case of basis 

are orthonormal, a simple selection of highest coefficients is required; in the case 

of basis are orthogonal, a Karhunen-Loève transform is applied.  

� Step 4. Sequence description: The subsequence of the signal to be compared 

with the template, is described by means of the previous reduced set of basis. It 

is important to refer that this description does not involve a wavelet 

decomposition, but a simple computation of coefficients.  

� Step 5. Similarity measure: The coefficients obtained for the template and 

subsequence description in terms of the reduced set of basis, are employed to 

derive a similarity measure. They allow the interpretation as an evolution trend, 

as well as a relative comparison between the amplitudes of the template and 

subsequence. 

� Step 6. Subsequence indexing: Based on the previous similarity measure and 

using the particular Haar wavelet, an efficient iterative similarity indexing 

algorithm is proposed, enabling to reduce the computational complexity. 

Finally, the proposed one-dimensional time series similarity measurement is extended to 

multi-dimensional time series. 

Pre-defined parameters 

In the previous scheme there are two key parameters that have to be previously 

established. These parameters, ε +∈�  and η +∈ �  correspond to: 

� ε : accuracy of wavelet decomposition. This parameter controls the 

approximation error by determining the number of basis to be considered in the 

template decomposition. Moreover, the selected basis define the most significant 

spatial localizations of the signal, allowing the interpretation in terms of its 

evolution trend. 

� η : difference in amplitude between a given signal and the template. While the 

first parameter (ε ) characterizes the time evolution of the signal, this second 

parameter defines when two signals that present the same behaviour are or are 

not considered as similar. To this aim, it establishes a limit to the difference 

(ratio) of signals’ amplitudes.  
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2.5.2 Step 1: Vertical Shift Removal 

The starting point for the establishment of the similarity measure proposed in this work 

is the Euclidean distance, equation (2.1). From the definition, two time series with the 

same length ( )N , where N  is a power of 2 ( 2 ,nN n= ∈� ), are similar if their 

Euclidean distance, ( )ED ⋅ , is lower than a given threshold +∈ �ζ .  

( ) ( )21 2 1 2

1

( ), ( ) ( ) ( )

N

E

t

D X t X t x t x t

=

= − <∑ ζ  (2.58) 

The proposed scheme, assumes that similarity should be insensitive to changes in the 

vertical position of the time series. As stated by Chan et al. (2003)§69, signals that are 

shifted (that is, that have a different mean) can not be considered similar using the 

Euclidean definition, (2.58). Therefore, according to the same authors, a simple vertical 

shift similarity, ( )VD ⋅ , is proposed as follows. 

( ) ( ) ( )( )21 2 1 1 2 2

1

( ), ( ) ( ) ( )

N

V

t

D X t X t x t X x t X

=

= − − − <∑ ζ  (2.59) 

Consequently, the template signal 1,( ) NX t ∈ �  is in a first step modified as (2.60), where 

X  is the mean value of the template ( )X t , obtained according to equation (2.4). 

( ) ( )X t X t X= −  (2.60) 

Thus, neglecting their vertical offsets, any two time sequences are said to be vertical 

shift similar if the Euclidean distance is less than or equal to a threshold, equation 

(2.59). This definition can give a better estimation of the similarity between two time 

sequences. In effect, if analogous trends exist at two completely different levels, signals 

can be regarded as similar. 

2.5.3 Step 2: Wavelet Decomposition of the Template  

In a second step, the template signal ( )X t  is decomposed using a DWT process. 

Basically, the DWT decomposes a time series in terms of an approximation of the 

original sequence, plus a set of details. The main trend of the input sequence is 

preserved in the approximation part, while the localized changes are kept in the detail 

parts. Assuming that the length of the signal is N, and considering the L level of 

decomposition, such that 2log ( )L N= , the original signal can be reconstructed as 

described by (2.61). 

0,0 0,0 , ,( ) ( ) ( )j k j k

j k

X t c t d tφ ψ= +∑∑  (2.61)

Therefore, the signal X(t) can be represented as a linear combination of N basis 

functions, 0,0( )tφ  and , ( )j k tψ , respectively, approximation and detail functions.  
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Number of detail basis 

Considering L levels of decomposition, Figure 2.5, equation (2.35), the number of detail 

basis , ( )j k tψ  and corresponding coefficients is ( 1N − ), as shown in Figure 2.8. 

 

1

2 1

, , 1,0 1,1 1,2 1

0

( ) ,  ,  ,  

J

LJ k J k L L L

k

d tψ ψ ψ ψ −

−

− − − −
=

 →   ∑ …

2logL N=

1J L= −

2 1

, , 1,0 1,1

0

( ) ,  

J

J k J k

k

d tψ ψ ψ

−

=

 →   ∑1J =

12
2

L N
basis −= =

2Llength N= =

12 2basis = =

2 1

, , 0,0

0

( )

J

J k J k

k

d tψ ψ

−

=

 →   ∑0J =
02 1basis = =

��
�

  

Figure 2.8 − Number of detail basis in a wavelet decomposition. 

 

Thus, considering all L levels of decomposition, the number of basis involved is 

... 2 1
2 4

N N  + + + +   
. This sequence represents a geometric progression of ratio 2, with a 

number of terms 2logL N= , and with the first term equal to 1. Therefore, the total 

number of terms can be computed by (Roger, 1993)§70: 

2log2 1
1 1

2 1

N

N
−

= −
−

 

 

Number of approximation basis 

Since vertical shift is considered, the mean value of X(t) is zero, 0X = , according to the 

definition (2.60). Therefore, since the first coefficient of equation (2.61) reflects the mean 

value of the transformed signal ( )X t , it follows that 0,0 0c = .  

As result, a signal can be written as a linear combination of the detail basis according to 

(2.62), which uses a simplified notation. 

1

1

( )  ( )

N

j j

j

X t d tψ

−

=

=∑  (2.62) 

In the previous equation, jd ∈ �  are scalars (weights) and 1,( ) N
j tψ ∈ �  are orthonormal 

basis (wavelets). In fact, the number of basis is ( 1N − ) and not N, since 0,0 0c = . 

However, in order to maintain the generality, it is considered that the coefficient 0,0c  

can be nonzero. 
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Moreover, to achieve a more generic approach, the last description is extended to 

orthogonal basis as well. In order to simplify the computation of the similarity 

measurement to be presented in section 2.55, it is assumed the signal generically 

described as (2.63). 

1

( )  ( )

N

j

j

X t tϕ

=

=∑  (2.63) 

In the previous equation it is considered that the basis functions 1,( ) N
j tϕ ∈ �  are 

orthogonal (not necessarily orthonormal) and that incorporate the respective coefficients. 

As a consequence, the template can be fundamentally expressed as a ‘sum of the basis’. 

Using matrix notation the equation (2.64) is obtained, where 1,NΓ∈�  is a weight vector 

composed of coefficients, in this case a vector of ones, [1,  1,  ,  1]Γ = … , and the matrix 
,( ) N NtΦ ∈ �  is composed of the orthogonal wavelet basis, described by (2.65). 

( )   ( )X t t= Γ Φ  (2.64) 

1,0( )L tψ −

11,2 1
( )LL
tψ −− −

�

1,0

1,1

( )

( )

t

t

ψ

ψ

2

N
�

0,0( )tψ

( )tΦ =

0,0( )tφ

�

 

(2.65) 

A simplified representation can be used, denoting the basis as 

( ),   1,..., ,   1,...,j t j N t Nϕ = = , where j identifies each wavelet and t denotes time.  

1 1 1 1 1

2 2 2 2 2

( ) (1) (2) ( ) ( )

( ) (1) (2) ( ) ( )

( ) = 
(1) ( ) ( )( )

(1) (2) ( ) ( )( )

j j jj

N N N NN

t t N

t t N

t
t Nt

t Nt

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕϕ

ϕ ϕ ϕ ϕϕ

   
   
   
   
   
   
   Φ =   
   
   
   
   
   
        

… …

… …

� � � � �

… … …

� � � ��

… …

 (2.66) 
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2.5.4 Step 3: Optimal Basis Reduction 

In order to obtain a reduced set of wavelet basis, a Karhunen-Loève transform is 

implemented, which is able to approximate a signal with a pre-defined accuracy. The 

combination of wavelet decomposition with KLT analysis enables to attain an efficient 

representation that reduces the number of wavelet basis and preserves the main (local) 

characteristics of the signal. This aspect is of fundamental importance when establishing 

similarity measures. 

i. In case the basis are orthonormal 

If the basis are orthonormal, the optimal approximation to the original signal in terms of 

the 2l  norm is straightforwardly achieved maintaining the largest J wavelet coefficients 

(Karim and Adeli, 2002)§71. Let X(t) be a signal described by a set of N orthonormal basis, 

( )j tψ , with coefficients 1 2{ , ,..., }Nd d d , according to (2.67).  

1

( )  ( )

N

j j

j

X t d tψ

=

=∑  (2.67) 

Let ()σ ⋅  be a permutation of the indices {1,2,..., }N  and �( )X t  the signal that results 

from the first J coefficients (J N< ) of the permutation ()σ ⋅ , represented by (2.68). 

�
( ) ( )

1

( ) ( )

J

j j

j

X t d tσ σψ

=

=∑  (2.68) 

Proposition 2.1 

Sorting the coefficients in descending order of magnitude and selecting the first J, 

provides the best 2l  norm approximation error, which is obtained by the following 

equation (2.69), where the operator 2 .  represents de referred norm. 

� � �
2

2
( ) ( )  ( ) ( ), ( ) ( )X t X t X t X t X t X t− = < − − >  (2.69) 

Proof (Liao, 2005)§72  

Considering the definitions of ( )X t  and �( )X t  by equations (2.67) and (2.68), it follows 

that: 

�
2

( ) ( ) ( ) ( )
2

1 1

( ) ( ) ( ), ( )

N N

j j k k

j J k J

X t X t d t d tσ σ σ σψ ψ

= + = +

− = ∑ ∑  1 = (2.70) 

( ) ( ) ( ) ( )

1 1

( ), ( )

N N

j k j k

j J k J

d d t tσ σ σ σψ ψ

= + = +

= ∑ ∑ = ( )2( )

1

N

j

j J

dσ
= +
∑  (2.71) 

                                           

1 The operator ,a b< >  denotes the dot product between the vectors a and b, that is, , ( ) ( )

i

a b a i b i< >=∑  
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In equation (2.70), the terms corresponding to 1,...,j J=  are not considered since they 

are common to ( )X t  and �( )X t  and, thus, eliminated by the subtraction of the signals. 

On the other hand, in equation (2.71) the dot product between the basis is 0 (zero) 

when j k≠  (cross terms), or equal to 1, in case j k= , since they are orthonormal. 

Therefore, in order to minimize the approximation error, the best choice for the 

permutation is the one that considers the highest coefficients in the decreasing order of 

magnitude. This means that permutation should verify the following relationship, where 
2 2

( ) ( )2
( )j jd dσ σ=  represents the square of the 2l  norm of the coefficient ( )jdσ .  

2 2 2 2

(1) (2) ( ) ( )2 2 2 2J Nd d d dσ σ σ σ≥ ≥ ≥ ≥… …  (2.72) 

Following this idea, choosing the J orthonormal basis is straightforward. In fact, given a 

predefined level of precision ε  (accuracy of approximation), an optimal basis reduction 

can be achieved selecting the highest coefficients so that the level of precision error ε  is 

attained. 

ii. In case the basis are orthogonal 

Theoretically, when decomposing a function in terms of a set of basis, the best solution 

in terms of the mean squared error (MSE) is achieved with a Karhunen-Loève base of 

orthogonal eigenfunctions (Clifford et al., 2006)§73. Basically, given a collection of N-

dimensional vectors, they are projected onto a J-dimensional subspace, where J<N, 

maximizing the variances in the chosen dimensions.  

Considering a set of N-dimensional basis, an efficient eigenbasis to represent a signal 

( )X t  requires the fewest eigenvectors needed to approximate ( )X t  to a desired accuracy 

(level of error). These basis are designated as KLT basis functions, obtained as the 

eigenvectors (also known as principal components) of a covariance matrix. 

In this particular case, the covariance matrix ,N NR ∈ �  is composed of the wavelet 

basis ( )j tϕ , matrix (2.66), in the following form: 

1
( ) ( )

1
TR t t

N
= Φ Φ

−
 (2.73) 

From this matrix, N eigenvectors 1,N
kυ ∈ �  and the respective eigenvalues kλ

( 1,..., )k N=  are obtained by solving (2.74). 

  T
k k kR υ λ υ=  (2.74) 

The eigenvectors { }1 2, , , Nυ υ υ…  form an orthogonal basis. The vectors ( )j tϕ , to be 

employed as basis functions, can be established by considering the descending order of 

magnitude of the corresponding eigenvalues kλ , that is,  

1 2 J Nλ λ λ λ≥ ≥ ≥ ≥ ≥… …  (2.75) 
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As result, an hybrid method combining wavelet with Karhunen-Loève transforms is 

considered. The objective is to obtain a description of a signal ( )X t  using the most 

representative wavelet basis. By combining these two approaches, it is possible to reduce 

the dimension of the underlying space and hence to achieve an efficient scheme to 

describe data. In fact, the global aim is to merge the key features of the KLT analysis 

with the significant features of the wavelet decomposition. The idea is that the eigen-

analysis provides the most important features of the signal while the wavelet 

decomposition gives the particular local features of the same.  

iii. Dimension (level of decomposition): parameter ε 

Generally, choosing the appropriate dimension of the features in the transformed space 

is a challenging problem. In the particular case of the wavelet transform, the dimension 

of the features is typically determined by the level of decomposition. Several studies 

have been conducted to determine the optimal level of decomposition of a wavelet 

transform, mainly based on energy and/or entropy concepts. For example, Coifmain and 

Wickerhauser (1992) proposed algorithms based on Shannon entropy for best basis 

selection, which permits efficient compression of signals74; Sang et al., (2010)§75 proposed a 

similar method to determine the decomposition level based on the wavelet energy 

entropy. 

However, following the exposed approach this problem can be easily circumvented. In 

fact, by means of the proposed scheme, the level of decomposition in the wavelet 

transform procedure is converted into the selection of the wavelets basis that allow a 

given level of accuracy in the representation of the signal. Moreover, using this 

approach, an optimal feature extraction technique that efficiently reduces the data into 

a lower-dimensional space is obtained, which preserves the main properties (localization) 

of the original time series.  

To summarize, the procedure for selecting the J basis is the following: given a predefined 

level of precision +∈�ε (accuracy of approximation), an optimal basis reduction can be 

achieved choosing the highest coefficients, in case wavelets are orthonormal, or the 

highest eigenvalues, in case wavelets are orthogonal. 

1. In case of orthonormal basis, where 
0  

,
1  i j

if i j

if i j
ψ ψ

 ≠< >  =
, the next steps are applied: 

� Compute the wavelet coefficients of the original signal, 1 2{ , ,..., }Nd d d . 

� Sort the coefficients in decreasing order of magnitude to obtain a permutation 

such as: 
2 2 2 2

(1) (2) ( ) ( )2 2 2 2J Nd d d dσ σ σ σ≥ ≥ ≥ ≥… … . 

� Consider the first coefficients of the permutation (the highest) such that 
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2

( ) 2
1

2

( ) 2
1

J

j

j

N

j

j

d

d

σ

σ

=

=

≥
∑

∑
ε  (2.76) 

� Select the basis corresponding to the first coefficients of the permutation as the 

fundamental basis. 

2. In case of orthogonal basis, where 
0  

,
  

i j T
i j

if i j

if i j
ϕ ϕ

ϕ ϕ

 ≠< >  =

, the next steps are applied: 

� Determine the covariance matrix R and the respective eigenvalues.  

� Sort the eigenvalues in decreasing order of magnitude: 

1 2 J Nλ λ λ λ≥ ≥ ≥ ≥ ≥… … . 

� Consider the first eigenvalues of the decomposition (the highest) such that 

1

1

J

j

j

N

j

j

λ

λ

=

=

≥
∑

∑
ε  (2.77) 

� Select the basis corresponding to the first eigenvalues of the decomposition as 

the fundamental basis. 

iv. Conclusion 

Wavelet and Karhunen-Loève transforms provide different and complementary ways to 

represent information. The basis vectors for KLT analysis come from the eigenvectors of 

a covariance matrix, thus representing global information. On the other hand, wavelets 

are local in nature and, consequently, make possible the revelation of significant local 

characteristics of the signal.  

Thus, in conclusion, by merging the KLT with the wavelet decomposition, the original 

signal ( )X t  can be described as a reduced set of J basis, denoted by �( )X t . 

�

1

( ) ( )

J

j

j

X t tϕ

=

=∑  (2.78) 

Moreover, using the KLT procedure it is possible to decrease the 2l  norm approximation 

error as the number of basis increases, that is, the following relationship is verified. 

( ) 22
1 1 22 2

2 2

1 12 2

( ) ( ) ( ) ( ) ( )

              ( ) ( ) ( ) ( ) 0

J N

j j

j j

X t t X t t t

X t t X t t

ϕ ϕ ϕ

ϕ ϕ

= =

− ≥ − + ≥

≥ − ≥ ≥ − =∑ ∑

…

… …
 (2.79) 
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Preliminary discussion 

Figure 2.9 illustrates this approximation process for a signal ( )X t  with length 64N = . 

Using the Haar wavelet decomposition and establishing a predefined level of precision 

(threshold ε ), an optimal basis reduction is achieved. In this particular case, setting 

0.92=ε  (roughly meaning that the signal should be approximated with a level of 

confidence of 92%), three basis were obtained considering the previously presented 

procedure. As referred, these basis are not determined based on a specific level of 

decomposition, but are chosen as those that best represent the signal (in terms of the 2l  

norm approximation error) among all decomposition levels ( 2log 6L N= = ). 

As can be seen in this figure, using only three basis the main characteristics of the signal 

are captured. Although it is possible to obtain small approximation errors (by increasing 

the threshold ε  and, therefore, the number of basis), it should be noted that this is not 

the main focus of the proposed scheme. Effectively, the final goal is to identify the main 

characteristics of the signal, that is, the main trends or behaviour, as it will be discussed 

latter. 
 

3

1

( )j

j

tϕ

=
∑

1 1,1( ) 2.69 tϕ ψ=

2 0,0( ) 1.75 tϕ ψ=

3 2,3( ) 1.49 tϕ ψ=

 

Figure 2.9 − Signal approximation using the Haar wavelet decomposition. 

 

In this particular case, the most important basis is 1 1,1( ) 2.69 tϕ ψ=  (largest coefficient). 

This means that the highest variation in the signal occurs at the instants [33,64] , as can 

be confirmed by Figure 2.9a). Moreover, the second basis, 2 0,0( ) 1.75 tϕ ψ= , is the one 

that reflects the contribution of all signal. Since the coefficient has a positive value, it 

can be concluded that the signal presents a global positive variation, that is, the mean of 

the first half, instants [1, 32] , is higher than the mean of the second half, instants 

[33,64].
 Finally, similar conclusion can be taken for the third basis, 3 2,3( ) 1.49 tϕ ψ= . In 

fact, in the corresponding time region, instants [49,64] , the signal presents a significant 

variation from a higher to a lower value and, thus, the coefficient has a positive sign. 
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2.5.5 Step 4: Similarity Measure 

The proposed similarity measure is based on the Euclidean distance, equation (2.58). 

However, it is computed from the coefficients of the reduced set of wavelet basis, which 

reflect the main dynamic patterns of the time series, instead of directly from the original 

signals. Using this strategy, a simple but effective assessment of similarity between a 

particular template and a time series, is achieved. 

i. Signal description 

Given a signal, 1,( ) NY t ∈ � , to be compared with the template, 1,( ) NX t ∈ � , the first 

step consists in describing it as a linear combination of the orthogonal basis functions, 

( )j tϕ , that were used to describe the template. 

Proposition 2.2 

A time series signal 1,( ) NY t ∈ �  can be described by means of the orthogonal basis set, 
1,( ) N

j tϕ ∈ � , according to equation (2.80). 

1

( )  ( )

N

j j

j

Y t tα ϕ

=

=∑  (2.80) 

The coefficients jα ∈ �  always exist and are given by (2.81). 

( ), ( )
 =

( ), ( )

j
j

j j

Y t t

t t

ϕ
α

ϕ ϕ

< >

< >
 (2.81) 

In case the basis are orthonormal, the last equation can be straightforwardly simplified 

to (2.82), since ( ), ( ) 1j jt tϕ ϕ< >=
.
 

 = ( ), ( )j jY t tα ϕ< >  (2.82) 

 

Proof 

Let us define the basis (wavelet functions) using matrix ( )tΦ , equation (2.66). 

Representing the coefficients to be determined as 1 2[      ]Nα α αΩ= … , the signal 

(vector) ( )Y t  can be written as (2.83), similarly to (2.64). In order to simplify the 

comprehension, the parameter ( )t  is omitted from now. 

 Y = Ω Φ  (2.83) 

Considering a trivial operation, it can be shown that the coefficients result in (2.84), 

where the matrix †Φ  denotes the pseudo-inverse of matrix Φ . 

( ) 1 † =  T TY Y
−

Ω Φ ΦΦ = Φ  (2.84) 
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Since the basis are orthogonal, the relation (2.85) is verified. 

,

,

0

i i

i j

i j

i j

otherwise

ϕ ϕ

ϕ ϕ

< > == 

∑  (2.85) 

Thus, ,T N NΦΦ ∈�  is a diagonal matrix with elements ,i iϕ ϕ< > . 

1 1

2 2

,

,

,

T

N N

ϕ ϕ

ϕ ϕ

ϕ ϕ

< > 
 

< > 
 ΦΦ =  
 
 < >  

�
 (2.86)

The respective inverse, 1( )T −ΦΦ , is straightforwardly obtained. It is also a diagonal 

matrix with elements 
1

,j jϕ ϕ< >
. Moreover, since by definition , 0j jϕ ϕ< >≠ , this 

inverse always exists. 

( )

1 1

1
2 2

1

,

1

,

1

,

T

N N

ϕ ϕ

ϕ ϕ

ϕ ϕ

−

 
 
 < >
 
 
 
 < >ΦΦ =  
 
 
 
 
 < >  

�

 
(2.87)

The product of (  TY Φ ) provides a matrix of dimension (1, )N  defined as: 

1 2 , , , , ,  T
NY Y Y Yϕ ϕ ϕ Φ = < > < > < >  …  (2.88)

Finally, from (2.87) and (2.88), the coefficients can be obtained by (2.89). 

( ) 1 1 2

1 1 2 2

, , ,
 =   , ,

, , ,
T T N

N N

Y Y Y
Y

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

−  < > < > < > Ω Φ ΦΦ =  < > < > < > 
…  (2.89)

 

Note that if the basis are orthonormal, , 1i iϕ ϕ< >= , and the previous equation results 

in (2.90). 

( ) 1

1 2 =   , , , , , ,T T
NY Y Y Yϕ ϕ ϕ

−  Ω Φ ΦΦ = < > < > < >  …  (2.90)
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Proposition 2.3 

It is possible to relate the squared Euclidean distance between the signals ( )X t  and ( )Y t  

using the obtained coefficients, Ω , as follows: 

( )( )2( , ) [ ] [ ] 
T

ED X Y = Γ −Ω Φ Γ −Ω Φ  (2.91) 

Proof 

The proof is immediate. 

( ) ( ) ( )( )
222

1 1 1

( , ) (1 ) (1 ) (1 )

N N N
T

E j j j j j j j j j

j j j

D X Y ϕ α ϕ α ϕ α ϕ α ϕ

= = =

= − = − = − −∑ ∑ ∑
 

(2.92) 

Or, in the matrix form: 

( ) ( )( )2
2( , ) [ ] [ ] [ ] 

T

ED X Y = Γ −Ω Φ = Γ −Ω Φ Γ −Ω Φ   

ii. Reduced representation using KLT 

As explained, wavelet and KL transforms enable to obtain a reduced representation of 

the template ( )X t . One important property to be verified when dealing with dimension 

reduction is the contractive property. In fact, it is of fundamental importance to ensure 

that no false dismissals occur.  

Proposition 2.4 

Consider two signals, 1,( ) NX t ∈ �  and 1,( ) NY t ∈ � , and the Euclidean distance between 

them, equation (2.1). If they are described according to (2.63) and (2.80), the dimension 

reduction, considering the combined wavelet and KL transforms procedure (denoted here 

by ()KWℑ ⋅ ), ensures the contractive property, that is, 

( )( ), ( ) ( , )feature KW KW timeD X Y D X Yℑ ℑ ≤  (2.93) 

where 

1

( ) ( )

J

KW j

j

X tϕ

=

ℑ =∑  (2.94) 

and 

1

( )  ( )

J

KW j j

j

Y tα ϕ

=

ℑ =∑  (2.95)
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Proof 

By definition, from the wavelet representation it follows that: 

1 1

( ) ( ) ( ) ( )

N N

j j j

j j

X t Y t t tϕ α ϕ

= =

− = −∑ ∑  (2.96) 

Or, equivalently: 

( )
1

( ) ( ) 1  ( )

N

j j

j

X t Y t tα ϕ

=

− = −∑  (2.97) 

Thus, the following relation is obtained: 

( ) ( ) ( )
2

2 2

1 1

( ) ( ) 1 ( )  1 ( )   

N N

j j j j

j j

X t Y t t tα ϕ α ϕ

= =

 
   − = − = − ⇔       
∑ ∑  (2.98) 

( )2 2 2 2

1 1 ( ) ( ) (1 ) ( ) (1 ) ( ) (1 ) ( )J J N NX t Y t t t tα ϕ α ϕ α ϕ     ⇔ − = − + + − + + −          … …   

In the previous equation, the square of the sum is equal to the sum of the squares, since 

the terms corresponding to the product of ( ) ( )Tj kt tϕ ϕ  is 0 (zero for j k≠ ), as a 

consequence of the orthogonality of the basis. 

Since all terms are positive, if only the first J  terms are considered, the result is:  

 ( )2 2 2

1 1( ) ( ) (1 ) ( ) (1 ) ( )J JX t Y t t tα ϕ α ϕ   − ≥ − + + −      …  (2.99) 

Thus, it follows that: 

( ) ( )( ( )), ( ( )) ( ), ( )feature KW KW timeD X t Y t D X t Y tℑ ℑ ≤   

iii. Proposed similarity measure: parameter η 

As shown, it is possible to consider only the first terms of the wavelet representation, 

ensuring that no false dismissals occur. The first J terms of the error, denoted as 

( ( ), ( ))KWD X t Y t , can be written as (2.100). 

2 2 2 2
1 1( , ) (1 ) (1 )KW J JD X Y α ϕ α ϕ= − + + −…  (2.100) 

Both terms, 2(1 )jα−  and 2
jϕ , are positive scalars. In fact: 

� being jα  a real coefficient, 2(1 )jα−  is a real positive scalar;  

� in turn, 2 2( ), ( ) ( ) ( ) ( )T
j j j j j j

t

t t t t tϕ ϕ ϕ ϕ ϕ ϕ=< >= =∑ is also a positive scalar. 

On the other hand, from eigenvalues and correlation matrix definitions, and assuming 

the decreasing order of the basis, (2.101) is verified. 

2 2 2 2
1 2 J Nϕ ϕ ϕ ϕ≥ ≥ ≥ ≥ ≥… …  (2.101) 
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As result, the error represented by equation (2.100) can be interpreted as a function of 

two terms: 

� The first set of terms, 2(1 )jα− , represents the difference in amplitude between 

the template (weight=1) and the signal to be compared (weight= jα ) in terms 

of each local basis; 

� The second set of terms, 2
jϕ , can be seen as the importance of each amplitude 

difference (from the highest to the lowest magnitude). 

 

Given this idea, a similarity measure between the template ( )X t  and the sequence ( )Y t , 

can be basically defined by the distance between the two vectors of coefficients 

[1,  1,  ...,  1]Γ=  and 1 2[ , ,..., ]Jα α αΩ= . 

( ),   ( , )D X Y D Γ Ω�  (2.102) 

This distance is computed as an Euclidean distance by (2.103) . 

2
2 2

1 2( , ) (1 ) (1 ) (1 )JD α α αΓ Ω = − + − + + −…  (2.103) 

Finally, to transform this distance measure into a similarity measure, the following 

conversion is implemented. 

( , )( , ) DS X Y e− ΓΩ=  (2.104) 

This enables to obtain a normalized measure in the interval [0,1] , which makes easy to 

identify the signals that best match the template. A value near zero indicates a very low 

similarity (high value of distance ( ),D X Y ), while a value of one corresponds to the 

maximum similarity (distance ( ), 0D X Y = ).  

In conclusion, using the described procedure, two time series signals are similar if 

equation (2.105) is verified, where +∈ �η  is a positive scalar. 

( , )( , ) DS X Y e− ΓΩ= ≤η  (2.105) 

As referred, the aim is to capture the main dynamic characteristics of the signal, that is, 

the main trends or behaviour of the signal (possibly in some specific time regions) and 

not to obtain an optimal value of the error in the least-squares sense.  

An example of this aspect was depicted in Figure 2.9, where a signal ( )X t  is described 

using only three basis (and, therefore, the similarity measure only uses three 

coefficients). In fact, the key point of this scheme is that a signal can be viewed as 

composed of a set of relevant local components (wavelet basis).  
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Additionally, the proposed similarity measure can be easily interpreted. In fact, the 

distance 2(1 )jα−  can be seen as the difference in amplitude between the template ( )X t  

and the signal ( )Y t , in a specific localization (the local wavelet basis ( )j tϕ ). Thus, for a 

specific local (wavelet basis support), several situations may occur: 

� 1jα > : means that the local amplitude of the signal is higher than the 

template’s amplitude; 

� 1jα = : implies that local amplitudes of the template and the signal are equal; 

� 0 1jα< < : indicates that the local amplitude of the signal is lower than the 

amplitude of the template; 

� 0jα < : suggests that the local amplitude of the signal is the opposite of the 

template’s amplitude. 

Thus, independently of its specific value, a positive coefficient ( 0jα > ) reveals that 

signal and template present the same behaviour, that is, the same evolution trend. In 

case of a negative value ( 0jα < ), it means that signal and template have opposite 

trends (behaviour). This result is very interesting and important, since the behaviour of 

a signal, when compared with a template, can be simple and effectively determined by 

taking into account the signs of the coefficients ( )jα .  

In effect, one of the hypothesis that is explored in this work is the fact that two signals 

are similar if, and only if, their coefficients have the same sign. In qualitative terms, it 

can be stated that, in this situation, they present the same behaviour. Therefore, a 

simplification in the complexity of the similarity search algorithm can be easily achieved 

by automatically discarding signals that do not present coefficients with the same sign. 

Then, in a subsequent phase, only for signals verifying this criterion, the similarity 

measure is computed to explicitly quantify the proximity between signals (using the 

threshold η ). 

Preliminary discussion 

The following two examples illustrate this idea, considering the template ( )X t  depicted 

in Figure 2.9a), and its description by means of three basis, according to (2.106). 

3

1 2 3

1

( ) ( ) ( ) ( ) ( )j

j

X t t t t tϕ ϕ ϕ ϕ

=

= = + +∑  (2.106)

In the first example, a signal 1( )Y t , illustrated in Figure 2.10 and described as follows, is 

considered. 

3

1 1 2 3

1

( )  ( ) 0.29 ( ) 0.14 ( ) 0.49 ( )j j

j

Y t t t t tα ϕ ϕ ϕ ϕ

=

= = + +∑  (2.107)
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10.29 ( )tϕ

20.14 ( )tϕ
30.49 ( )tϕ

1( )tϕ

3( )tϕ
2( )tϕ

( )X t

1( )Y t

( )X t

1( )Y t

( )X t

1( )Y t

( )X t

1( )Y t

 

Figure 2.10 − Similarity measure between time series: same behaviour. 

 

All coefficients , 1,2,3j jα =  are positive, thus having the same sign as the ones of the 

template (all equal to 1). From this simple statement, it can be concluded that template 

and signal present the same temporal trend. Observing, for example, the second term 

(basis), 20.14 ( )tϕ , it can be verified that, although different, globally (for all instants 

[1,64]) signal and template present the same behaviour (the mean of the first half is 

higher than the mean of the second half). Moreover, the signal presents an average 

amplitude lower than that of the template ( 2 0.14α = ).  

In a second example, the template is compared with a signal 2( )Y t , described as follows 

and illustrated in Figure 2.11. 

3

1 1 2 3

1

( )  ( ) 0.93 ( ) 0.49 ( ) 0.21 ( )j j

j

Y t t t t tα ϕ ϕ ϕ ϕ

=

= =− − +∑  (2.108)
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10.93 ( )tϕ−

20.49 ( )tϕ−

30.21 ( )tϕ

1( )tϕ

3( )tϕ
2( )tϕ

( )X t

2( )Y t

( )X t

2( )Y t

( )X t

2( )Y t

( )X t
2( )Y t

 

Figure 2.11 − Similarity measure between time series: opposite behaviour. 

Two of the coefficients are negative and a third is positive. Observing, for example, the 

second term, 20.49 ( )tϕ− , it can be concluded that, globally (for all instants [1,64]) 

signal and template present opposite behaviours: in the corresponding time region, the 

template decreases (average derivative is negative) and the signal increases (average 

derivative is positive). Comparing their amplitudes, it can be observed that signal’s 

amplitude is lower than that of the template (approximately 0.5). The positive 

coefficient corresponds to the third basis, thus, to time instants [49,64] . In fact, both 

signals have a “similar” behaviour: globally, in this region, both signals decrease. 

Additionally, the respective coefficient (0.21) reveals the high difference in amplitude 

between the signal and template, as it can be observed.  

In conclusion, the positive or negative value of the local basis coefficients (parameters 

jα ) can approximately characterize the behaviour, that is, the main trend of the signals 

under comparison. Therefore, the similarity between two signals can be simply assessed 

by taking into account the signs of these coefficients ( )jα . The key principle is that, 

qualitatively, two signals are similar if they present the same behaviour, or equivalently, 

if their coefficients have the same signs. This means that the proposed similarity 

assessment can be applied even in cases in which signals are not perfectly aligned in 

time. In effect, since the similarity measure is based on the signals’ trend and it is not 

directly dependent on the dynamics at the same points in time, it makes possible the 

comparison of signals not aligned in time.  
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2.5.6 Step 5: Similarity Indexing 

i. Similarity index 

The indexing procedure proposed in the present work, makes use of a windowing scheme 

to compute the similarity between the template 1,( ) NX t ∈ �  and the signal being 

analysed 1,( ) TT t ∈ �  (T N> ), as illustrated in Figure 2.3. The similarity measure is 

estimated for each segment, 1,( ) NY t ∈ � , thus, a set of (T N− ) similarity measures have 

to be computed. First, each segment ( )Y t  is described using the reduced set of J basis 

functions derived from the decomposition of the template ( )X t , as following: 

1

( )  ( )

J

j j

j

Y t tα ϕ

=

=∑  (2.109)

It should be noted that this technique has the advantage of being efficient. In fact, the 

wavelet decomposition procedure is implemented only once for the template ( )X t . The 

coefficients jα  are obtained through a simple matrix multiplication, by means of a 

pseudo-inverse formulation, equation (2.84). Moreover, the pseudo-inverse, depending on 

the basis, is calculated just at the beginning and not during the computation of the 

similarity measure for each sequence. 

On the other hand, when using a reduced set of basis, the computation of the 

pseudo-inverse is highly simplified. From equation (2.87), if only J basis are used, the 

pseudo-inverse † ,N JΦ ∈�  is obtained according to equation (2.110). 

( ) 1† 1 2

1 1 2 2, , ,
T T J

J J

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

−  
 Φ = Φ ΦΦ =  < > < > < > 

…  (2.110)

Ons/su 

 (2.81), the J coefficients jα  are then easily obtained by the following equation. 

† ( )
 = = ( ),

( ), ( )

j
j

j j

t
Y Y t

t t

ϕ
α

ϕ ϕ
Φ < >

< >
 (2.111) 

Finally, based on these coefficients, the similarity measure for each subsequence is 

computed using (2.104). In conclusion, the assessment of the similarity between a given 

template ( )X t  and each subsequence ( )Y t  of the signal ( )T t , is carried out by means of 

the following procedure. 

 

Pre-processing (computed only once) 

� Decompose the template ( )X t  as a linear combination of a set of wavelet basis  

� Reduce this wavelet basis set to the most significant J basis (fixed by the 

parameter ε ) 

� Determine the pseudo-inverse from the reduced set of basis  
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For each subsequence (computed T N−  times) 

� Calculate coefficients jα  that enable to describe each subsequence ( )Y t  by 

means of a linear combination of the reduced set of basis  

� Compute the similarity measure, ( , )S XY , based on the jα  coefficients  

� Save the index of subsequence ( )Y t  if the similarity measure ( , )S X Y η≤  

 

ii. Iterative implementation 

The previous similarity indexing algorithm can be formulated as an iterative procedure. 

In fact, taking into account that the basis are fixed and present a compact support, the 

index of similarity can be computed using an iterative scheme that significantly 

decreases the computational complexity of the method. 

Proposition 2.5  

Consider a time series of length N , ( ) { ( ), ( 1), , ( 1)}Y t y t y t y t N= + + −… . Also consider 

a set of basis ( )j tϕ , from where it is possible to define the pseudo-inverse matrix, 

equation (2.110), composed of elements 1,( ) N
jK t ∈ � . 

( )
( )

( ), ( )

j
j

j j

t
K t

t t

ϕ

ϕ ϕ
=

< >
 (2.112)

Assuming that the coefficient ( )j tα  corresponding to the wavelet basis ( )j tϕ , equation 

(2.111), is known for the time instant t , the coefficient for the next time instant 1t + , 

( 1)j tα + , can be iteratively computed as (2.113), with { }( 1) ( 1), , ( )Y t y t y t N+ = + +… . 

( )( +1)= ( )+ ( ), ( 1)j j jt t f K t Y tα α +  (2.113)

Proof 

Without loss of generality, the Haar wavelet is considered, being the results easily 

extended to other type of wavelets. Figure 2.12 depicts a generic Haar wavelet basis 

( )j tϕ , with length N , and a signal ( )Y t . 

1
2

N
t + −

( )j tϕ

jκ ( )Y t

jκ−

1t N+ −

 

Figure 2.12 − Similarity indexing: iterative implementation. 
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For this example, the element ( )jK t  of the pseudo-inverse matrix is defined as (2.114). 

0,..., 1 ,..., 1
2 2

( ) [       ]Tj j j j j

N N
t t N

K t κ κ κ κ

= − = −

= − −… …
	


�


� 	




�




�

 
(2.114)

At instant time t, the coefficient ( )j tα  is given by the product of the signal ( )Y t , by the 

respective column of the pseudo-inverse, ( )jK t . Thus, the coefficient ( )j tα , equation 

(2.111), can be computed as : 

( )= ( ) ( 1) ( 1)
2

      ( ) ( 1)
2

j j

j

N
t y t y t y t

N
y t y t N

α κ

κ

  + + + + + −   

 − + + + + −   

…

…

 (2.115)

The coefficient ( 1)j tα + , computed at instant ( 1)t + , is determined by  

( +1)= ( 1) ( 2) ( )
2

          ( 1) ( )
2

j j

j

N
t y t y t y t

N
y t y t N

α κ

κ

  + + + + + +   

 − + + + + +   

…

…

 (2.116)

Therefore, the following relationship is straightforwardly obtained from equations (2.115) 

and (2.116). 

( +1)= ( )+ ( ) ( ) 2 ( )
2

j j j
N

t t y t y t N y tα α κ
 − − + + +   

 (2.117)

As a result, instead of computing the coefficients at each time instant using the 

pseudo-inverse formulation, they can be iteratively obtained by means of equation 

(2.117). This way, each coefficient only depends on the wavelet amplitude ( jκ ), and on 

the first, last, and middle values of the signal under analysis, ( )Y t .  

In conclusion, the dimensionality reduction method (wavelet decomposition), that can be 

seen as relatively costly, is applied only once. In turn, the similarity measure to be 

calculated for each subsequence ( )Y t , therefore T N−  times, is based on coefficients 

iteratively computed, enabling to obtain a global very efficient scheme. 

2.5.7 Complexity analysis 

The efficiency of an algorithm can be assessed following several approaches, namely in 

terms of the execution time (time complexity) and of the amount of memory required 

(space complexity). Here, only the time complexity is addressed and, in particular, the 

necessary number of arithmetic operations.  

Considering the similarity indexing process, the main goal of the present section is to 

determine the number of operations involved in the computation of the similarity 

between a template 1,( ) NX t ∈ �  and a signal 1,( ) T NT t +∈ � . Note that, without loss of 
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correctness, it is assumed that the length of the signal ( )Y t  is ( )T N+ , instead of ( )T , 

to simplify the results. Consequently, a set of T  individual similarity measures have to 

be computed.  

According to the proposed algorithm, three parameters determine the number of 

operations: i) N , the length of the template ( )X t ; ii) T , the length of the signal ( )Y t , 

typically (T N
 ); iii) J , the number of wavelet basis used in the representation of the 

signal.  

The number of operations required to implement the proposed approach is compared 

with the number demanded by the Euclidean distance approach. No distinction is made 

regarding the type of operations involved, namely additions, subtractions, 

multiplications and divisions.  

Euclidean distance based similarity indexing 

This similarity indexing strategy computes the Euclidean distance, 2( , )ED X Y , between 

the template ( )X t  and a subsequence 1,( ) NY t ∈ �  of the signal ( )T t . 

( )22

1

( , ) ( ) ( )

N

E

t

D X Y X t Y t

=

= −∑  (2.118)

It is straightforward to write (2.118) as (2.119). 

( )( ) ( )( )2
1 1 1 1( , ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )E N N N ND X Y X t Y t X t Y t X t Y t X t Y t= − − + + − −  (2.119)

Two operations are needed at each time instant it , ( )( )( ) ( ) ( ) ( )i i i iX t Y t X t Y t− − , 

namely one subtraction and one multiplication. Moreover, a total of ( 1N − ) additions 

must be performed to obtain the distance 2( , )ED X Y .  

In conclusion, the number of operations, ( )nop N , for computing the distance (2.118), is 

given by (2.120). 

( ) 3 1nop N N= −  (2.120)

Considering the computation through all the signal ( )T t , the total number of operations 

result in (2.121). 

( , ) (3 1)nop N T T N= −  (2.121)

Wavelet based similarity indexing 

As referred, the similarity indexing method proposed in the present work involves two 

main phases. In the first, computed only once, the template ( )X t  is described by means 

of a reduced set of basis and a pseudo-inverse is determined from this set. Then, in a 

second phase, each subsequence ( )Y t  is described by means of the obtained reduced set 

of basis, being the respective coefficients iteratively computed using the pre-determined 

pseudo-inverse values. The obtained coefficients are employed to evaluate a distance 

measure, similarly to equation (2.118). 
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Step 1: Pre-processing (computed only once) 

 i) Decompose the template ( )X t  as a linear combination of a set of wavelet basis  

ii) Reduce the wavelet basis set to the most significant J basis (established by the 

parameter ε )  

iii) Determine the pseudo-inverse from the reduced set of basis. 

 

i. Decomposition of the template 

As depicted in Figure 2.7 (the main steps of the similarity scheme), the process starts by 

describing the template 1,( ) NX t ∈ �  as the sum of a orthonormal Haar wavelet basis set, 
1,( ) N

j tψ ∈ � , equation (2.122), where the jk  values are the coefficients associated with 

each basis ( )j tψ .  

 

1

( )  ( )

N

j j

j

X t k tψ

=

=∑  (2.122) 

For a template with length N , N  basis have to be considered, equation (2.62). 

Although fast implementations of the Haar wavelet decomposition have been proposed 

for computing the N  coefficients (Kopenkov, 2008), a conventional implementation is 

assumed here (Chang and Piau, 2007). Basically, a set of 2( 1)N −  operations of type 

( )/2x y+  or ( )/2x y−  is performed, resulting from the successive decomposition of the 

signal in details and approximations. As a consequence, the number of operations is 

given by (2.123).  

( ) 4( 1)nop N N= −  (2.123) 

 

ii. Selection of the reduced set of basis 

The reduction of the number of basis from N  to J , implies that the error equation is 

verified (2.124), where �( )X t is the approximated signal described by means of these J  

basis, (2.125). 

�( )
2

2( ) ( ) ( )e t X t X t ε= − <  (2.124)

�

1

( )  ( )

J

j j

j

X t k tψ

=

=∑  (2.125)

Since the basis 1,( ) N
j tψ ∈ � are orthonormal (Haar wavelet basis), the determination of 

the reduced set of basis only involves the identification of the highest coefficients. As a 

consequence, a sorting operation of an array of length N  is required (the array 

composed of the coefficients). A typically sorting method is assumed, such as the 

quicksort, resulting in 2log ( )N N
 operations (Sedgewick, 1978). 

( )2( ) lognop N N N=  (2.126) 
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After having sorted the coefficients, the adequate number of basis has to be determined. 

Two phases are required: i) describe the approximated signal using these basis (2.125) 

and ii) compute the error between the actual and the approximated signals (2.124). 

Considering only one basis, 1j = , for the first phase N  operations (multiplications) are 

necessary. For the second phase, 3 1N −  operations are necessary, similarly to the 

Euclidean strategy, equation (2.120). Considering J  basis, j J= , it is possible to 

extend these results to ( )( 1)JN J N+ −  and (3 1)N − , respectively for the first and the 

second phases. Since the determination of the adequate number of basis involves all the 

computations from 1j =  to j J= , the total number of operations is determined by the 

sum of operations corresponding to the phases 1 and 2. 
 

 Phase 1 Phase2 

1j =
 N  0+  3 1N −  

2j =
 2N  N+

 3 1N −  

�  �  �  �  

j J=
 JN  ( 1)J N+ −

 3 1N −  

As a consequence, for the first phase the total of operations is given by (2.127). 

( )( , ) (1 2 ) 0 1 ( 1)nop N J N J N J= + + + + + + + −� �  

2( , ) ( 1) ( 1)
2 2

JN JN
nop N J J J J N= + + − =

 

(2.127) 

In turn, for the second phase, the total of operations is given by  

( , ) (3 1)nop N J J N= −
 

(2.128) 

 

iii. Pseudo-inverse computation 

The third step demands the computation of the pseudo-inverse elements 1,( ) N
jK t ∈ � , 

according to equation (2.112). 

( )
( )

( ), ( )

j
j

j j

t
K t

t t

ϕ

ϕ ϕ
=

< >
 

For the inner product, (2 1)N −  operations are performed. The coefficient ( )jK t
 
is 

obtained through N additional divisions. The total number of operations for the J  basis 

is given by (2.129). 

( , ) (3 1)nop N J J N= −  (2.129) 
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Moreover, using the proposed iterative algorithm, the coefficients jα  
are, at the initial 

instant, obtained through the product of the subsequence ( )Y t  by the pseudo-inverse 

matrix †Φ , equation (2.111). Consequently, (2 1)J N−  operations are required. 

As conclusion, for the step 1 of the proposed method, the total number of operations is 

obtained from equations (2.123), (2.126), (2.127), (2.128), and (2.129), resulting in 

equation (2.130). 

2
2( , ) 4( 1) log (3 1) (3 1) (2 1)nop N J N N N J N J N J N J N= − + + + − + − + −  

2
2( , ) (4 1) log (8 1)nop N J N N N J N J N= − + + + −  

(2.130) 

Step 2: For each subsequence (computed T  times) 

i) Calculate coefficients jα  that enable to describe each subsequence ( )Y t  by means 

of a linear combination of the reduced set of basis  

ii) Compute the similarity measure, ( , )S XY , based on the jα  coefficients.  

 

i. Subsequence description using the reduced set of basis 

The computation of coefficients jα

 

can be determined by means of an iterative 

procedure. In fact, for updating each coefficient, a set of five operations is needed (three 

additions/subtractions and two multiplications), equation (2.117).  

( +1)= ( )+ ( ) ( ) 2 ( )
2

j j j
N

t t y t y t N y tα α κ
 − − + + +   

 

For the J  coefficients, the number of operations is given by (2.131). 

( ) 5nop J J=  (2.131)

 

ii. Wavelet based distance  

Finally, the obtained coefficients are used to compute a distance from where the 

proposed similarity measure is evaluated, according to (2.132). 

2 2 2 2
1 2( , ) (1 ) (1 ) (1 )JD α α αΓ Ω = − + − + + −…  (2.132) 

It is straightforward to conclude that the number of operations is given by (2.133). 

( ) 3 1nop J J= −  (2.133) 

 

Considering the computation through all the signal ( )T t , the total number of operations 

is given by (2.134). 

2
2

1 2

( , , ) 4( 1) log (8 1) (8 1)
Step Step

nop N J T N N N J N J N T J= − + + + − + −
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�  (2.134) 
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Euclidean vs. Wavelet based similarity indexing 

Finally, in order to compare the complexity of the approaches, two assumptions are 

made. Basically, both the parameters T  and J , respectively the length of the signal and 

the number of basis, can be described as a function of N  (the length of the template), 

according to equations (2.135) and (2.136).  

,T nN n N= ∈
 

(2.135) 

2log ,J m N m N= ∈
 (2.136) 

The first assumption is acceptable given that T  is typically larger than N . On the 

other hand, a reduced number of basis is usually adequate for representing the template, 

since a rough estimation of the signal is enough in terms of the proposed similarity 

assessment strategy. Thus, for a template of length N  a number of basis equal to 

2logJ N=  is commonly appropriated. This assumption can be confirmed by the 

example presented in section 2.5.5, where it is possible to describe a template of size 

32N =  with only three basis ( 3J = ).  

 

In conclusion, for the Euclidean distance the complexity is of order 2( )O N . 

( ) (3 1)nop N nN N= −  (2.137) 

Regarding the wavelet approach, the complexity is of order ( )22( log )O N N
 and 

2( log )O N N , respectively for the first and the second steps. 

( )
2

2 2 2

1

2

2

( ) 4( 1) log log log (8 1)
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The Figure 2.13 illustrates the variation of the parameters N , T  and J , and the 

corresponding effect on the total number of operations. The different values considered 

for each parameter are: 

� N : { }2,4,8,16,32,64,128N =  

� T : {1,2,4,8,16,32,64,128}n =  resulting in  

 
{ }32,64,128,256,512,1024,2048,4096T =  

� J : {1,2,3,4,5,6}m =  leading to {5,10,15,20,25,30}J = . 

The default values adopted are 32N = , 512T =  and 5J = . 
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Figure 2.13 − Effect of variations in N, T and J on the number of operations. 
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As can be observed in Figure 2.13a), the wavelet approach is clearly superior (in terms 

of the number of operations) for larger values of N . Since the step 1 of the proposed 

wavelet strategy requires a high number of operations, equation (2.130), for small values 

of N  the Euclidean methodology is advantageous. However, for approximately 6N >  

( 512T = , 5)J = , the situation is reversed. 

In the case of T  variation, depicted in Figure 2.13b), a similar conclusion can be taken. 

In fact, for approximately 40T >  ( 32N = , 5)J = , the proposed strategy presents a 

number of operations manifestly inferior as T  increases. 

With respect to the variation in the number of basis (J ), the number of operations 

required by the Euclidean approach remains constant, since it does not depend on J , 

equation (2.121). In turn, for approximately 12J >  ( 32N = , 512T = ) the high 

number of operations required does not favour the wavelet proposed approach.  

In conclusion, the proposed strategy is especially advantageous when the sizes of the 

template ( )X t  and of the signal ( )T t  are greater than given values, that are smaller 

than those usually employed in practice. 

 

2.5.8 Multi-dimensional Time Series 

The proposed scheme can be straightforwardly extended to a multi-dimensional time 

series framework.  

Consider a template, ,( ) S Nt ∈X � , composed of a set of S individual time series with 

length N, 1,( ) N
iX t ∈ � , as described by (2.139). 
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 (2.139)

Also consider a time series, ,( ) STt ∈T � , composed of a set of S individual time series 

with length T, 1,( ) T
ST t ∈ � , as described by (2.140). 
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A multi-dimensional similarity measure, ,1S
MS ∈ � , between the template ( )tX  and a 

subsequence of the time series ( )tT , ,( ) S Nt ∈Y � , can be defined as: 
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The global similarity, MglobalS +∈ � , can be simply defined by a weighted sum of the 

distances, as follows: 

1

 ( )

S
i

Mglobal i M

i

S S tγ

=

=∑  (2.142)

The parameter iγ  denotes the weight factor for the thi  similarity measure. In this way, 

two multi-dimensional sequences are said to be similar if the sum of individual distances 

is within a user-defined threshold, global
+∈ �η (a positive scalar). 

( ( ), ( )) Mglobal globalS t t = ≤X Y S η  (2.143) 

2.5.9 Applications of the Similarity Measure 

The aim of the previous research (described in the last section) was to propose an 

efficient technique for indexing time series similarity, based on a distance measure 

between the coefficients of a description in terms of wavelet basis. Although the main 

goal is the detection of similar conditions to support detection and prediction tasks, 

other several data mining applications, namely classification and clustering, can be based 

on this similarity measure. 

Basically, data mining refers to the overall process of discovering useful knowledge in the 

data. Classification and clustering are employed as important knowledge discovery tools: 

the goal of clustering is to identify organization in an unlabelled dataset by arranging 

data into homogeneous groups; in turn, classification assigns input data to one or more 

pre-specified classes, based on the extraction of significant similar attributes or features. 

In effect, the characterization of clinical conditions can be linked with a multitude of 

patients’ factors, in the form of attributes or features, reflected in the collected 

physiological time series. These features, such as the similarity measure previously 

described, can then be used to characterize a clinical condition, thus producing valuable 

information for clustering and classification applications. 

Clustering 

Clustering categorizes data into groups that are not typically predefined, but defined by 

the data itself. In effect, the organization in groups is based on some evaluation of 

similarity between time series, such that the similarity measure within the same group is 

minimized and the dissimilarity measure between different groups is maximized. As a 
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result, it is commonly designated as unsupervised learning. The clustering process is, 

therefore, carried out by determining similarities among data, based on a set of 

characteristic features.  

The majority of algorithms for clustering analysis have been explicitly developed to work 

with static data, Kavitha and Punithavalli (2010)§. In effect, the high dimensionality and 

very high feature correlation that characterize dynamic time series data present some 

difficult challenges. Han and Kamber (2001)§76 proposed five categories to classify the 

existent static clustering methods: i) partitioning, ii) hierarchical, iii) density-based, iv) 

grid-based, and v) model-based methods.  

Essentially, given a set of N unlabelled data tuples, a partitioning method creates k 

partitions of the data, being this number a priori defined. Each partition represents a 

cluster, with each cluster containing at least one object. Examples of those methods are 

the well-known k-means clustering, in case the partitions are crisp, or the fuzzy c-means, 

otherwise (Bezdek, 1981)§77. Similarity measures, such as the Euclidean distance, are 

employed to evaluate similarities between groups of data. A hierarchical clustering 

organizes data instances into a tree of clusters (Fernandez and Gomez, 2008)§78. Thus, a 

hierarchical representation is achieved, which structure is more informative than the 

unstructured set of clusters obtained by flat clustering (which includes partitioning 

methods). This type of clustering does not require the a priori definition of the number 

of clusters and generally involves two types of methods: top-down or bottom-up. The 

last, treat each object as an independent cluster and then successively merge (or 

agglomerate) similar pairs of clusters until all clusters have been merged into a single 

cluster containing all objects. Density-based methods, such as the subtractive clustering 

(Kriegel et al., 2011)§79, apply a local density cluster criterion. Clusters are considered as 

regions in the data space in which the objects are dense, and are separated by regions of 

low density objects. These regions may have an arbitrary shape and the points inside a 

region may be arbitrarily distributed. In opposition, grid-based methods simply divide 

the object space into a finite number of cells that form a grid structure (Ilango and 

Mohan, 2010)§80. Thus, this clustering approach differs from the other algorithms in the 

sense that it is concerned not with the data points but with the space where the data 

objects exist. Finally, model-based methods assume a model for each of the clusters and 

attempt to best fit the data to the assumed model. In this case, the issues of selecting an 

adequate clustering method and determining the correct number of clusters, are reduced 

to model selection problems. Gaussian models are examples of powerful clustering 

models that have been reported in many applications (Lourme, 2010)§81. 

In parallel, many different algorithms have been proposed for clustering dynamic time 

series data (Antoniadis et al., 2003)§82. Nevertheless, a possible approach is to transform 

the dynamic problem into a static one, so that the static algorithms can be applied. The 

key idea is to convert the original time series data into a feature vector of lower 

dimension or into a number of model parameters, and then apply a conventional 

clustering algorithm to them.  
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Subtractive clustering using the proposed similarity measure 

Using the proposed similarity measure, a set of features (namely the coefficients of 

wavelet basis as previously described) can be used to derive a metric that enables to 

assess similarity between time series, from where clustering techniques can then be 

applied.  

Furthermore, among the several static algorithms, density-based approaches have a 

great potential in the context of this work. One of the main hypothesis consists in the 

identification of patterns in the historic dataset that are similar to the current template. 

Using a density-based strategy, where clusters are considered as regions of the data 

space in which the objects are dense, it is possible to identify the areas in the historic 

dataset where the similarity is more evident. In particular, the Subtractive Clustering 

method (SC) presents some advantages that are decisive in the present work (to be 

presented in Chapter 3): the cluster centres are a subset of the actual data, the method 

has the capacity to naturally deal with outliers and to discard redundant data, as well as 

to cope with noisy data. 

 

The subtractive clustering method was originally proposed by Chiu (1994)§83, as a basis for 

a fast and robust algorithm for identifying fuzzy models. This method is a modification 

of the mountain clustering (Yager and Filev, 1993)§84 which was also used to identify the 

number of fuzzy rules. Basically, the differences between the two methods are in the 

approach they use to estimate potential values and the influence of a neighbouring data 

point.  

The subtractive clustering method assumes that i) each data point is a potential cluster 

centre; ii) a data point with more neighbouring data will have a higher opportunity to 

become a cluster centre than points with fewer neighbouring data.  

Based on these assumptions, a density measure of surrounding data points assessing the 

potential value for each data point, ( )iPV p , is calculated as follows: 
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∑ …  (2.144)

The variables ip  and jp  represent data points, n  is the number of data points, and aR  

is a positive constant that allows to define the concept “neighbourhood”. According to 

this definition, equation (2.145), data outside this range have little influence on the 

potential. 

After the potential of every data point has been computed, the data point with the 

highest potential is chosen as the first cluster centre. Let 1C  be the location of the first 

cluster centre and 1PV  the corresponding potential value. The potential of the 

remaining data points ip  is then updated by: 
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The parameter bR  is a positive constant such that ( b aR R> ). This constant is the 

radius defining the neighbourhood that will have considerable reduction in potential. 

Moreover, to avoid obtaining closely spaced cluster centres, bR  is greater than aR . By 

means of this approach, the data points near the identified cluster will have greatly 

reduced potential and, as a consequence, it is unlikely to be selected as the next cluster 

centre. 

Normally, to simplify the process, the parameters aR  and bR  are related trough a 

parameter designated as the Squash Factor (SF), defined by (2.146). 

b

a

R
SF

R
=  (2.146)

 

The process involving equations (2.145) and (2.146), continues until no further cluster 

centre is found. To decide whether to stop this process, two parameters are taken into 

account: the accept ratio and the reject ratio. These parameters, together with the 

influence range and squash factor, set the four criteria for the selection of cluster centres. 

For example, the first criteria states that, if the ratio of the potential value of the 

current data point to the original first cluster centre is larger than the accept ratio, then 

the current data point is chosen as a cluster centre. Therefore, the larger the value of 

the accept ratio, the fewer the number of chosen cluster centres. 

The Figure 2.14 illustrates the application of such similarity measure to the clustering of 

an ECG signal. Essentially, a template with length 64N =  was chosen, approximately 

corresponding to a QRS complex. Based on this template, four groups of time series 

sequences presenting identical similarity measures were determined, as shown in Figure 

2.14. By observing this figure, it is clear the capacity of the used approach in identifying 

homogeneous sequences of time series. 

 

Figure 2.14 − Partitioning clustering of ECG time series. 
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Classification 

Classification is possibly the most relevant application of the data mining techniques. 

Examples of implementations involving classifiers include image and pattern recognition, 

spam filtering, medical diagnosis and the classification of time series events. Although 

analogous to clustering, classification maps input data into predefined classes and, since 

the classes are determined prior to the data analysis, it is often referred to as supervised 

learning. A well-known type of classification problem is the pattern recognition, where 

an input pattern is classified in one of the several classes, based on its similarity with 

these predefined classes.  

Among the most popular methods in time series classification, the following can be 

emphasized (Spiegel, et al., 2001)§85 (Lucas, 2010)§86 i) instance-based learning classifiers; ii) 

decision trees; iii) Bayes classifiers and iv) neural networks. 

Instance based learning algorithms consist of storing a set of training examples (training 

dataset) and when a new instance is encountered, a set of similar related instances is 

retrieved from memory and used to classify the query instance (target function). One of 

the most well-known instance-based learning algorithm is the k-nearest neighbour 

(kNN). In this method, an object is classified by a majority vote of its neighbours, with 

the object being assigned to the class most common amongst its k nearest neighbours 

(where k is a positive integer, typically small). If k = 1, then the object is simply 

assigned to the class of its nearest neighbour. Decision trees classifiers organize a series 

of data into a tree structure, classifying instances based on decision nodes or decision 

rules. The basic idea is to break up a complex dataset into a union of several simpler 

groups, thus providing a solution that is often easier to interpret. Decision trees can be 

translated into a set of rules by creating a separated rule for each path, from the root to 

a leaf in the tree. However, rules can also be directly induced from a training data using 

a variety of rule-based algorithms (Gupta and Toshniwal, 2011)§87. Rather than a 

deterministic classification, probabilistic/statistical learning algorithms give the 

probability of an instance to belong to a given class. An important classifier in this 

domain is the naïve Bayes (Tsymbal, 2003)§88. It assumes a particular configuration of a 

Bayesian network, which is composed of a directed acyclic graph with only one parent 

(unobserved node) and several children (observed nodes). Finally, a neural network 

consists of a set of basic units (neurons) which can be arranged in layers that are 

combined to form the network. The architecture of a neural network is defined by the 

number of neurons and by the way they are connected. Basically, for a given input, a 

neural network is trained to provide a desired output. Given their properties, namely the 

capacity to learn from data examples, the ability to generalize and the universal 

approximation, neural networks have been extensively applied to solve classification 

problems in several domains (industry, medicine, etc.). In effect, neural networks are one 

of the most successful classifiers, and assume a key importance in this work. 

Classification and prediction schemes involving neural networks will be presented in the 

next chapter. 
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Prediction  

In opposition to the classification problems, the main goal of the prediction methods is 

to forecast a future state, rather than categorize a current one. Time series prediction 

algorithms typically involve regression analysis, where the forecast of future values is 

based on historical trends and statistics. For example, the prediction of acute 

hypotensive episodes can be implemented through the development of predictive models 

using an historical of blood pressure signals.  

One of the major goals of the present work, in the context of prediction, is the 

forecasting of time series in situations where similar conditions/patterns have been 

observed. To this aim, a generic methodology consisting of two main phases is proposed, 

which will be detailed in the next chapter. In the first phase, a similarity analysis 

procedure is carried out, between the current time series signal and the historical 

dataset. From this analysis, the most similar conditions are identified and the proper 

prediction models derived. Subsequently, in a second phase, these models are employed 

to the current time series signal (template) to predict its future evolution, as illustrate in 

Figure 2.15. In effect, the investigation of prediction schemes is the main subject of the 

next chapter. 

 

 

Figure 2.15 − Prediction of the time series future evolution. 
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2.6 Conclusions 

The major goal of the present chapter was to propose methods for similarity measuring 

and indexing in physiological time series. In this sense, techniques able to effectively 

detect similarities in time series data were investigated, namely those founded on 

time-frequency transforms. Methodologies, such as the Wigner-Ville and wavelet 

transforms were reviewed, given their ability to represent time and frequency, 

simultaneously. On the other hand, the transformation of a time series by means of 

orthogonal spaces enabling to approximate it through a set of basis, was explored. In the 

context of this work, Karhunen-Loève, wavelet, and Hermite basis functions, assumed a 

special relevance. 

A similarity measure based on the natural set of features generated by the wavelet 

transform (coefficients of the basis functions), was introduced supported on five 

propositions.  

Propositions 2.1, 2.2 and 2.3 - Through a reduction dimension performed by the 

Karhunen-Loève transform (KLT), an optimal reduced number of wavelet basis is 

obtained and the corresponding coefficients are the origin of the comparison scheme.  

Basically, by the referred reduction procedure, an effective description of the time series 

in the most representative regions (local wavelets basis) is achieved, providing a 

practical comparison between time sequences. Additionally, the used wavelet 

decomposition scheme makes possible a rough estimation of the signal (behaviour or 

trend) to a predefined degree. Therefore, a simple and interpretable characterization of 

time series similarity is attained, mainly based on the identification of the trends.  

Proposition 2.4 – Based on the description of the time series by means of the reduced set 

of basis, a similarity measure is defined ensuring that no false dismissals occur. 

Proposition 2.5 - With respect to the search of subsequences in a time series (similarity 

indexing) an iterative formulation was proposed, supported on the properties of 

wavelets. In fact, taking into account the wavelet compact support, the assessment of 

similarity between the template and each subsequence can be done based on coefficients 

computed by means of an iterative scheme, which leads to a significant decrease in the 

number of operation required. Consequently, a very efficient similarity indexing 

procedure is accomplished.  

Although taking as the starting point the Euclidean distance as a similarity measure, the 

proposed strategy is able to circumvent some of its major weaknesses that are relevant 

in the clinical context. In effect, it provides a significant computational complexity 

decrease by implementing a reduction procedure that results in an optimal reduced set 

of orthogonal basis (in the sense of least square error). Additionally, through the rough 

estimation of the signal achieved by orthogonal wavelet transform, the similarity 
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measure is based on the signal trend and, thus, may provide the comparison of signals 

not aligned in time. On the other hand, it benefits from the ability of wavelets in dealing 

with the non-stationarity and non-linearity that are typical of biosignal time series, as 

well as from their capacity in coping with the presence of noise in the signal, which 

significantly contributes to improve the similarity searching process.  

Several known orthogonal wavelets could be used in the context of the proposed scheme, 

namely Haar and Daubechies wavelets. In fact, both have a compact support, 

fundamental to the iterative similarity indexing procedure previously described in this 

chapter. However, the Haar wavelet was selected due to its fast and easy computation. 

The fact that it is not adequate to deal with smooth functions (because of its ladder-like 

approximation), is not fundamental for the present work. In effect, the final goal is to 

identify the main characteristics of the signal, that is, its main trends or behaviour 

(possibly in some specific time regions), and not to obtain an optimal value of the error 

in the least-squares sense.  

As mentioned in the course of the chapter, a simple way to verify the similarity between 

two time series consists in analysing the coefficients resulting from their description in 

terms of the reduced set of basis: “two time series are similar if they present the same 

behaviour or, equivalently, if their coefficients present the same sign”. By means of a 

windowing technique, this procedure is applied to compare a template with each 

subsequence of the signal being analysed in order to derive the similarity index. Thus, 

since the template is represented by positive coefficients (all ones) a subsequence is 

similar to the template if it is also described by means of positive coefficients. The 

behaviour of the signals, that is, the granularity of the trends, is determined by the 

parameter ε , which implicitly defines the number of wavelet basis. On the other hand, 

the question of when two signals presenting the same behaviour are or are not similar, is 

addressed by the parameter η , by basically evaluating the relative difference between 

their local amplitudes. Finally, taking into account that the Haar wavelet basis are fixed 

and present a compact support, the computational complexity of the similarity indexing 

procedure can be decreased by using an iterative scheme for calculating the coefficients 

of the sequence being compared with the template. 

In conclusion, a time series similarity indexing scheme based on an optimal basis 

description obtained from the combination of wavelet decomposition with 

Karhunen-Loève transform was presented in this chapter. This scheme has the potential 

to be an effective and appropriate tool in identifying physiological patterns in biosignal 

time series, which is one of the central points of this work. Furthermore, the time series 

description by means of the derived reduced set of basis (coefficients) can directly 

support clustering and classification problems.  

The next chapters will address the exploitation of the proposed similarity measure in 

identifying clinical patterns in time series, namely as a basis for predictive 

methodologies. 
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3. Time Series Prediction 
 

 

 

his chapter addresses the research and implementation of methodologies for 

time series prediction, mainly to support the early detection of critical 

events. Anchored in the developed similarity measure for the selection of 

patients who display similar behaviours in their physiological time series, two main 

strategies are proposed.  

The first strategy consists in a prediction scheme based on multi-models. Regression 

neural network structures, previously trained with a set of representative patterns 

established by the similarity analysis procedure, are chosen to integrate the multi-

models scheme, given their approximation and generalization properties. Contrasting 

with auto-regressive model structures, multi-models do not recursively use model 

outputs as inputs for step ahead predictions. As result, prediction errors are not 

propagated over the forecast horizon and future values can be accurately estimated. 

The second strategy does not involve an explicit model. It is based on the multi-

resolution analysis of the historic similar time series, resulting from the previous 

similarity analysis procedure. The wavelet decomposition disaggregates time series 

into different components, allowing an adequate separation of the main trends from 

the time series. Using a distance-based measurement optimization process, the most 

appropriate decomposition levels are identified and combined to directly provide an 

estimation of the time series future evolution.  

 

 

 

 

3.1 Introduction 

It is unquestionable that no one knows the future, but there is a lot of benefits in 

deriving predictions to form a picture of what the future could be, even if this prediction 

is imprecise. By definition, prognosis is a medical term used to describe the likely 

outcome of the future health status of a patient and/or the probable evolution of his 

health indicators (Langlois, 2002)§1. Prognosis is, therefore, one of the key components 

involved in the care delivery process and patient management, and almost all clinical 

decisions are based on it. In effect, since a current decision will become operational at 

some point in the future, it should be, definitely, based on forecasts of future conditions. 

T
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On the other hand, it is recognized that a relevant source of information for supporting 

prognosis may be the patient’s historical of similar health status or, as an alternative, 

the historical of other patients that experimented similar behaviours in their health 

data. Thus, the development of automatic systems able to estimate future values of 

health status based on its past values, is of central importance in this framework. 

Moreover, these systems might reveal underlying relationships between temporal 

patterns and the onset of significant clinical conditions that are not evident or hidden in 

the data. 

This chapter addresses the development of methodologies that may be used to predict 

specific clinical conditions, based on the temporal trajectories of related physiological 

signals and/or on inter-patient similarities. The main clinical goal is to provide the 

clinicians with the adequate information for the near-term prognosis and for future 

projections of those physiological time series and clinical conditions. This way, clinicians 

can better assess the near-term impact of their decisions and of potential events that 

may affect the patient. From the technical perspective, the main purpose is the research 

on advanced methodologies of time series processing for the development of prediction 

strategies. Thus, besides similarity measurements for identifying patients who exhibit 

similar trends in their physiological time series data (presented in the last chapter), 

methodologies able to project patient data into the future are the key research topic of 

the current chapter.  

A significant amount of research has been carried out during the last decades addressing 

the prediction of time series in general, and of biosignals, in particular. Among them, 

linear regression methods, such as autoregressive and autoregressive moving average 

structures have been the most used in practice (Makridakis et al., 1998)§2. The 

well-established theory of linear models and the availability of effective algorithms for 

the estimation of corresponding parameters have justified their success. However, linear 

models are usually inadequate for clinical time series, since, in practice, almost all are 

non-linear to some extent. Therefore, the theoretical development of non-linear methods, 

together with the evolution of computer processing speed and data storage, has 

motivated the introduction of non-linear schemes for prediction tasks. Of the non-linear 

methods, neural networks became very popular mainly due to their universal 

approximation properties. Many different types of neural networks, such as time delay 

and recurrent neural networks, have been proven to be effective for time series modelling 

in general, and for biosignals forecasting, in particular. 

On the other hand, an important prerequisite for the successful application of the 

non-linear techniques, such as the neural networks, is the stationarity of the involved 

data (Fryzlewicz et al., 2003)§3. In most clinical cases, an assumption of global 

stationarity can not be considered. In effect, usually a physiological time series is a 

combination of several separated sources, such as long-term trends and short-term cyclic 

occurrences. Thus, the development of strategies that overcome the aforementioned 

problems assumes a central importance. Of particular interest for this work are the 

time-frequency analysis methods, which can produce a good local representation of the 
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signal in both the time and frequency domains, offering an appropriate framework to 

deal with the non-stationarities that characterize biosignal time series.  

Among time-frequency methods, wavelet transform was recently introduced mainly for 

addressing pattern detection and modelling tasks in time series. Although the wavelet 

transform itself is not a forecasting methodology, it may be incorporated in hybrid 

prediction schemes involving the multi-resolution decomposition of signals. In this 

context, some schemes combining wavelet transformation with forecasting methods have 

been proposed. 

 

In the present work two alternatives are proposed for the prediction of biosignals. The 

first employs neural networks structures, previously trained using the similar patterns 

that resulted from the similarity analysis process, in a multi-model prediction scheme to 

derive accurate values for the future values. The second, which does not involve the 

explicit development of a model, employs the wavelet decomposition of those similar 

patterns to capture the main trends of the biosignals, enabling to provide a rough 

estimation of the time series future values. The structure of this chapter is as follows: in 

section 2, the clinical relevance of predictive approaches is justified. Section 3 addresses 

the theoretical background of predictive methodologies, namely system modelling and 

time series prediction topics. Taking into account the goals of the present work, it also 

introduces neural network- and wavelet transform-based prediction methods. Section 4 is 

devoted to the proposed methodologies. Basically, the two strategies are introduced: the 

neural-network multi-model scheme and the wavelet multi-decomposition scheme. 

Finally, in section 5, some conclusions are drawn. 
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3.2 Clinical Relevance 

 

Hippocrates, the father of medicine, considered prognosis as a major concept of 

medicine. In general, prognosis means foreseeing, predicting, or estimating the 

probability or risk of future conditions, such as in weather and economic contexts. 

Particularly in medicine, prognosis commonly relates to the probability or risk of an 

individual to develop a particular state of health over a specific time.  

In recent years there has been an increasing research in the area of clinical prediction, 

which is justified by the benefits that this can bring both to patients and physicians. 

Two types of research can be distinguished: on diagnostic prediction and on prognostic 

prediction. The first investigates the ability of variables in predicting the presence or 

absence of a specific condition. In this category, it can be referred the work developed 

under this thesis concerning the diagnosis of ischemia based on the ST segment deviation, 

and on changes in morphology of the QRS complex and T wave (which will be presented in 

chapter 4). The second investigates the ability of variables in predicting future 

outcomes, such as the risk of developing an hypertension condition (also developed 

under this thesis and presented in the next chapter).  

The following examples aim to demonstrate the importance of the prediction 

methodologies in the medical field. Given the particular interest of the cardiology area to 

the present work, the selected cases relate to heart diseases.  

 

For instance, a heart attack, a serious medical emergency in which the supply of blood 

to the heart is suddenly blocked, can seriously damage the heart muscle. The main 

problem is that the misunderstanding of the symptoms and early warning signs can 

result in a long recovery, or even death. In fact, often minor and very treatable heart 

attack progresses to a critical stage resulting in death due to apathy and negligence. A 

simple treatment of taking an aspirin and a low dose of nitroglycerin tablet can open 

arteries and save a life, but must be timely administered. Consequently, it is easily 

understood that the development of automatic methodologies to recognize early signs 

and predict the occurrence of an heart attack, is of the major importance to increase the 

survival rate. Some works, such as the one of Patil and Kumaraswamy (2009),§4 addressed 

this problem, proposing a methodology for the extraction of significant patterns (blood 

pressure range, cholesterol range or heart rate greater than a given threshold, abnormal 

ECG, etc.) from the heart disease data warehouses, and using them in the prediction of 

heart attack through an intelligent approach.  

 

Another problem of concern is the occurrence of acute hypotensive episodes (AHE) in 

intensive care units, which endanger the lives of patients that come to depend on the 

prompt intervention of clinicians. However, procedures used to treat such events are 

usually invasive and aggressive. Therefore, a prediction system able to identify an 
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imminent event brings a significant benefit to timely support non-invasive and 

preventive treatments. In recent years, the development of medical monitoring 

technology and of signal analysis and processing methods, led to the emergence of 

numerous approaches for the automatic forecasting of AHE, based on the trend analysis 

of vital signs that are probably related to the occurrence of such episodes (arterial blood 

pressure, heart rate, and oxygen saturation). Mention may be made to the works of 

Wang et al. (2010)§5 and Rocha et al. (2011)§6.  

 

The prediction and prevention of sudden cardiac arrest is another great challenge of the 

contemporary cardiology. Particularly, thousands of children experience cardiac arrest 

(CA) events every year in paediatric intensive care units and most of these children die. 

Moreover, the risk of a child to suffer a CA in this environment, is 10 times higher than 

for people in standard hospital beds. Once more, the implementation of methods with 

the potential to bring arrest prediction to the paediatric intensive care environment, 

possibly allowing for intervention that can save lives and prevent disabilities, is of vital 

importance. In that sense, Kennedy and Turley (2011)§7 proposed a six step method for 

creating clinical prediction models using time series data, which is able to characterize 

deterioration that often precedes cardiac arrests.  

 

Ventricular arrhythmias, which are abnormal heart rhythms originated in the lower 

chambers of the heart, represent another serious problem of the cardiology domain. They 

include ventricular tachycardia (VT) and ventricular fibrillation (VF) that are both life 

threatening. In fact, ventricular fibrillation is one of the main causes of sudden cardiac 

death in the western world. It causes the heart to beat chaotically, making it unable to 

pump blood. VF is usually preceded by VT, which is another type of arrhythmia that 

also constitutes a medical emergency. It is vital for the patient to receive immediate 

medical intervention when either VF or VT occurs. Therefore, the development of 

methods able to predict their occurrence, even a few seconds in advance, can potentially 

save lives. In this context, Rocha et al. (2008)§8 developed a methodology to detect the 

occurrence of VT and VF and also to characterize their evolution. 
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3.3 Background 

 

Included in the area of dynamic systems, time series prediction is a research topic 

intrinsically linked to the systems modelling field (Box and Jenkins, 1976)§9, (Pandit and 

Wu, 1983)§10. As a consequence, the definition of the model structure, the determination of 

the respective parameters as well as the establishment of the appropriate validation 

procedures, should be taken into consideration. In this context, linear autoregressive 

(AR) and autoregressive moving average (ARMA) models have been applied with 

relative success to time series modelling, both in direct and indirect schemes (Gang et 

al., 2008)§11.  

The linear autoregressive models are basically linear representations assuming that data 

are stationary, thus, with a limited ability to capture non-stationarities and 

non-linearities of data, so common in clinical contexts. Therefore, the research for 

alternative models, able to deal with non-linearities and non-stationarities has been of 

central importance in the forecasting framework. Examples of such methodologies are 

the extended non-linear autoregressive moving average model (NARMA) (Chen et al., 

1989)§12, along with other approaches such as artificial neural networks (Zhang et al., 

1998)§13, fuzzy systems (Vaidehi, 2008)§14, and phase space reconstruction techniques 

(Camilleri, 2004)§15. In particular, artificial neural networks (ANNs) have shown a great 

ability in modelling and forecasting non-linear and non-stationary time series, due to 

their innate non-linear properties and flexibility for modelling (Haykin, 2008)§16.  

Moreover, several types of transforms have also been applied for time series forecasting, 

such as principal component analysis (Hiden et al., 1999)§17, independent component 

analysis (Roberts et al., 2004)§18, Fourier transform (Schoukens and Pintelon, 1991)§19 and 

wavelet transform-based methods (Yao et al., 2000)§20, (Chong, 2009) §21 , (Cao et al., 1995)§22, 

(Soltani, 2002)§23. Due to the notable approximation properties of wavelets (Vetterli et al., 

2000)§24, they have been introduced to describe non-linear dynamical systems. Moreover, 

they allow for the representation of the signals in both time and frequency domains 

(Yevgeniy et al., 2005)§25,,, while preserving time information in the transformed variables. 

For that reason, they seem to be ideal for time series forecasting. In effect, several 

approaches have been introduced for time series prediction based on wavelet transform 

together with autoregressive models (Soltani et al., 2000)§26, Kalman filters and neural 

networks. 

This subsection starts by reviewing the system modelling process applied to time series, 

including the respective steps involved (structure identification, parameter estimation, 

and validation). Then, the main methodologies for time series forecasting are presented. 

Finally, given their relevance to the present work, neural network-based and wavelet 

transform-based time series predictions are described. 
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3.3.1 System Modelling 

Introduction 

A model is a mathematical representation of a system, such as a physical, a mechanical, 

an economical, a biological or a physiological system. Essentially, it is an analogy used 

to help understand a system, and to make predictions about how this system will 

behave. System modelling concerns the precise description of the model, that is, it aims 

the developing and characterization of the mathematical model that captures the 

system’s dynamic (the term dynamic indicates that the process presents a temporal 

dependent behaviour). A simplified input-output block diagram of a dynamic system is 

depicted in Figure 3.1. 

( )u t ( )y t

 

Figure 3.1 − Dynamic system definition. 

The variable ( ) unu t ∈ � and ( ) yny t ∈ � , represent, respectively, the input and the output 

of the system at a discrete time instant t , and the parameters un  and yn , define, 

respectively, the number of inputs and outputs of the system. Typically, the outputs are 

the variables of interest and, the inputs, the variables that can be manipulated, mainly 

to influence the outputs. The input and the output variables can be scalars or vectors: in 

the first case, 1u yn n= = , the system is designated as Single Input Single Output 

(SISO) system. In the case of several inputs and several outputs, the system is 

designated as Multiple Input Multiple Output (MIMO) or multivariable system.  

When developing a model several purposes can be addressed, namely: 

� Prediction - the main goal consists in predicting future values of some variables. 

Typical applications are, for example, the prediction of future outcomes, early 

detection of future adverse events (e.g. hypotensive episodes) or the prediction 

of medication effects; 

� Controller design - the developed model provides a base for the design of a 

controller. Examples of such are model-based controllers of mechanical 

ventilation to automatically guide the ventilator during clinical anaesthesia 

(Michel and Struys, 2006)§27; 

� Fault diagnosis - can be viewed as the process of linking symptoms to causes, 

similar to medical diagnosis. Thus, the goal of a model in the context of fault 

diagnosis may be to match patterns of a particular sensor measurements to 

specific devices malfunctions (sensor errors), or to distinguish specific events 

(symptoms and clinical conditions) to generate specific alarms;  
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� Estimation of non-measurable variables - the development of a model can be 

useful when it is not possible to directly measure some variables of the system. 

In effect, the existence of a model can circumvent such difficulties by providing 

an estimation of these non-accessible variables. 

Two main approaches are typically followed for model developing: i) analytic modelling 

and ii) experimental modelling (data-driven). 

In the first case, the model is built founded on prior knowledge and physical insight of 

the system to be modelled. An example of such is the physiological model of the cardiac 

system, attempting to relate and quantify the effects of the major interacting parameters 

on the cardiac function, involving biology and engineering concepts, such as diffusion, 

active ionic transport, membrane channels and receptors, cellular metabolism, energy 

consumption, etc. In general, those models are described by a set of complex differential 

or difference equations, respectively for the continuous and discrete time cases. However, 

most of the times there is an insufficient knowledge (or even no knowledge) about the 

detailed interactions of the system and the only accessible information are the past 

measurements collected from that system. In this case, an experimental modelling may 

be carried out, known as black-box modelling (Ljung, 1999)§28, in contrast to the analytical 

approach, also called white-box modelling.  

On the other hand, there are circumstances where the nature of the process may 

difficult, or even prevent, a precise mathematical description. However, if domain 

expertise is available, other alternatives can be followed to generate a model. Assuming 

the pre-existence of expert knowledge based on clinical experience, observations, and 

deductions from clinical practice (such as guidelines obtained from clinical studies and 

statistical analysis, medical literature, etc.), deductive or knowledge-driven approaches 

can be applied. Typically, in this case, qualitative models can be formulated, where the 

simplest form is a rule-based structure that makes use of “if-then-else” rules to describe 

the system’s behaviour. Although these rules are usually created by human experts, 

other methodologies can be applied to process data and generate them, such as genetic 

algorithms and rule induction techniques (Krajnak and Xue, 2006)§29.  

In this work, the modelling task is mainly oriented for prediction purposes, that is, for 

the forecasting of time series future values. Moreover, the models to be developed are 

based on historic data, namely biosignals regularly collected from patients. Thus, an 

experimental approach (data-driven) is assumed here. Without loss of generality, the 

description followed in the present document concerns SISO systems.  

Considering the historic clinical data and using a similarity searching algorithm, a set of 

similar conditions are in a first step identified. Based on these similar conditions, an 

experimental model (data-based modelling) is built and employed, in a second phase, to 

forecast specific variables (time series). The estimated evolution of these variables are 

then used to predict future outcomes, such as the risk of developing an hypertension 

condition. 
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System identification 

Formally, the system identification problem can be established based on five factors 

(Ljung, 1999)§30, (Sodeström and Stoica, 1989)§31: a system to be identified P , an 

experimental dataset Z , a particular structure M with parameters θ , an estimation 

method for computing those parameters, and a validation criterion J. This can be 

mathematically described by the equation (3.1). 

( )( ) , ( )y t Z M θ=ϒ  (3.1) 

It is assumed that there exists a mapping, ()ϒ ⋅ , able to describe the dynamics of the 

system. Thus, it is possible to establish a relationship between the current output ( )y t , 

and the observed dataset Z , based on a given structure ( )M θ . The variable θ  

represents the parameter set that characterizes the particular structure ()M ⋅ . 

The validity of this approach was mathematically established by Takens (1981)§32, who 

proved that, for a noise free system and for an infinite precision in the measurements of 

the system output, it is possible to exactly reconstruct the internal dynamics of that 

system by means of a regression formulation. In particular, the observed data dimension 

should verify 2 1N n> + , being n the dimension of the state vector, and N the 

dimension of the observed data. Actually, the theorem of Takens only considers systems 

without external inputs, that is, it is applied to autonomous time series. The extension 

of that theorem to input-output systems was later presented by Casdagli (1991)§33.  

In practice, due to uncertainties, unknown external variations and the use of a finite 

dataset, the identification process is reduced to the estimation of the true function ()ϒ ⋅ . 
As result, equation (3.1) is commonly replaced by (3.2). 

( )ˆ(̂ ) , ( )y t f Z M θ=  (3.2) 

The variable (̂ )y t  represents the estimated value of the real output ( )y t , and the 

function ( )f ⋅  is an approximation of the true function ()ϒ ⋅ . The variable θ̂  corresponds 
to the estimation of the true parameters θ  that characterize the system. 

Modelling phases 

Assuming the existence of a dataset Z, the development of a model consists of the 

following main steps (Pintelon and Schoukens, 1991)§34:  

i) structural identification: which seeks to assign a particular model, M, from the set 

of possible candidates;  

ii) parameter estimation: which, according to a certain criterion J, computes the 

values of the parameters θ ; 

iii) validation: which intends to test the correctness of the derived mathematical 

model, namely with new sets of data.  
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i. Structural identification (M) 

This is certainly one of the most important phases in the identification procedure. There 

are several possible factors that characterize the candidate models to be used, namely: 

input-output or state space structures, the type and number of external inputs, and the 

functional relationships between the inputs and outputs, particularly, linear and non-

linear mappings. 

 

Linear models 

The simplest structure that may be assumed for the true function, ()ϒ ⋅ , is the one that 
linearly relates the current output with the previous observed values. Equation (3.3) 

describes a generic AutoRegressive with eXogenous input model (ARX) (Ljung, 1999)§35. 

1 2

1 2

(̂ ) ( 1) ( 2) ( )

     + ( 1) ( 2) ( ) ( )

nb b

na a

y t b u t b u t b u t n

a y t a y t a y t n tζ

= − + − + + − +

− + − + + − +

…

…
 (3.3) 

The variable (̂ )y t  represents the estimated value for the actual output, ( )y t , and the 

parameters ia  and ib  are weights associated, respectively, with the past outputs and the 

past inputs. The constants an  and bn  are the orders of the respective polynomials, that 

is, the number of past inputs and past outputs considered as representative and included 

in the model. The variable ( )tζ  represents an unknown disturbance described as a white 

noise, that is, a sequence of serially uncorrelated random variables with zero mean and 

finite variance.  

Linear models have been widely applied to system modelling in various fields. The 

simplicity of the parameters’ estimation procedure, associated with the existent strong 

theory, justify its success, Landau et al. (1997)§36. Furthermore, it is possible to provide an 

interpretation of linear models and they can be fully characterized by their transfer 

function or impulse response.  

 

Non-linear models  

Although satisfactory results have been achieved in numerous practical applications, the 

modelling capacities of linear models are sometimes inadequate to accurately describe a 

system. In fact, since most of the real applications are inherently non-linear, a linear 

model is, in these situations, clearly inappropriate. A more general description is the 

Non-linear AutoRegressive with eXogenous input model (NARX), given by (3.4), which 

is an extension of the linear ARX model to the non-linear case (Leontaritis and Billings, 

1985)§37, (Chen and Billings, 1989)§38. 

( )(̂ ) ( 1), , ( ), ( 1), , ( ) ( )b ay t f u t u t n y t y t n tζ= − − − − +… …  (3.4) 

The function () : d nyf ⋅ →� � ( a bd n n= + ), is a non-linear function which purpose is to 

approximate the true one, ()ϒ ⋅ .  
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Another factor that characterizes a given structure concerns the type of signals involved 

in it. The dynamic behaviour of a system may be mathematically described by a 

deterministic form or by a stochastic process, where there is an additional disturbance 

term representing the system noise. In equations (3.3) and (3.4), this disturbance term is 

the white noise, ( )tζ . The introduction of noise means that the output will not be an 

exact function of the available information, but includes a random term. In this work, 

only the deterministic part is addressed. Consequently, it is assumed that the unknown 

contribution is of secondary importance with respect to the system output and, thus, an 

adequate prediction of ( )y t  can be achieved using the past data. 

 

General model 

Covering linear and non-linear models, a general formulation for the input-output 

modelling problem is usually described as follows (3.5). 

( )̂(̂ ) ( 1),y t f tϑ θ= −  (3.5) 

As a consequence, three partial components should be considered:  

i) The regression vector, ( ) dtϑ ∈� ( a bd n n= + ), composed of past observations as 

described in (3.6). 

( 1) ( 1), ( ), ( 1), ( )b at u t u t n y t y t nϑ  − = − − − −  … …  (3.6) 

ii) The non-linear function, ( )f ⋅ , mapping the regressor space into the output 

space, () : d nyf ⋅ →� � .  

iii) The parameters, ˆ nθθ ∈ � , that characterize the specific mapping, being nθ  the 

number of parameters. 

 

In this context (general modelling), an unified overview of the mathematical structure of 

non-linear models was presented by Sjoberg et al. (1994)§39 and (1995)§40. They proposed a 

general black-box model to infer an approximation to the function ()ϒ ⋅ , by means of a 

basis function parameterization, equation (3.7). 

( )̂ ˆ(̂ ) ( 1),   ( ( 1))j j

j

y t t g tϑ θ θ ϑ= ϒ − = −∑  (3.7) 

The non-linear function, ()ig ⋅ :
d →� � , is the basis function, where d is the dimension 

of the regression vector space. The variable ˆjθ  represents the thj  component of the 

vector θ̂ , a set of weight factors. For example, using this representation, the linear 

model, equation (3.1), is a particular case of equation (3.7). In effect, the basis function 

is defined by the regression vector, ( ( )) ( )jg t tϑ ϑ= , defined by (3.6), and the parameter 

vector in the linear model is given by [ ]1 1
ˆ  , ,  , , .nb nab b a aθ = … …  
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According to this general formulation, (3.7), the modelling problem is essentially 

converted into the determination of the basis function ( ( ))jg tϑ . A possible approach is a 

mother basis function parameterization ( )χ ⋅ , given by (3.8). 

( )( ( )) ( ), ,j j jg t tϑ χ ϑ β γ=  (3.8) 

The variables jβ  and jγ  denote parameters of different nature: usually jβ  is related to 

a scale operation and jγ  to some position or translation. Following this common 

approach, Sjoberg et al. (1994)§41 and (1995)§42, were able to express some typical model 

structures: sigmoidal neural networks, radial basis networks, fuzzy models, wavelets, 

B-splines, among others. 

 

State Space Models 

An alternative to the input-output formulation previously described, is a state space 

scheme, as presented in equation (3.9). 

( )( ) ( 1), ( 1)

(̂ ) ( ( ))

x t f x t u t

y t h x t

= − −

=
 (3.9) 

The variable ( ) nx t ∈ �  denotes the state vector at time t, typically assumed to be 

inaccessible for measurement. The mappings (): n nu nf +⋅ →� �  and () : n nyh ⋅ →� �  are 

non-linear functions. State space models can be used either as knowledge based models, 

if enough prior knowledge about the physics of the process is available (analytical 

models), as well as black-box models (experimental models, thus following a data-driven 

approach). 

Some advantages were pointed to the use of non-linear state space models (Rivals and 

Personnaz, 1995)§43 , (Rivals, 1995)§44. Firstly, they can describe a larger class of dynamical 

systems than the input-output models; only the outputs, ( )y t , have desired values, while 

the internal state variables, ( )x t , are not imposed. This aspect makes state space models 

more flexible, that is, with the ability to describe more complex input-output behaviour. 

Secondly, state space models require lower order models and, consequently, smaller 

number of past observations (that is, smaller number of regressors), than the input-

output models to achieve the same level of accuracy.  

On the other hand, for the non-linear case, different state space representations might 

display the same input-output behaviour. Moreover, it is always possible to rewrite a 

non-linear input-output model in a state space form, while, in opposition, an 

input-output model globally equivalent to a given state space model might not exist 

(Leontaritis and Billings, 1985)§45. Another of the advantages of the state space 

representation lies on the approach followed for MIMO systems that is similar to the one 

followed for SISO systems, which does not happen in the case of systems represented by 

input-output models. Finally, these models allow for the employment of well-established 

algorithms, like the Kalman filter methods. 
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ii. Parameter estimation 

Once selected the model structure and the optimal dimension of the data observations, 

the set of parameters, θ , has to be found. This subject (parameter estimation) is 

commonly known as learning or training in the computational intelligence field, such as 

in the case of neural networks models. Following a supervised approach, a training 

dataset Z, consisting of N examples of past observations and corresponding target 

outputs ( )y t , is required, as described in equation (3.10). 

( )  ( )Z t Y t = Φ    (3.10) 

The variable ( )tΦ  is composed of N regression vectors 

( 1) ( 1) ( )
T

t t t Nϑ ϑ Φ − = − −  …  

and the variable ( )Y t  is composed of the corresponding N observed outputs  

( 1) ( 1) ( )
T

Y t y t y t N − = − −  … . 

A typical approach for determining the optimal values of the parameters involves the 

minimization of a quadratic cost function, defined as the summation of the N errors, 

equation (3.11), the so-called sum of squared errors (SSE) criterion. 

1

1ˆ( ) ( ) ( )

t
T

t N

J e e
N
τ

θ τ τ

= − +

 =   ∑  (3.11) 

The term ( ) nye t ∈ �  defines the identification error at time instant t, given by (3.12). 

ˆˆ( ) ( ) ( , )e t y t y t θ= −  (3.12) 

The output ˆ(̂ , )y t θ  represents the model output given the determined parameters θ̂ . 

Regarding the minimization of the criterion, equation (3.11), no analytical solution is 

usually available. Therefore, the minimization has to be done by some numerical 

iterative procedure, such as the basic gradient descent method or other advanced 

methods as the Levenberg-Marquardt algorithm. Another successful alternatives are the 

nature-inspired methods, which is the case of genetic algorithms. 

 

iii. Model Validation 

The parameter estimation step intends to minimize the modelling error criterion based 

on the dataset. However, from an application point of view, the modelling error itself is 

not enough for assessing the quality of the derived model. A more relevant measure of 

quality for a trained model is its generalization ability, that is, the capacity to provide 

good predictions on examples that were not used in the training set (Ljung, 1999)§46. 



90 3. Time series prediction 

 

Furthermore, another measure of interest is the model complexity. If the chosen model is 

too simplistic, it will not be flexible enough to describe the dynamics of the system, 

leading to the so-called underfitting situation. On the other hand, if the chosen model is 

too complex, the excessive degrees of freedom will allow the model to fit not only the 

original data but also additional noise. This situation is known as overfitting. Both cases 

will lead to a large generalization error, (Haykin, 2008)§47 and (Bishop, 1995)§48. For this 

problem, Akaike (1974)49 suggested a compromise between the best approach and the 

smallest possible number of parameters, proposing the well-known Akaike information 

criterion (AIC), which measures the relative goodness of fitting of a particular model.  

 

3.3.2 Time Series Prediction  

System modelling addresses the development of a model able to estimate the current 

output values (̂ )y t , based on previous information. In the specific case of time series 

modelling, only a regression of the variable ( )y t , itself, is typically involved and no 

exogenous input ( )u t  is considered. Therefore, in this situation, equations (3.5) and 

(3.6) are simplified, originating equations (3.13) and (3.14), respectively.  

( )̂(̂ ) ( 1),y t f tϑ θ= −  (3.13) 

( 1) ( 1), ( )at y t y t nϑ  − = − −  …  (3.14) 

Time series prediction is unquestionably related with the modelling procedure. In effect, 

the model obtained in the modelling phase is usually employed in the prediction of 

future values ( )y t p+� , this time using past and current information, as illustrated in 

Figure 3.2. 

 

( )y t

(̂ | )y t p t+

[ ]( 1) ( 1), ( )at y t y t nϑ − = − −…

 

Figure 3.2 − Prediction of future instants. 
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According to the value of p, two different cases are considered in the prediction of the 

value ( )y t p+ : one-step ahead and multi-step ahead predictions. 

 

i) One-step ahead prediction ( 1p = ): this is the most common case and, in general, is 

referred to as short-term prediction. Basically, the model derived in the modelling phase 

(such as a generic non-linear model (3.4)) is employed, using the past observations, 

( 1)tϑ − , and the current information, ( )y t , to predict the next output (̂ 1 | )y t t+ , 

according to (3.15). 

(̂ 1 | ) ( ( ),  )

( ) ( ), ( 1) ( ( 1))a

y t t f t

t y t y t y t n

ϑ θ

ϑ

+ =

 = − − −  …
 (3.15) 

ii) Multi-step ahead prediction ( 1p > ): also called long-term prediction is, unlike the 

short-term approach, typically faced with several uncertainties originated from various 

sources. For instance, the accumulation of prediction errors by using a single model, 

makes the multi-step prediction a challenging problem. Two approaches can be 

implemented: the direct and the iterative.  

� Iterative or recursive approach: for the prediction of a future instant (̂ | ),y t p t+  

a one-step ahead model is iteratively applied during p times, being the current 

predictions fed back to the model in order to obtain the next values; 

� Direct approach: p different predictors are independently trained, each one 

corresponding to each p step-ahead value.  

Recursive versus direct approaches 

The recursive (iterative) strategy seems to be the most intuitive and simple. Only one 

model is involved (such as a generic non-linear model ( )f ⋅  presented in last section, 

equation (3.4)) and, basically, the approach recursively uses the predicted values as 

inputs to predict the next ones. This situation is illustrated in Figure 3.3. 
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Figure 3.3 − Prediction using a recursive strategy.  

 

In more detail, the same model ( )f ⋅  used to one-step ahead prediction, equation (3.15), 

is used to predict the two-step ahead value, equation (3.16). 

�( )( 2 | ) ( 1| ), ( ), ( ( 2))ay t t f y t t y t y t n+ = + − −� …  (3.16) 
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In the last equation, the predicted value ( 1 | )y t t+�  is used instead of the true value 

( 1)y t + , which is unknown. Using this scheme, it is straightforward to extend this 

formulation to multi-step ahead predictions in an iterative way, as described in (3.17). 

( )( | ) ( 1 | ), ( 2 | ), , ( ), ( 1),y t p t f y t p t y t p t y t y t+ = + − + − −� � � … …  (3.17) 

Although simple, the use of the predicted values as inputs typically deteriorates the 

accuracy of the predictions. Using this representation, the value (̂ 1 | )y t t+  is an input of 

the ( )f ⋅  mapping, which is used for the prediction of the value (̂ 2 | )y t t+ . Since the 

value (̂ 1 | )y t t+  is an estimation of the actual output ( 1)y t + , prediction errors are 

propagated and long-term forecasts can not be usually accurately performed by means of 

autoregressive models. In effect, the error for the pth step prediction is the accumulation 

of the errors of the previous ( 1)thp−  steps. Thus, in general, the longer the forecasting 

horizon is, the larger the accumulated errors are, and the less accurate the iterative 

method is.  

Another alternative for the long-term prediction is the direct approach. According to 

this, the estimation of a future value ( | )y t p t+�  is directly performed from the available 

observations, being an independent model employed for each sampling instant within the 

prediction horizon. Using this representation, the output at the next instant, ( 1)y t + , 

can be estimated using a specific mapping 1()f ⋅ , given by (3.18), similarly to the 

iterative scheme. 

( )1(̂ 1 | ) ( ), ( 1), , ( ( 1)  ay t t f y t y t y t n+ = − − −…  (3.18)

However, the prediction of the output at instant 2t + , (̂ 2 | )y t t+ , is achieved using the 

same formulation. Thus, an independent mapping 2()f ⋅ , has to be found, equation 
(3.19). 

( )2(̂ 2 | )  ( ), ( 1), , ( ( 2)  ay t t f y t y t y t n+ = − − −…  (3.19)

Generically, the prediction of the output at a specific future time instant p, can be 

expressed by the generic equation (3.20), by means of a particular mapping ()pf ⋅ . 

( )(̂ | ) ( ), ( 1),  py t p t f y t y t+ = − …  (3.20)

As result, if a time series has to be predicted over a future horizon of length P, P 

distinct regression models have to be derived. This type of prediction, known as a 

multi-models approach, is illustrated in Figure 3.4. In this scheme, different types of 

models and different regression vectors can be employed to each individual model. 
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Figure 3.4 − The multi-models scheme for the prediction of P future instants. 

 

Thanks to this structure, predictions over a forecast horizon do not depend on previous 

predictions, but only on information available at the current instant. As a consequence, 

the multi-models approach allows for more accurate estimations (Lawrynczuk, 2008)§50. 

However, usually the direct strategy increases the complexity of the model. In effect, the 

analytical representation of the non-linear functions ()pf ⋅  may be complex, even for a 

system described by a very simple model, which can be seen as one of the main 

drawbacks of this approach. 

In conclusion, both the recursive and the direct approaches can be used to perform 

multi-step ahead predictions of time series. In theory, long-term predictions can be 

obtained from a short-term predictor by simply applying it multiple times (steps) in an 

iterative way. Using the direct approach, predictions can be directly obtained by the 

established models, in a way that is similar to one-step ahead predictions.  

Although it is possible to compare the iterative and the direct approaches for a given 

specific problem, it is difficult to achieve generic theoretical conclusions regarding which 

one should be used. In fact, the decision about a particular scheme is, in general, an 

experimental decision (Marcellino et al., 2005)§51. These authors carried out a large-scale 

empirical study, comparing both iterative and direct predictions schemes using data of 

170 U.S. macroeconomic time series variables, monthly available from 1959 to 2002. 

Rather than narrowing it on individual series, this study considered the larger question 

of whether the iterative or direct forecasts were more accurate, on average, for the 

population of the U.S. macroeconomic time series. Assuming that the time series 

dynamics is accurately captured by the model, the iterative prediction scheme is, in 

most cases, more efficient than the direct approach. Examples of such systems are the 

sunspot prediction problem. Weigend et al. (1992)§52 showed, in this context, that the 

direct predictions produced by a neural network model were significantly worse than the 

iterated predictions. However, on the other hand, direct schemes are, theoretically, more 

robust when dealing with model uncertainties and misspecifications (Marcellino et al., 

2005)§53. For specific types of models, the iterative approach may be less accurate than the 

direct one, if the process model is not correctly specified (Ing, 2003)§54.  
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Nevertheless, the main problem of the iterative prediction is that errors accumulate at 

each step. Even in face of small prediction errors at the beginning of the horizon, they 

accumulate and propagate, often resulting in large overall prediction errors that are 

difficult to estimate. The situation is even worse for non-linear complex systems that are 

difficult to correctly characterize. Thus, some authors pointed that the direct approach 

could give a better prediction than the iterative method for non-linear time series, Atiya 

et al. (1999)§55. 

Time series forecasting methodologies 

Time series forecasting has been a very active area of research and, as a result, 

numerous methodologies have been introduced, which can be generally divided into the 

following groups:  

� Simple or analytical approaches: are easy to implement and usually provide 

robust results. Examples are the moving average and the exponential smoothing 

approaches (Gardner, 2006)§56, (Makridakis and Hibon, 2000)§57.  

� Regressive approaches: are based on regressive models that employ past values 

of the inputs and outputs (Box and Jenkins, 1976)§58. They are typically 

associated with traditional or classic methodologies, such as the linear systems 

theory, thus, based on a strong mathematical support. 

� Advanced methods: include recent transforms and computational intelligence 

methods. They provide a base for the conception, design and application of 

methodologies, suitable to deal with uncertainties and imprecisions. They 

consist in the association of a set of computational techniques based on fuzzy 

logic, neural networks, support vector machines and genetic algorithms. When 

applied to modelling problems, they show an high potential and their success is 

unquestionable for the solution of practical problems where traditional methods 

present difficulties, especially in the presence of complexities, non-linearities and 

uncertainties. 

Although the above methodologies can be individually employed, they can also be 

combined in hybrid schemes that integrate different methods in the same structure, in 

order to profit the potential of each one. In fact, the combination of different forecast 

methodologies can improve the global forecast accuracy by exploiting their different 

strengths, while also compensating their limitations.  

 

1. Simple or analytical approaches  

This type of models aims to represent the variable to be predicted, (̂ 1)y t + (one-step 

ahead), as a time function of the observations at the past and current instants. 

Examples are the random walk, moving average, single exponential smoothing, and 

polynomial regression approaches. 
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Random walk: this algorithm simply predicts the next value of the time series by 

considering it equal to the current value, thus by (3.21).  

(̂ 1) ( )y t y t+ =  (3.21) 

Moving average: in this case, the predicted value is simply determined by the arithmetic 

mean of the last M observations, equation (3.22). Although basic, this method provides 

acceptable results in the situation of very simple systems. 

1

1
(̂ 1) ( )

t

k t M

y t y k
M

= − +

+ = ∑  (3.22) 

Single exponential smoothing: the predicted value is calculated (smoothed) by adjusting 

the previous forecast by the error it produced, according to (3.23). The parameter λ , a 

constant smoothing factor between 0 and 1, controls the degree of this adjustment, 

where a higher value of λ  faster reduces older observations. 

ˆ ˆ( 1)  ( ) (1 ) ( )y t y t y tλ λ+ = + −  (3.23) 

Polynomial regression: this model fits a polynomial to the time series by regressing time 

series indices with time series values. The equation (3.24) shows the example of a 

polynomial regression of order three, where the iα  are the parameters of the regression 

model. 

2 3
0 1 2 3(̂ 1) +    y t t t tα α α α+ = + +  (3.24) 

2. Regressive methods  

As mentioned is the last section, regression is the study of relationships among variables, 

a principle that supports modelling and predictions tasks. By means of this approach, 

the future output value is estimated based on previous and current observations. Box 

and Jenkins (1976)§59 presented a general formulation to describe autoregressive integrated 

moving average model (ARIMA) and its variations, such as autoregressive, moving 

average, and autoregressive moving average. In effect, a general tool for modelling and 

forecasting time series is achieved by an ARIMA model. This structure is described by 

the notation ( , , )a cARIMAn d n  and consists of the following three main terms: 

 

i) Autoregressive component: ( )aARn
 - denotes the autoregressive part of the time series 

( )y t , equation (3.25), where the output depends on the time-lagged values of the signal 

itself, weighted by parameters ia . 

1(̂ 1) ( ) ( 1)na ay t a y t a y t n+ = + + − +…  (3.25) 

 

ii) Moving average component: ( )cMAn
 - consists in the moving average of the error 

series ( )e t , equation (3.26). It can be described as a regression using the past error 

values of the series, weighted by parameters ic . 



96 3. Time series prediction 

 

1(̂ 1) ( ) ( 1)nc cy t c e t c e t n+ = + + − +…  (3.26) 

The error term, ( )e t , corresponds to unknown factors of the series at time instant t that 

can not be explained by the past values. 

 

iii) Degree of differentiation: ( )I d
 - defines the degree of differencing involved in the 

model. Differencing can be used to cope with non-stationarity in a time series, by 

calculating the change between each observation and its predecessor. The first difference 

of a time series, ( )dy t , is given by (3.27). 

( ) ( ) ( 1)dy t y t y t= − −  (3.27) 

As proposed by the Box-Jenkins formalism, the build-up of a general ARIMA model 

requires a series of well-defined steps.  

The first step corresponds to the identification of the model. It involves defining the 

structure (AR, MA or ARMA) and the order of the model (parameters d, an  and cn ). 

To this aim, autocorrelation function (ACF) and partial autocorrelation function 

(PACF) analysis are typically employed (Tran and Reed, 2004)§60. An alternative for 

identifying ARMA models is to use of a goodness-of-fit statistic. In this approach, a set 

of candidate models are fit, and goodness-of-fit statistics are computed in order to 

appropriately penalize excessive complexity. Akaike’s Final Prediction Error (FPE) and 

Information Criterion (AIC) are two common statistical measures of goodness-of-fit of an 

( , )a cARMAn n  model. Usually the fitting process is guided by the principle of parsimony 

by which the best model is the simplest possible model - the model with the fewest 

parameters - that adequately describes the data. The second step is to estimate the 

coefficients of the model. Among several approaches, these can be estimated using the 

maximum likelihood or the least-squares regression methods. The third step consists in 

checking the model. This step, also called verification, aims to ensure that the residuals 

of the model are random (uncorrelated in time), and that the estimated parameters are 

statistically significant. Typically this phase involves a residual analysis, checking the 

significance of residual autocorrelations. This way, approximate confidence intervals can 

be estimated. A different approach for evaluating the randomness of the ARMA 

residuals is the Portmanteau statistic, or Q statistics, an objective diagnostic measure of 

white noise in a time series. 

Although linear regression models are useful, general non-linear regressive models can be 

also formulated. Engle (1982)§61 introduced a non-linear autoregressive conditional 

heteroscedasticity model, or ARCH(p) model, for modelling the changing volatility. The 

non-linear term is the variance of the disturbance. Latter, Bollerslev (1986)§62 presented an 

extension of the ARCH model, the GARCH or generalized ARCH model. In turn, Chen 

and Billings (1989) proposed a general non-linear autoregressive moving average 

(NARMA) model, based on which, prediction can be formulated as (3.28). 



3.3 Background 97 

( )(̂ 1) ( ), , ( 1),  ( ), , ( 1)a cy t f y t y t n e t e t n+ = − + − +… …  (3.28) 

where ( )f ⋅  is some non-linear function, similarly to model (3.4). In some cases, the 

function ( )f ⋅  does not depend on the lagged noise signals and, thus, the NARMA model 

is reduced to the NAR mode, equation (3.29). 

( )(̂ 1) ( ),, ( ( 1))ay t f y t y t n+ = − +…  (3.29) 

3. Advanced methods 

Recent advances in signal processing and in non-linear time series analysis have greatly 

improved the power of forecasting techniques. In fact, many types of functions and 

approaches based on non-parametric regression have been investigated to approximate 

the unknown function, which include polynomials, neural networks, radial basis 

functions, support vector machines, neuro-fuzzy basis functions, and wavelet transform. 

These approaches demonstrated superior performance in many areas of application, Fan 

and Yao (2003)§63. 

Given their importance in the present work, neural network and wavelet transform 

based models will be described in the following sections. 

Neural networks 

Neural networks are one of the methodologies belonging to the computational 

intelligence area that most frequently and successfully have been used for forecasting 

purposes. The universal approximation and generalization properties, as well as the 

ability to adjust online their parameters, allow neural networks to meet two of the main 

challenges for which conventional modelling techniques present serious limitations 

(Principe et al., 2000)§64 (Haykin, 2008)§65: i) generality and precision in modelling problems 

and ii) adaptation capabilities to time-varying dynamics. 

Wavelet transform 

In reality, wavelet transform itself is not a true forecasting technique. In its simplest 

form, it transforms a signal into different levels of resolution, enabling time and 

frequency localizations. By means of this property, it is possible to capture low and high 

frequency features of a signal at successive decomposition levels. By increasing the level 

of decomposition, it is possible to generate smooth signal components that can be easily 

predictable. From the combination of individual predictions, independently performed at 

each scale, it is possible to reconstruct the prediction of the original signal through the 

wavelet inverse transform. 
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3.3.3 Neural Network-based Time Series Prediction 

Original artificial neural networks basically represented a static mapping, just relating 

an input with the corresponding output. As a result, these structures were mainly 

oriented to classification problems, and not adequate to address dynamic modelling 

purposes. To achieve this goal, two main approaches were introduced in order to 

incorporate time (dynamics) into the network structure: delayed information and 

recurrent networks. Time-Delay neural networks (TDNN) that introduce time delays in 

the connections of feedforward networks, were successfully applied in non-linear system 

identification (Lin et al., 1995)§66, (Yazdizadeh and Khorasani, 2000)§67, (Yazdizadeh and 

Khorasani, 2002)§68. Dynamic or recurrent neural networks (RNN) were first introduced by 

Hopfield (1982)§69 and were developed in other works (Gupta et al., 2003)§70, (Becerikli et al., 

2003), (Bambang, 2007)§71. Due to their intrinsic ability to incorporate time (involving 

dynamic elements and internal feedback), RNN structures have advantages with respect 

to static neural networks for modelling dynamic processes. Moreover, RNN are in a 

standard form and present a low order compact structure, making them ideal candidates 

to be incorporated in prediction schemes (Gil et al., 2002).  

Multi-layer neural networks as universal approximators 

Multi-layer neural networks (MLNN), also known as feedforward neural networks 

(FFNN), result from perceptrons joined together in multiple layers. Figure 3.5 depicts a 

multi-layer neural network with four layers, where the second and the third are known 

as hidden or inner layers. The first one is the input layer and the last is the output 

layer. The activation functions in the hidden layers are usually sigmoidal, while a linear 

activation function is used in the output layer. 

 

1
j ju x=

2
ix

1
ijw

2
kiw

3
kx

3
lkw

4
l lx x=

 

Figure 3.5 − Multi-layer neural network with 2 hidden layers. 

For a multi-layer structure with L layers, the input is the first one( 1)l = , the output is 

the last one (l L= ), being the remaining 2L− , the hidden layers. Each layer l has lN  

neurons, and 
l
ix  is the output of the neuron i at the layer l.  



3.3 Background 99 

Thus, following these definitions, for the layers 2, ,l L= …  it is possible to write the 

equation (3.30). 

1

1 1 1

1

( )

lN

l l l l
i ij j i

j

l l
i i

a w x b

x aσ

−
− − −

=

= +

=

∑
 (3.30) 

In the previous equation, 
1l

ijw−
 represents the weight of the input 1l

ix
− , 1l

ib
−  denotes a 

bias, and σ  is the activation function. 

Considering a three layer neural network, Cybenko (1989)§72, Funahashi (1989)§73, Hornik et 

al. (1990)§74, and Hornik (1991)§75, showed that, if the hidden layer has an enough number of 

neurons (with sigmoidal activation functions) and if a suitable training algorithm is 

used, it would be possible to approach, with an arbitrary degree of accuracy, a 

continuous non-linear function. However, other structures such as trigonometric series, 

polynomial expansions, and splines, exhibit the same property. Therefore, the question is 

why did neural networks attract so much interest. 

One of the main reasons concerns the curse of dimensionality. Barron (1993)§76 partially 

showed that the parameterization using neural networks is advantageous with regard to 

other expansions, especially for high dimension spaces.  

Concretely, for a particular class of functions, (): df ⋅ →� � , being d the dimension of 

the input space, Barron showed that the approximation error provided by a three layer 

MLNN would be possible to characterize by (3.31). 

1/2
( ) ( )

fC
f x NN x

M
ς
  − <    

 (3.31) 

In the previous expression, ( )NN x  represents the output of the neural model given the 

input x , and ⋅  defines a quadratic norm. The parameter ς  is a positive constant, fC  

is the first momentum of the Fourier Transform of function ( )f ⋅  (a finite value) and M 

is the number of hidden neurons. On the other hand, he showed that there is no linear 

combination of M functions, including polynomials, trigonometric series or splines, such 

that their output (̂ )f ⋅ can provide an approximation error lower than the value given by 

(3.32). 

1/
ˆ( ) ( )

d

fC
f x f x

M
ς
  − <    

 (3.32) 

Consequently, in the last case, as the dimension of the input space increases, the 

advantages of neural models become clear. 
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Modelling dynamic systems with neural networks 

The previous configuration represents a static mapping, particularly adequate for 

classification problems. In order to incorporate dynamics into the structure basically two 

main approaches can be followed: i) time-delay neural networks (TDNN), and recurrent 

neural networks (RNN). 
 

Time delay neural networks 

In the first approach (TDNN), the temporal dependencies are obtained by modifying the 

static neural structure through the introduction of delays (considering past observations 

by means of the operator 1q− ), as given by equation (3.33) and illustrated in Figure 3.6. 

The variable ( )ny t  denotes the output of the neural network structure ()NN ⋅ . 

( )( ) ( 1), , ( ), ( 1), , ( )n b n n ay t NN u t u t n y t y t n= − − − −… …  (3.33) 
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Figure 3.6 − Time-delay neural network. 

 

According to the particular neural network structure ()NN ⋅ , distinct models can be 

obtained, such as sigmoidal neural networks, radial basis networks and support vector 

regressions. 
 

Recurrent neural networks 

In case of recurrent neural networks, the dynamics is naturally introduced in the 

neurons, thus enabling to create an internal state of the network that allows it to exhibit 

dynamic temporal behaviour. Due to their inherent ability to incorporate time, recurrent 

neural networks are particularly suitable for modelling non-linear dynamic systems. 

Moreover, RNN are in a standard form and present a low order compact structure, 

making them ideal candidates to be incorporated into prediction schemes (Gil et al., 
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2002)§77. A typical recurrent neural network is described by equation (3.34) and shown in 

Figure 3.7. 

( )( )  ( 1)  ( 1)

( )  ( )

n n

n n

x t A x t B u t

y t C x t

σ= − + −

=
 (3.34) 

The vector ( ) n
nx t ∈ �  is the output of the hidden neural layer, also known as the 

network hyper-state, ( ) yn
ny t ∈ �  is the network output, ( ) unu t ∈ℜ  represents the input, 

and n nA ×∈ � , un nB ×∈ � , and yn n
C

×∈ � , are interconnection matrices. The activation 

function is defined by the function ( )σ ⋅ . 

 

( 1)nx t −

( )ny t( )nx t
( 1)u t −

�

( )σ ⋅

 

Figure 3.7 − Recurrent neural network. 

 

Support vector regression 

A particular structure of a time delay neural network is the support vector regression 

(SVR). The SVR consists in an extension of the Support Vector Machines (SVM) 

usually applied to classification problems, for the regression case. Both SVR and SVM 

are based on the statistical learning theory developed by Vapnik (1998)§78. The usage of a 

non-linear kernel transformation to map the input samples into a higher dimensional 

space (feature space), where linear regression or classification can be performed, is the 

major distinctive feature of these methods. 

Assuming the following formulation for the prediction problem, 

( ) ( )(̂ 1) ( ), , ( 1) ( )ay t SVR y t y t n f D t+ = − + =…  (3.35) 

the regression consists in estimating a function ( )f ⋅  such that ( )( 1) ( )y t f D t+ =� , where 

( 1)y t +�  is the predicted value, and 
1,( ) anD t ∈�  is a vector composed of current and past 

values used in the prediction. Considering a given training dataset 

{ }1 1 2 2( , ), ( , ), ..., ( , )n nD y D y D y  with n  input/output data pairs ( , )i iD y , two different 

regression scenarios can be considered: linear and non-linear.  
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Linear regression 

In the case of linear regression, ( )f ⋅  is a linear function described by 

( ) ,i if D w D b= +  (3.36) 

where 
1, anw ∈� , .,.  denotes the dot product operator, and b  represents a bias. 

Firstly, the desired ( )f ⋅  function should be flat, which implies that w  should be small. 

Thus, flatness is ensured by the minimization of 2 ,w w w= . In addition, ( )f ⋅  must 

approximate all desired predictions iy  within a precision of a given value ε . However, 

to account for prediction errors higher than ε , a soft margin is considered by 

introducing slack variables ξ ,
*ξ  into the problem. Then, the optimization problem to 

solve is formulated as (3.37) and (3.38). 

*2
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i i
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+ +∑  (3.37) 
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(3.38) 

The constant 0C >  represents the trade-off between the flatness of ( )f ⋅  and the 

quantity of tolerated errors higher than ε . This corresponds to dealing with the 

ε -insensitive loss function expressed by (3.39). 

{ }0,max
ε
ξ ξ ε= −  (3.39) 

Formulations (3.37) and (3.38) correspond to the classical model of the linear SVR. 

However, a computationally more efficient alternative consists in the dual formulation 

using Lagrange multipliers (Smola and Schölkopf, 2004)§79. 

The dual problem can be described as 
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(3.41) 
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The result is the optimal value for w  given by 

* *

1

( )

n

i i i

i

w Dα α

=

= −∑  (3.42) 

and the corresponding regression function can be described by 

*

1

( ) ( ) ,

n

i i i

i

f D D D bα α

=

= − +∑  (3.43) 

 

Non-linear regression 

In the case of non-linear regression, the main idea is to map the training vectors iD  into 

a feature space F  and then perform the linear SVR algorithm.  

Let ( )z Dφ= , where ( )φ ⋅  is a mapping of appropriate dimensions. In the feature space 

F , the function ( )f z  is linear, that is, ( ) ,f z w z b= + . As referred, the algorithm is 

based on the dot product between patterns D , hence the explicit knowledge of ( )φ ⋅  is 

not necessary. Rather, only the dot product ( ), ( )i jD Dφ φ , represented by the kernel 

function ( , ) ( ), ( )i j i jK D D D Dφ φ= , is required. This step corresponds to the kernel 

trick, and the corresponding optimization problem is  
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subject to 

*

1

*

( ) 0

0 , 1,..,

n

i i

i

i i C i n

α α

α α

=

=−

≤ ≤ =

∑
 

(3.45) 

Therefore, the optimal value for w  is 

* *

1

( ) ( )

n

i i i

i

w Dα α φ

=

= −∑  (3.46) 

and the corresponding regression function can be described by 

*

1

( ) ( ) ( , )

n

i i i

i

f D K D D bα α

=

= − +∑  (3.47) 

For the non-linear case several kernel functions have been proposed, having to satisfy 

the Mercer’s condition (for more details please refer to Vapnik, (1998))§80. The choice of a 

kernel, which depends on the application, usually is made on a trial and error basis. A 

prior knowledge about the linearity of the data leads to a linear kernel or, in the 
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non-linear case, it helps to select the appropriate kernel. However, the usual strategy for 

kernel selection consists in the observation of the prediction performance on validation 

data. The most commonly used are the linear, the polynomial, the sigmoid and the 

radial basis function (RBF) or Gaussian.  

Given its good performance in many different non-linear regressions and classification 

applications, the RBF is one of the most widespread kernels. In particular, 
2

( , ) ( )i j i jK D D exp D Dγ= − − , where the scalar γ  is known as the width of the 

Gaussian kernel. 

 

3.3.4 Wavelet-based Time Series Prediction  

Introduction 

Research works, as well as practical results, have shown that wavelet transform is a 

powerful tool for time series analysis (Nason and Sachs, 1999) §81. As mentioned in the last 

chapter, the discrete wavelet transform (DWT) is a mathematical tool that basically 

describes a time series in terms of a set of orthogonal basis functions and respective 

coefficients. 

Initially, most research around wavelet transform focused on the detection of patterns 

and transient events (Priestley, 1996)§82, (Morrettin, 1997)§83, (Gao, 1997)§84, (Percival and 

Walden, 2000), mainly due to its capacity to provide a local representation in both time 

and frequency domains§85. Other common application was in the support of compression 

methodologies, since the description of the signal can be highly concentrated in the most 

representative scales. In fact, it was shown that the DWT can effectively compress a 

wide range of signals, since a large proportion of the coefficients can be set to zero 

without appreciable loss of information. On the other hand, due to the notable 

approximation property of wavelets (Chui, 1992)§86, (Daubechies 1992)§87, (Meyer, 1987)§88, 

(Mallat, 1989)§89, and to  their inherent capacity to deal with non-stationary data and to 

cope with heterogeneous and transient behaviour, wavelet-based approaches were also 

introduced with the purpose of modelling and forecasting non-linear dynamical systems. 

Although the wavelet transform is not a true forecasting technique, when combined with 

common prediction methods, it can improve forecasting results. In effect, Bjorn (1995)§90 

used the discrete wavelet transform to decompose a signal into several scales and 

considered that each of the extracted scales could be viewed as a stationary time series, 

which could be individually modelled, analysed, and predicted. Ramsey (2002)§91 stated 

that improvements could be achieved by decomposing the series to be forecasted into its 

timescale components, by means of the wavelet transform, and devising appropriate 

forecasting strategies for each of them. He justified the approach by the fact that the 

wavelet transform allows to separate time series data into trend, seasonal fluctuations 

and noise, thus enabling to isolate the local from the global. And, since prediction 

targeted the permanent components of the series rather than the strictly local events, 
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with the separation of these two effects it would be possible to improve forecasts by 

eliminating the contamination from strictly local non-recurrent events. He referred works 

using ARIMA models and neural networks (Aussem et al., 1998)§92 for the forecasting of 

individual components. For all the cases, the final forecast of the complete series could 

be obtained by adding up the individual forecasts. 

Trends extraction 

A general time series ( )X t  can be seen as composed of some individual components, 

equation (3.48): a smooth changing function or the so-called trend ( )tX t , a function with 

a known period (such as daily, weekly), referred to as a seasonal component ( )sX t , and 

a random stochastic component ( )X tξ , sometimes called the noise process. 

( ) ( ) ( ) ( )t sX t X t X t X tξ= + +  (3.48) 

Although there is no consistent accepted definition for trend, it is usually regarded as a 

non-random (deterministic) smooth function representing near-term/long-term 

movement or systematic variations in a time series. As an example, Craigmile and 

Percival (2002)§93 define a trend as “a tendency to increase (or decrease) steadily over 

time” or to “fluctuate in periodic manner”. Kendall (1973)§94 states that the essential idea 

of trend is that “it shall be smooth”, and Chatfield (2000)§95 defines trend as “a long-term 

change in the mean level”. 

In the clinical field, a trend can be defined as a consistent, unidirectional change in the 

value of a variable (biosignal) (Varadharajan, 2004)§96. Such concept strongly relates with 

near-term/long-term patient’s status evolution, providing important insights for the 

patient prognostic. In effect, the analysis of the evolution of some health variables is an 

important way of monitoring a subject’s physiological status, which may help clinicians 

to early assess potential critical events, as well as to project the impact of their 

decisions. As a result, the recognition of clinically significant trends in monitored signals 

plays an important role in clinical applications. 

Currently there are available many methods for trend extraction, which differ in their 

complexity and interpretability, as well as in the algorithms and methodologies they use. 

Given their characteristics, the application of wavelets has been recognized as an 

adequate tool for time series analysis and, in particular, for trend extraction. In effect, 

using the wavelet transform, two types of coefficients are obtained, namely wavelet and 

scaling coefficients. The first are related to changes in averages over specific scales, 

whereas scaling coefficients are associated with averages on a specified scale. Since the 

scale that is associated with scaling coefficients is usually rather large, the information 

captured by these coefficients agrees well with the notion of trend. Thus, the key idea 

behind trend analysis with wavelets, is the association of the scaling coefficients with the 

trend. 
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Wavelet-based methodologies 

In recent times, there has been an increased interest in developing hybrid schemes, 

merging wavelet decomposition techniques with simple regressive models, as well as with 

other advanced computational intelligence approaches, such as neural networks and 

neuro-fuzzy systems (Bodyanskiy and Vynokurova, 2012)§97. In parallel, the explicit 

development of specific wavelet neural networks structures have also been exploited by 

other authors. In fact, wavelet approaches for non-linear dynamical systems prediction 

can be usually classified in two major categories: i) multi-resolution wavelet 

decomposition and ii) wavelet neural networks. 

 

i. Multi-resolution wavelet decomposition 

The wavelet transform provides an efficient multi-resolution decomposition of a time 

series into a local representation of the signal in both time and frequency domains, so 

that wavelet-transformed data improves the capability of a forecasting model by 

capturing useful information at various resolution levels.  

The basic idea of the multi-scale decomposition is to decompose the data into trend and 

irregular components. Thus, the forecasting of stationary data and of non-stationary 

data can be separately achieved. In effect, by decomposing the non-stationary time series 

of non-linear systems into different components, it is possible to achieve a better 

separation of the general trend terms. The application of the most suitable prediction 

methods (for example, linear regressive structures or non-linear neural networks 

methods) to the components under different resolutions, has the potential to produce 

more accurate prediction results. Figure 3.8 illustrates this idea.  

 

�

 

Figure 3.8 − Prediction using a multi-resolution decomposition scheme. 

 

Concerning the predictors, several approaches have been proposed, which differ, among 

others, in: 

� The representation they assume (input-output or state space methods);  
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� The specific structure (regressive, neural networks, fuzzy systems); 

� How to achieve multi-step predictions (direct or iterative approaches); 

� The way the parameters of the prediction model are computed (such as simple 

least squares methods, backpropagation methods and genetic algorithms). 

 

One of the pioneering works was presented by Aussem et al. (1998)§98. They proposed a 

strategy to improve neural network prediction accuracy, based on the idea of combining 

predictions at varying resolution levels. Specifically, a dynamical recurrent neural 

network was trained at each resolution scale with the temporal-recurrent 

backpropagation algorithm. They proposed the employment of the particular à-trous 

wavelet transform (redundant transform where the decimation is not carried out) and 

they applied the strategy to the prediction of sunspot series.  

A similar hybrid model, combining wavelet analysis with artificial neural networks, was 

suggested by other authors (Gan et al., 2005)§99, (Loh, 2003)§100. Basically, wavelets were used 

to decompose the original time series into a certain number of sub-time series that were 

separately predicted employing artificial neural network structures (typically time 

delayed neural networks). The short and long term prediction capabilities were validated 

in several time series examples, revealing that the suggested scheme could improve the 

forecast accuracy and prolong the prediction horizon, when compared with common 

neural networks based approaches. 

Kaboudan (2005)§101 followed a similar wavelet neural network strategy for the prediction 

of sunspot series. Original time series was first transformed using the Haar wavelet, and 

for the neural networks training, he proposed the use of genetic algorithms as an 

alternative to the back-propagation learning method.  

Pan and Wang (1998)§102 introduced a new wavelet-based estimator that combined state 

space models with wavelet transform, mainly exploiting wavelet-Kalman filter methods 

to deal with non-stationary processes. Basically, the coefficients of the wavelet estimator 

were formulated as a stochastic process, so that the Kalman filter could be applied in 

their estimation. Zheng et al. (2001)§103 followed the same idea, proposing to assume the 

wavelet coefficients as the state variables of a state space model, possible to estimate by 

the recursive extended Kalman filter algorithm. In the same context, Zhao et al. (2006)§104 

proposed the use of unscented Kalman filters, a powerful non-linear estimation technique 

that was originated from the standard Kalman filter theory. 

Yousefi et al. (2005)§105 suggested the use of different predictors according to the 

characteristics of the signals obtained at each decomposition level. In effect, signal 

decomposed into different levels presents different behaviours. For a highest level 

(smooth signal) a spline fit was applied to extend the signal. For the lower detail levels 

(showing higher frequencies) trigonometric functions, such as a sine wave, seemed to be 

more appropriate for obtaining an extension of those parts of the signal. 

Zhang et al. (2001)§106 introduced a mechanism to select the optimal length of the time 

window applied for determining the number of regressions in a wavelet neural network 
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short-term forecast scheme. In a first phase, a multi-resolution decomposition was 

performed, using an à-trous algorithm to guarantee the shift-invariance of the wavelet 

transform. In a second phase, a Bayesian mechanism for automatic relevance 

determination, enabling the selection of relevant inputs for the separate multi-layer 

perceptron models, was carried out. In effect, when applying neural networks to time 

series forecasting, it is important to decide on the appropriate size of the time-window of 

inputs. This is similar to a regression problem, in which there are many possible input 

variables, some of which may be less relevant or even irrelevant to the prediction of the 

output variable. The automatic relevance determination provides a way for choosing the 

length of past windows to fed the neural networks. The proposed strategy was validated 

against simulation data, involving four different financial datasets. 

Popoola (2007)§107 presented a wavelet hybrid scheme, incorporating multi-scale wavelet 

decomposition into a set of fuzzy-rule bases. The approach employed a shift invariant 

wavelet transform, designated as maximal overlap discrete wavelet transform (Percival 

and Walden, 2000)§108, and a fuzzy-rule base was created to separately predict each wavelet 

decomposition. To generate a global forecast, the prediction results of individual wavelet 

decompositions were directly combined using the linear reconstruction property of the 

wavelet multi-resolution analysis. The proposed approach was validated in the 

forecasting of non-stationary financial time series. 

Similarly to the previously referred work, Rajaee et al. (2010)§109 investigated the prediction 

of suspended sediment load by the conjunction of neuro-fuzzy with wavelet analysis. In 

the proposed model, observed time series of river discharge and suspended sediment load 

were decomposed at different scales by wavelet transform. Then, total effective time 

series of discharge and suspended sediment load were fed as inputs to the neuro-fuzzy 

model for the prediction of suspended sediment load, one day in advance. Results 

showed that the performance of the wavelet analysis and neuro-fuzzy model was better 

in the prediction rather than the neuro-fuzzy model itself. 

Motivated by the successful applications of wavelet approaches in non-linear dynamical 

modelling, especially by the flexibility and adaptability of the wavelet NARMAX 

models, Wei and Billings (2006)§110 introduced a class of multi-resolution wavelet models to 

derive a direct predictor for accurate multi-step predictions of non-linear time series. 

The results were later extended by the same authors, also in the context of long-term 

predictions, which presented a new direct predictor involving multi-resolution wavelet 

transform combined with regressive models111. They showed that improved predictions 

could be obtained using the new approach based on three simulation examples. 

Renaud et al. (2003)§112, Renaud et al. (2005)§113 and Benaouda et al. (2006), developed an 

hybrid scheme combining wavelet and regressive models. However, instead of using a 

separate prediction for each decomposition level, a different idea was explored. The 

prediction was based on a small number of wavelet coefficients (the most relevant), 

obtained from the decomposition at different scales. Assuming a time series ( )Y t , 

collected from the past to the current time instant t, the detail coefficients, ,i jd , and the 
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approximation coefficients, ,i ja , to be used in the prediction of a particular value 

( 1)y t + , are obtained by (3.49). 

, 2 ( 1)       
1,2, ,     1,2, ,j jj t k

d k A j L− − = =… …  

(3.49) 

, 2 ( 1)       
1,2, ,L jL t k

a k A− − = …  

The Figure 3.9 illustrates these values for a decomposition of level 4L = , order 2jA =  

and 2 16LN = = . For the prediction of (̂ 1)y t + , the wavelet coefficients at level 1j =  

are ( 1, 1, 2, t td d − ); the wavelet coefficients at level 2j =  are 2, 2, 4( , )t td d − ; the wavelet 

coefficients at level 3j =  are ( 3, 3, 8, t td d − ); the wavelet coefficients at level 4j =  are 

4, 4, 16( , )t td d − . The coefficients corresponding to the approximation component are 

4, 4, 16( , )t ta a − .  

 

���

(̂ 1)y t +

 

Figure 3.9 − Wavelet coefficients used for the prediction of the next value. 

 

In this scheme, only ten coefficients are used for the prediction, which reflect detail and 

low-resolution information. The choice of this small set of lagged wavelet coefficients can 

be justified by two main reasons: completeness and parsimony (Renaud et al., 2005)§114. 

Completeness in the sense that the selected coefficients correspond to orthogonal basis 

for all the past values. So, for large jA , these coefficients are just enough to express all 

the information of the series. Parsimony in the sense that the minimum number of 

coefficients to ensure a correct prediction is considered.  

By means of a non-decimated Haar (à-trous) algorithm for wavelet decomposition and 

using the mentioned lagged wavelet coefficients as the inputs, Renaud et al. (2003)§115 

developed a linear wavelet prediction model, known as multi-scale autoregressive model, 

and also introduced a non-linear predictive model using neural network structures. 

Thus, for the linear case, equation (3.50) is verified,  

, 1,, 2 ( 1) , 2 ( 1)

1 1 1

(̂ 1)

j j

j L

A AL

j k L kj t k L t k

j k k

y t c d c a+− − − −
= = =

+ = +∑ ∑ ∑  (3.50) 
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where j is the number of levels ( 1,2, ,j L= … ), jA  is the order of the regressive model 

( 1,2, , )jk A= … , ,j kd  represents the wavelet detail coefficients, ,j ka  represents the 

approximation coefficients, and ,j kc  denotes the regressive coefficients. 

For the non-linear case, a neural network model was proposed, as described by (3.51). 

, 1,, 2 ( 1) , 2 ( 1)

1 1 1 1

(̂ 1)

j j

j L

A AM L

m j k L kj t k L t k

m j k k

y t w c d c aσ +− − − −
= = = =

   + = +    
∑ ∑ ∑ ∑  (3.51) 

In the previous equation, ( )σ ⋅  is an activation function in the hidden layer, which 
usually is a sigmoid logistic, and mw  is the weight between a neuron (M neurons) and 

the output (̂ 1)y t + . To obtain the optimal weights (parameters), evolutionary 

programming algorithms or gradient-based back-propagation were proposed by the 

authors.  

 

ii. Wavelet Neural Networks 

Real systems are typically time-varying, which makes the application of regressive 

schemes (linear or non-linear) a difficult task. In effect, assuming the N observed past 

values of a given time series, ( ),   1,...,y t n n N− = , a typical regression model addresses 

the prediction by building a mapping ( )f ⋅ , such that future values are based on current 

and past observations, ( ) ( ( ), ( 1),...)y t p f y t y t+ = − . However, it is not easy to express 

how ( 1)y t−  influences ( )y t  and, simultaneously, using the same mapping, how 

( 1)y t N− −  influences ( )y t N− . To overcome this limitation, Ling and Wu 

(2005) §116proposed artificial process neuron model structures. The major characteristic that 

distinguishes the process neuron from the traditional artificial neuron, is that inputs and 

corresponding weights can be time-varying functions. A wavelet process neuron model, 

proposed by Gang et al. (2008)§117, is a structure that merges process neuron models with 

wavelet functions, as illustrated in Figure 3.10. 

1( )w t

( )y t

b

( )σ ⋅

( )nw t

1( )u t

( )nu t

 

Figure 3.10 − Diagram of a wavelet process neuron model. 

 

The wavelet process neuron model is composed of four main components: inputs, 

weights, an activation unit and the output. The inputs ( )iu t  and the connection weights 

( )iw t  of the wavelet process neuron, are continuous time-varying functions. The 
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activation function ( )σ ⋅ , can be a generic function related with wavelet decomposition, 

which provides the structure with the capability of handling two dimensional 

information of time and space simultaneously. The output ( )y t  of the wavelet process 

neuron model is given by (3.52), where the variable b is a bias term. 

1 0

( ) ( ) ( )

Tn

i i

i

y t w t u t dt bσ

=

   = −     
∑∫  (3.52) 

Using a neural network composed of several wavelet process neurons, Gang et al. (2008)§118 

proposed a predictive scheme able to deal with the mentioned time-varying limitations. 

Figure 3.11 depicts a wavelet neural network composed of n neurons. The first layer is 

the input layer, which has only one node. The second layer is the hidden layer, which is 

composed of n wavelet process neurons. The last layer is the output layer, which also 

has only one node.  

 

( )tψ∑∫

( )y t
( )tψ∑∫

( )tψ∑∫

(̂ 1)y t +

1( )w t

( )nw t

1υ

nυ

2( )w t 2υ

 

Figure 3.11 − Architecture of the wavelet neural network predictive scheme. 

 

Assuming a time series ( ),   0,1,...,y t n n N− = , the estimation of the next output 

(̂ 1)y t + , based on the wavelet neural network, can be expressed as (3.53). 

1 0

(̂ 1) ( ) ( )

Tn

i i i

i

y t w t y t dt bυ ψ

=

   + = −     
∑ ∫  (3.53) 

In the previous equation, ( )iw t  denotes the connection weight function between the thi  

wavelet process neuron in the hidden layer and the input unit ( )y t . The parameter iυ  

identifies the connection weights between the thi  wavelet process neuron in the hidden 

layer and the output unit (̂ 1)y t + . Finally, ()ψ ⋅  is the wavelet basis function of the 
wavelet process neurons in the hidden layer. 

This method and the corresponding learning algorithm were successful applied by Gang 

et al. (2008)§119 to Mackey–Glass time series prediction. Moreover, results showed that the 

wavelet neural network has a faster convergence and presents a higher prediction 

accuracy when compared with the typical multi-layer neural networks.  
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3.3.5 Non-decimated Wavelet Transform 

Shift variance 

The result of a discrete wavelet transform typically assumes a hierarchical form to 

represent the information content, as it was illustrated in section 2.4.2, Figure 2.4. Such 

representation (hierarchical tree) is originated by the process of decimation or the 

retaining of one sample out of every two. The major advantage of decimation is that just 

enough information is kept to allow the exact reconstruction of the input data, thus it is 

ideal for compression applications. On the other hand, from the down-sampling 

operation, a significant potential problem occurs: a shift-variant transformation is 

obtained by the process.  

Shift-variance is, by definition, ”a phenomenon of not necessarily matching the shift of 

the one-level DWT with the one-level DWT of the same shift of a data sequence” (Chui, 

1987)§120. In other words, due to shift-variance, small shifts in the input signal may cause 

large changes in the wavelet coefficients. That is, a translated version of a signal does 

not correspond to the translated version of the wavelet transform of that signal.  

Unquestionably, shift-invariance is important in many applications, namely in modelling 

and prediction tasks. In the context of prediction, wavelet decomposition should be 

ideally performed in such a way that the wavelet coefficients (for each level) at a time 

instant t should not be influenced by the behaviour of future instants. As a consequence, 

wavelet coefficients at a time instant t should be calculated from signal samples at 

instants before or equal to t, but never after.  

 

The simplest way to avoid shift-variance is to skip the down-sampling operation and this 

is, in effect, the key principle that differentiates the normal from the so-called redundant 

or non-decimated wavelet transforms. The non-decimation is inherently a redundant 

scheme, as the output of each decomposition level contains the same number of samples 

as the input. In fact, a redundant transform of a N-length input time series originates, 

for each of the decomposition levels, a N-length resolution scale (the same length as the 

original signal). Although the drawback of the larger storage requirements, by means of 

this procedure it is possible to relate information at each resolution scale with the same 

point in time.  

To achieve shift-invariant wavelet transforms, several modifications have been 

independently proposed and a number of different names have been suggested for the 

same principle. The original implementation was in the form of the à-trous (with holes) 

algorithm (Starck et al., 2007)§121, (Shensa, 1992)§122, which refers to the insertion of zeros in 

the filters. Other variations are the non-decimated discrete wavelet transform, the 

overcomplete discrete wavelet transform (Zaciu et al., 1999)§123, the shift-invariant discrete 

wavelet transform (Lang et al., 1995)§124, the discrete wavelet frames (Unser et al., 1998)§125, 

and the maximal overlap discrete wavelet transform (Percival and Walden, 2000)§126. 
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The à-trous wavelet transform 

Among the several redundant discrete wavelet transforms (Aussem et al., 1998)§127, the 

à-trous exploits the redundant information by eliminating the decimation effect to 

generate approximations and details. Applying the à-trous wavelet transform to a signal

( )X t , the respective scaling coefficients, at different scales, are computed by equations 

(3.54) and (3.55) (Renaud et al., 2005)§128. 

0( ) ( )A t X t=  (3.54)

1
1( ) ( ) ( 2 )

f

f

n

j
j f j

k n

A t L k A t k−
−

=−

= +∑  (3.55)

The variable j  identifies the decomposition level ( 1, ,j L= … ), ( )fL ⋅  is a low pass filter 
with compact support, and the parameter fn  is related with the filter length. The 

increase in the distances between the points, ( 12 j− ), explains the designation of à-trous 

(from the French, with holes), since it defines the information that is discarded/taken 

into account in the computation of the transform. The wavelet coefficients at scale j, 

( )jD t , can be obtained by taking the difference of the successive smoothed version of the 

signal as described by (3.56). 

1( ) ( ) ( )j j jD t A t A t−= −  (3.56)

 

 

The vector composed of the coefficients [ ]1 2, , , ,L LD D D A…  represents the à-trous wavelet 

transform of the signal up to the level L. Moreover, the original signal can be 

reconstructed as a linear combination of the wavelet and scaling coefficients, equation 

(3.57). 

1

( ) ( ) ( )

L

L j

j

X t A t D t

=

= +∑  (3.57)

The approximation term ( )LA t  represents a smooth trend of the original signal ( )X t , 

while the terms ,  1, ,jD j L= … , provide the details of the signal, which capture small 

features in the data.  

The computational complexity of the à-trous wavelet algorithm, considering a fixed 

number of scales (L), is of ( )O N , where N  is the length of the signal.  

The Haar à-trous wavelet transform 

Among the several alternatives in terms of the à-trous wavelets, the simplest is the Haar 

one (Zheng et al., 1999)§i129, which uses the following filter, equation (3.58). 

1 1

2 2
fL

 
=  
  

 (3.58)
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The Haar à-trous wavelet transform ensures that at any time instant t, the information 

after t is never used to compute the scaling and wavelet coefficients. Moreover, in 

opposition to typical wavelets, which require that the length of the signals is in the form 

2nN = , where N  defines the length and n ∈ �  is an integer, the à-trous transform 

does not have any restriction regarding the length of the signal. 

 

Using the referred simple filter, (3.58), equations (3.54) and (3.55) can be simplified. In 

effect, considering the first decomposition level, the approximation and detail are 

obtained as follows, equation (3.59). 

0( ) ( )A t X t=  

( )1 0 0

1
( ) ( ) ( 1)

2
A t A t A t= + −  

1 0 1( ) ( ) ( )D t A t A t= −  

(3.59)

This result can be easily extended to any decomposition level, as shown in equation 

(3.60), which establishes a straightforward implementation of the Haar à-trous wavelet 

transform. 

( )1

1
( ) ( ) ( 2 )

2
j

j j jA t A t A t+ = + −  

1 1( ) ( ) ( )j j jD t A t A t+ += −  

(3.60)

Figure 3.12 shows the time steps that are used to compute the wavelet coefficients at the 

different scales, considering a decomposition level of 4L = . As can be observed, a 

wavelet coefficient at a time instant t is computed from the signal samples at instants 

before or equal to t, but never after. 

 

Figure 3.12 − Time steps used to compute the à-trous wavelet coefficients at the different scales. 
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3.4 Proposed Prediction Strategies  

 

3.4.1 Main approach 

Prediction and diagnosis methodologies have been intensively studied in multiple areas, 

including medicine. Examples of these are neural networks structures and fuzzy systems, 

as well as numerous other methodologies involving signal processing techniques 

(Shankaracharya et al., 2010)§130, (Ephzibah and Sundarapandian, 2012)§ 131. 

Particularly in the clinical field, it is usually very difficult to derive accurate 

mathematical models that take into account all involved variables and respective 

relationships, as a result of the complex interaction between multiple physiological 

variables. Furthermore, a fundamental aspect to consider in the development of such 

models, is the availability of data to compute the necessary parameters (training 

process). In effect, given the complexity of the dynamics and behaviour of most 

physiological systems, it is essential a representative dataset (both in quantity and in 

quality) to capture the diversity and variability of such systems. Even in case the 

dataset is available, the selection of the most representative examples may be not a 

straightforward process.  

On the other hand, clinical professionals frequently have to make decisions based on 

their experience and knowledge, mainly by observing temporal trends of multiple signals. 

In effect, for complex systems, prediction and diagnosis approaches can be interpreted as 

a pattern recognition problem, very often not requiring explicit system modelling.  

From the exposed, two main prediction strategies will be exploited in this work:  

i) The first approach assumes the development of accurate models for the 

prediction of physiological time series. It is based on a multi-model scheme 

assuming the existence of a suitable dataset for the required training process.  

ii) The second approach does not involve the explicit development of a model. 

It aims the estimation of the time series evolution trend, based on similar 

conditions retrieved from a historic dataset. The strategy is based on a wavelet 

multi-resolution scheme, where the most representative decomposition levels are 

selected to project the future trend. 

In both schemes the starting point is the similarity analysis process introduced in the 

previous chapter. In the first strategy (multi-model scheme), the sequences in the 

historical dataset that present a dynamics similar to the current template are selected to 

compose the adequate dataset for the training of the neural models. In the second (trend 

estimation), these sequences are directly employed to predict the current time series 

future evolution, without the use of an explicit model. 
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To perform the similarity analysis an approach combining wavelet decomposition with 

the Karhunen-Loève transform was introduced in Chapter 2. Considering a template 
1,( ) NX t ∈� , the similarity analysis process originates a set of M  similar conditions 

(patterns), { }1,( ) ( ) N
mt X t≡ ∈X � , 1,..,m M= , from where the corresponding 

subsequent P future values, { }1,( ) ( ) P
mt Y t≡ ∈Y � , are straightforwardly obtained 

(known past values). 

( ) ( )    1, ,m mX t Y t m M→ = …  

such that 

( )     ( )mX t is similar to X t  

 

The global set of patterns, 
,( ) MN Pt +∈Z � , is therefore composed of two components 

( )tX and ( )tY , in the form: 

( ) [ ( ) ( ) ]t t t=Z X Y  (3.61) 

Figure 3.13 illustrates the concept behind the proposed prediction approach. Basically, 

the known “future” evolution of the selected patterns, { }( ) ( )mt Y t≡Y , can be used in a 

prediction mechanism to estimate the evolution of the current template, �( )Y t .  

 

( )X t

( )mX t

0t

( )tX ( )tY

1( )X t
1 ( )Y t

( )mY t

ˆ( )Y t

 

Figure 3.13 − Generic approach of the proposed prediction methodology. 

1. Neural network multi-models scheme 

The first approach addresses the forecast of time series through a predictive strategy 

based on a multi-models scheme using regression structures. Among regression models, 

neural networks have shown considerable capabilities to learn and to generalize from 

non-linear environments, enabling to capture the fundamental data dynamics. 

Additionally, since an independent neural sub-model is used for each sampling instant, 
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and does not depend on previous predictions, simple neural structures can be employed. 

Particularly in the present work, the capacity of the Generalized Regression Neural 

Networks will be exploited for modelling and prediction purposes. Figure 3.14 depicts 

the proposed multi-models scheme. As can be observed, it is mainly composed of three 

distinct phases: i) similarity analysis to identify patients who display a similar behaviour 

in their physiological time series; ii) multi-models training based on the time series 

retrieved from such patients (patterns), { }( ) ( )mt X t≡X  and { }( ) ( )mt Y t≡Y ; iii) feeding 

the set of trained models with the current patient signal segment (template), ( )X t , in 

order to estimate its future values, �( )Y t . 

 

Historic dataset
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analysis

template           

Prediction

( )X t

1

M

�

P   

( )X t
ˆ( )Y t

1 

3  

1
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S  

P

N P

P
0t

N

N P

( )MY t

1
( )Y t

1

( )X t

0t

( )X t

Multimodels

(̂ )y t p+

( )MX t

 

Figure 3.14 − Proposed multi-model prediction methodology. 

 

i. Direct approach versus multi-models scheme 

As mentioned, to derive long-term predictions two main approaches can be employed: 

the iterative and the direct (multi-models). Theoretically, long-term predictions can be 

obtained from a short-term predictor, by simply applying a one-step ahead predictor, 

iteratively. Direct approaches are applied to a specific future instant, in a way that is 

similar to the computation of the one step prediction. However, a different model is 

required for predicting each instant (multi-models scheme).  
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The iterative approach is often more adequate in cases where the fundamental dynamics 

is correctly captured by a short-term model (typically, a one-step ahead model). On the 

other hand, the main advantage of the direct method is the fact that direct forecasts are 

usually more robust in case of model misspecifications. In effect, by using a specific 

model for each future time instant, prediction errors are not accumulated and long-term 

predictions can be accurately estimated.  

Given the exposed, a direct approach will be explored in this work for predicting the 

future values of the current signal ( )X t , that is, ( )Y t . Basically, a neural network 

multi-models scheme, where a different model () ( 1,.., )pf p P⋅ =  is derived for every 

future time instant 0pt t p= + , is employed in the estimation of (̂ )py t . Fundamentally, 

each model makes use of a time series regression formulation using neural networks, as 

described in (3.62). 

( )0 0 0(̂ ) ( ), ( 1), ...py t p NN y t y t+ = −  (3.62)

 
 

ii. Neural networks to be incorporated into the multi-model scheme 

The selection of the most adequate forecasting model to be part of the multi-model 

scheme is, definitely, a complex issue. In effect, several aspects have to be considered in 

this process, such as linear versus non-linear approaches, and time domain versus 

frequency domain approaches. A common solution consists in linear prediction models, 

based on time series regression analysis. However, this solution generally only produces 

reasonable prediction results for short-time forecasts and for linear time series signals. As 

it is known, biosignals are inherently non-linear and non-stationary, thus, the 

application of such methods is questionable. Recent advances in signal processing and in 

non-linear time series modelling have contributed to improve the potential of the 

prediction techniques. Approaches based on non-parametric regression, artificial neural 

networks, wavelet decomposition, among others, have showed to be adequate in many 

areas where linear regression methods have faced some difficulties. 

Neural networks models are universal approximators and, theoretically, they can deal 

with any complex mapping, whether linear or non-linear. Thus, due to their powerful 

capacity in capturing non-linear mappings, high accuracy for learning and good 

robustness properties, they have been widely used in several areas, namely, for 

classification, modelling and prediction tasks. Moreover, they also have the capacity to 

learn the behaviour of poorly-understood phenomena and systems where the dependency 

between inputs and outputs are too complex to be mathematically described. 

Additionally, the prediction results of a well-trained neural network are usually accurate. 

Given the exposed reasons, neural networks were chosen to integrate the multi-model 

structure. 
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2. Wavelet multi-resolution scheme 

The second scheme exploits the wavelet transform to estimate the trend of a time series. 

As mentioned, wavelet transform is not a true forecasting technique itself. It provides a 

formal method to de-noise, de-trend, and decompose a complex time series, capturing 

useful information at various resolution levels, so that the capacity of a forecasting 

model can be improved.  

Figure 3.15 depicts this global multi-resolution scheme. It is composed of three main 

distinct phases: i) similarity analysis to identify patients who display similar behaviour 

in their physiological time series; ii) multi-resolution decomposition of the time series 

retrieved from such patients, { }1,( ) ( ) N
mt X t≡ ∈X �  and { }1,( ) ( ) N

mt Y t≡ ∈Y � ; iii) 

projection of the current patient data (template), ( )X t , into the future, �( )Y t , by 

combining the optimal decomposition levels of the historic patterns ( )tY .  

 

( )X t

( )X t
ˆ( )Y t
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Figure 3.15 − Proposed wavelet multi-resolution prediction methodology. 

The forecasting process using the wavelet transform typically involves the independent 

prediction of each decomposition level, through regressive models such as ARIMA or 

neural networks. Subsequently, the individual predictions are combined to derive the 

global time series prediction. Following a different approach, the methodology proposed 

in the present work does not explicitly involve a model. In effect, it is based on the 

wavelet decomposition of the similar historical patterns, in order to derive an optimal 

future trend for the template. To achieve this goal two main steps are required. 
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i. Representative trends  

The first step involves the wavelet decomposition of the similar historic time series 

signals. Then, at each decomposition level, the obtained decompositions are combined to 

obtain a representative trend. The subtractive clustering method is used for this 

purpose, given its properties, such as robustness to outliers and the capability to deal 

with the concept of data density. Moreover, the clustering process is carried out based 

on the reduced set of basis derived from the similarity analysis (coefficients) to represent 

each decomposition level. 

ii. Optimal trends 

The second step aims at the selection of a subset from the representative trends, 

designated as optimal trends, to be used in the prediction of the current time series. To 

achieve this goal, an optimization process involving the minimization of a set of 

distance-based measurements is proposed. From this process, it is possible to quantify 

the aptness of each individual representative trend to integrate the optimal subset. In 

particular, the similarity measure proposed in Chapter 2 is employed, comprising the 

original signal ( )X t , the respective wavelet decomposition, and the representative 

trends.  

Finally, the resulting optimal trends are then straightforwardly extended to the future 

and aggregated to derive the global trend, �( )Y t . 

3.4.2 Scheme 1: Neural Network Multi-models 

1. Prediction scheme based on neural network multi-models 

Assuming a direct scheme (multi-models), the prediction process implies the 

construction of a different model for each prediction instant. Thus, each future value at 

a time instant p , ( )y t p+ , has to be independently estimated in the form given by 

(3.63). 

( )(̂ | ) ( ), ( 1),..., ( 1))py t p t f y t y t y t n+ = − − +  (3.63)

The mapping (): n
pf ⋅ →� � identifies the particular model for the thp  instant. The 

variable n  identifies the order of the model, that is, it corresponds to the number of 

past observations that are employed by the prediction model. Using a simplified 

representation, equation (3.63) can be rewritten as (3.64), where ( )tϑ  defines the 

available information at time instant t , and ˆpθ  are the parameters that characterize 

each specific neural mapping. 

(̂ | ) ( ( ), )

( ) ( ), ( 1) ( 1)

ppy t p t f t

t y t y t y t n

ϑ θ

ϑ

+ =

 = − − +  

�

…

 (3.64)
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2. Neural-network regression models 

As previously referred, each regression sub-model ()pf ⋅  is implemented by means of a 

neural network model. Basically, the goal is to build a mapping such that for an input 

( )tϑ  the output (̂ | )y t p t+  is obtained. 

 

ϑ

 
 

− 
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 
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− −
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y t

y t
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y t n

(̂ | )y t P t+
()Pf ⋅

 

Figure 3.16 − Neural network regression model. 

 

Since each neural network model can be independently trained by means of a standard 

backpropagation algorithm, common neural network structures can be easily 

implemented, such as multi-layer neural networks, radial basis networks, etc. 

In particular, generalized regression neural networks (GRNN), a type of radial basis 

function networks, were the elected for this work. A GRNN model can be seen as a 

normalized radial basis function (RBF) network, in which there is a hidden unit centred 

at every training case. These RBF units are called kernels and, usually, are probability 

density functions, such as Gaussian functions. The weights from the hidden to output 

layer are just the target values, so the output is simply a weighted average of the target 

values of the training cases that are close to the given input case. As a consequence, the 

only parameters to be learned are the widths of the RBF units (Bauer, 1995)§132.  

Figure 3.17 depicts an example of a particular static GRNN, consisting of an input with 

three dimensions, 
3,1ϑ∈�  and one output, ( )iy ϑ . Furthermore, four training pairs 

{ , }  1,.., 4j jy jϑ = , and four hidden neurons, (),  1,...,4dh d⋅ = , are considered.  

 

1jϑ

2jϑ

3jϑ

( )y ϑ

dy

dL

 

Figure 3.17 − Example of a GRNN architecture. 
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Receiving the vector of input values jϑ  from the input layer, the hidden layer ()dh ⋅  
computes the Euclidean distance between the input vector and the neuron’s centre of 

the kernel dϑ , to obtain the RBF kernel function, ( )d d jσ ϑ ϑ− . The resulting values are 

passed to the numerator and denominator neurons in the pattern layer, respectively 

1()w ⋅  and 2()w ⋅ . This second unit (denominator) adds the values coming from each of 

the hidden neurons ( )dσ ⋅ , while the first unit (numerator) adds those values multiplied 

by the actual target value ( dy ). Finally, the decision layer, dL , divides the value in the 

numerator unit by the value in the denominator unit to derive the predicted value, 

( )jy ϑ . Mathematically, a GRNN can be described by (3.65). 

11
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The vector jϑ  represents the current input, ( )dσ ⋅  identifies the particular kernel radial 
basis function, dy  is the target output corresponding to the input dϑ , and NT  is the 

total number of training pairs { , }  , 1,..,d dy d NTϑ = . In case a Gaussian radial basis 

function is used, ( )dσ ⋅  is defined according to equation (3.66), where the parameter λ  

defines the kernels width. 

2

( ) ( )

2()

T
d j d j

d exp

ϑ ϑ ϑ ϑ

λσ

− − −

⋅ =  
(3.66)

The principal advantages of GRNNs are their aptness for smooth function 

approximation, their ability to predict the behaviour of systems based on few training 

samples and their interpolation properties between training samples (Bauer, 1995)§133. 

Moreover, they enable a fast learning and, for specific applications, they are often more 

accurate than multi-layer perceptron networks. These properties make the GRNN a very 

useful tool to perform predictions (Rutkowski, 2004)§134. On the other hand, like kernel 

methods, they suffer from the curse of dimensionality dilemma requiring more memory 

space to store the trained model.  

3. Multi-models training 

Once the type of model is selected (GRNN), the next aspect to consider is the definition 

of the required training data. According to the defined strategy, this data can be 

obtained as a result of the similarity analysis procedure. 

On the other hand, the selection of a specific sub-model structure involves the 

characterization of the function ()Pf ⋅  and of the number of past observations to be 

considered by the model. Typically the dimension of the training dataset, 

{ , } , 1,..,d dy d Dϑ = , determines the number of hidden neurons. In the application of the 

GRNN structure to the particular problem of acute hypotensive episodes (AHE) 
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prediction (Section 4.4), the number of previous instants considered by each model 

(designated as the order), together with the time period before the starting of the 

forecast window (designated as size), determine the dimension of the dataset and, 

therefore, the number of hidden layers. These parameters, size and order, as well as the 

prediction scheme, are illustrated in Figure 3.18. 

 

( )X t

0 0(̂ | )y t p t+

0( )
m

y t p+

() ()P Pf NN⋅ = ⋅

0t

( )mX t

( )tX ( )tY

1( )X t
1 0( )y t p+

 

Figure 3.18 − Model 1: Neural network multi-model scheme. 

 

 

In order to train each neural network model, () , 1,..,pNN p P⋅ = , the available 

information ( )tX  (set of M time series similar to the current signal ( )X t ), as well as the 

respective future values, ( )tY , are used. Considering the first instant ( 1 0 1t t= + ), that 

is, one-step ahead prediction, each training data pair is composed of n  values (order) 

obtained from the similar templates, ( )tX  (from instant ( 0 1t n− + ) to instant 0t ), and 

the respective future values ( )tY  (at time instant 1t ), as represented in (3.67). 

{ }0 0 0 1( , 1,..., 1), ( )t t t n t− − +X Y  (3.67)

The training dataset can be extended considering other data pairs, using available 

information before instant 0t . Thus, a set of training data pairs (of dimension size), can 

be used. 

{ }0 0 1( ,..., 1), ( ) 0,...,t s t n s t s s size n− − − + − = −X Y  (3.68)

In general, for training a neural model ()pNN ⋅  to predict time instant 0( )t p+ , 

information from patterns ( )tX  (from instant ( 0 1t n s− − + ) to instant 0t ), and the 
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respective future values ( )tY  at time instant 0pt t p= + , are used. Therefore, the 

training dataset is composed of the following data pairs, (3.69). 

{ }0 0( , , 1), ( ) 0,...,pt s t n s t s s size n− − − + − = −X Y�  (3.69)

4. Prediction with neural-network multi-models 

Once obtained the P  neural models, () , 1,..,pNN p P⋅ = , the prediction of the future P 

values of the unknown signal ( )Y t , that is, 0 0(̂ | )y t p t+ , is straightforwardly performed 

by (3.64), considering the particular time instant 0t t= , as given by (3.70).  

0 0 0

0 0 0 0

(̂ | ) ( ( ),  )

( ) ( ), ( 1) ( ( 1))

py t p t NN t

t x t x t x t n

ϑ θ

ϑ

+ =

 = − − −  

�

…

 (3.70)

The parameters ˆ n
p

θθ ∈ �  characterize the specific mapping, being nθ  the number of 

parameters.  

The main assumption of this strategy is that the dynamics of similar situations in the 

past can be used to predict the future. The current situation is expressed by the time 

series ( )X t , and the dynamics of the past is captured by means of the neural network 

models since they reflect the dynamics of the time series ( )mX t  and respective evolution 

( )mY t . These models are used to estimate the future values of the current time series 

( )X t , therefore, to obtain an estimation (̂ )Y t  of the signal ( )Y t .  
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3.4.3 Scheme 2: Wavelet Multi-resolution 

The Figure 3.19 depicts the main steps involved in the proposed multi-resolution 

prediction scheme, namely: i) template decomposition; ii) representative trends; iii) 

optimal trends; iv) trend prediction. 

( )X t

( )mZ t

ˆ( )Y t

{ }( )W X t

{ }( )mW Z t

 

Figure 3.19 − Steps involved in the multi-resolution prediction methodology. 

Step 1. Template decomposition 

In the first step, the template ( )X t  is decomposed using the Haar à-trous wavelet 

transform (subsection 3.3.5§). The Figure 3.20 illustrates this procedure for a template 

with a duration of 32N = . The level of decomposition considered was 5L = , thus, the 

details ( )ld X t  for scales 1 to 5, plus the smooth trend 
5 ( )a X t , are presented.  

The original time series can be reconstructed at each instant, by employing the 

corresponding value at every scale. This is strongly related with the shift invariance, 

that is, with the possibility to relate information at each resolution scale with the same 

point in time. The Figure 3.20 exemplifies this aspect, where at time instant 0 32t = , 

the signal ( )X t  can be obtained as the sum of details ( )ld X t , for scales 1 to 5, plus the 

smooth trend 
5 ( )a X t , as given by equation (3.71). 

1 2 3 4 5 5
0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )x t d x t d x t d x t d x t d x t a x t= + + + + +  (3.71)
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Figure 3.20 − Template decomposition using the wavelet à-trous transform. 

 

The value 0( )x t  represents the particular value of ( )X t  at time instant 0t , while 0( )ld x t  

and 
5

0( )d x t , respectively denote the values of the details ( )ld X t  and approximation 
5 ( )a X t  at the same instant. For a general case, given a time series 

1,( ) NX t ∈� , its 

wavelet decomposition is represented by { } 1,L NW X +∈� , according to (3.72). 

{ } { }( ), ( ) , 1,..,l LW X d X t a X t l L= =  (3.72)

Step 2. Representative trends 

The second step involves the determination, at each decomposition level, of the most 

representative trends from the historic signals retrieved by the similarity analysis 

procedure. In a first phase, all the identified historic signals are decomposed using the 

à-trous wavelet. Then, in a second phase, the most representative decomposition at each 

level is determined through a clustering process.  
 

i. Wavelet decomposition of the similar time series 

Similarly to the template decomposition, each pattern ( )mZ t  that composes the set of 

M  analogous historic signals is decomposed according to (3.73). 

1

( ) ( ) ( ), 1..,

L
L l

m m m

l

Z t a Z t d Z t t N P

=

= + = +∑  (3.73)
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The variables ( )L
ma Z t  and ( ), 1, , ,l

md Z t l L= …  represent the approximation and the 

details, respectively. Similarly to equation (3.72), this wavelet decomposition can be 

represented as (3.74). 

{ } { }( ), ( ) , 1,..,l L
m m mW Z d Z t a Z t l L= =  (3.74)

It is important to note that, in this case, the decomposition is extended to the “future” 

(time instants from 1N +  to N P+ ), thus, { } 1,L N P
mW Z + +∈� . 

Although the decomposition at each level has been performed considering a set of similar 

time patterns, they are, naturally, different. As can be seen in Figure 3.21, for the same 

decomposition level ( 5L = ), the obtained signals 
5 ( )md Z t  present variations and do not 

perfectly correspond to the decomposition of the template 
5 ( )d X t . In this example, the 

number of patterns considered is 10M = , the length of the template ( )X t  is 32N = , 

and the forecast horizon is 8P = . 
 

5 ( )d X t

0 32t =

5 ( )

1,..,10

md Z t

m =

( )X t

 

Figure 3.21 − Wavelet decomposition of patterns at level l=5. 

 

As result, the next step consists in the extraction of the most representative trend at 

each decomposition level, that is, the trend with major potential to contribute for 

consistent future predictions.  
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ii. Extraction of representative trends 

In order to obtain the representative trend at each level 1,...,l L= , a clustering strategy 

is employed by means of the subtractive method introduced in subsection 2.5.8§, thus 

according to (3.75) and (3.76). 

{ }( ) ( ) ,   1,..,l l
m

d Z t clustering d Z t m M= =  (3.75)

{ }( ) ( ) , 1,..,L L
ma Z t clustering a Z t m M= =  (3.76)

In equations (3.75) and (3.76), 
1,( )l N Pd Z t +∈�  and 

1,( )L N Pa Z t +∈�  denote, 

respectively, the representative details and approximation. 

In order to apply the subtractive clustering method for the extraction of representative 

trends, two main assumptions are considered: i) the subtractive clustering is not directly 

employed to the time series; ii) only a cluster has to be computed.  

To address the first assumption, the M time series at each decomposition level are 

previously described by means of a common representation using the wavelet 

transform/KLT scheme proposed in Chapter 2. 

Consequently, each of the M signals (respective details and approximation) can be 

written as a linear combination of a set of basis, according to (3.77) and (3.78). 

,

1

( )  ( ) , 1, ,
j m

J
l l l

m j

j

d Z t t l Lα ϕ

=

= =∑ …  (3.77) 

,

1

1

( )  ( )
j m

J
L L

m j

j

a Z t tβ ϕ +

=

=∑  (3.78) 

In the previous equations, 
1,( )l N P

j tϕ
+∈�  defines a set of J  basis (wavelets) at the 

decomposition level l, and ,
l
j mα  are the corresponding coefficients. In turn, the variables 

,j mβ  represent the expansion coefficients for the approximation level. Using this reduced 

representation, the decomposition { }
m

W Z  can be defined by a set of coefficients 

{ } 1,L J
mZ

+Φ ∈ . 

{ } { }
1 1 1
1, 2, , 1, 2, , 1, 2, ,

1 2 1

, ,..., ,..., , ,..., , , ,...,

{ }, { },..., { }, { }

m m

L L L
m m J m m m J m m m J m

L L
m m m m

W Z Z

Z Z Z Z

α α α α α α β β β

+

≈Φ =
 = =  
 = Φ Φ Φ Φ  

 (3.79) 

The result of the clustering process (only the first cluster) are the vectors of coefficients, 

{ } { }{ }( ) 1,...,l ld Z t clustering l LΦ = Φ =Z  (3.80)

{ } { }{ }1( )L La Z t clustering +Φ = Φ Z  (3.81)
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where { } { }1
{ },..., { }l l l

M
Z ZΦ = Φ ΦZ , and { } { }1 1 1

1
{ },..., { }L L L

M
Z Z+ + +Φ = Φ ΦZ . 

These coefficients are finally employed to determine the representative trend at level l, 

( )ld Z t , equation (3.82), where { }( )l

j
d Z tΦ is the thj element of the vector { }( )ld Z tΦ  and 

{ }( )L

j
a Z tΦ is the thj element of the vector { }( )La Z tΦ . 

{ }
1

( ) ( ) ( ) 1,...,

J
l l l

jj
j

d Z t d Z t t l Lϕ

=

= Φ =∑  (3.82) 

{ } 1

1

( ) ( ) ( )

J
L L L

jj
j

a Z t a Z t tϕ +

=

= Φ∑  (3.83) 

Figure 3.22 presents the computed representative trend, ( )ld Z t , obtained for the 

example illustrated in Figure 3.21, thus considering 5l = . Note that in this figure the 

signal ( ), 5ld X t l = , was vertical shifted to allow a more clear visualization. 

 

0 32t =

5( ) ( )ld X t d X t=

( )

1,..,10

l
md Z t

m =

( )X t

5( ) ( )ld Z t d Z t=

 

Figure 3.22 − Extraction of the representative trend for the decomposition level l=5. 

Using the representative trends of the several decomposition levels, ( ) ,  1,...,ld Z t l L= , 

and the approximation ( )La Z t , the future instants of the template, �( )Y t , 
[ 1, ]t N N P∈ + + , can be easily obtained.  
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�

1

( ) ( ) ( ) 1,..,

L
L l

l

Y t a Z t d Z t t N N P

=

= + = + +∑  (3.84)

However, this simple approach naturally has some problems. In effect, the patterns are 

not perfectly similar to the template, and the employed ones may present future 

unpredictabilities, inconsistencies, etc., thus resulting in inappropriate future 

estimations. Consequently, in many cases it is not possible to attain good and reliable 

predictions with this methodology.  

Step 3. Optimal trends  

In the third step, the set of representative trends is reduced to an optimal set, that is, to 

a set of trends that have the potential to contribute to a consistent prediction. 

In effect, the proposed methodology selects a subset of the most appropriate 

representative trends (optimal trends) to be considered in the prediction process, by 

minimizing a set of distance-based measures. The main goal is to derive a quantitative 

measure that allows to assess the probability of a representative trend to contribute to a 

correct estimation.  

It is important to remind that no explicit model is involved in this methodology, and 

that its goal is not to perform an accurate prediction, but to obtain a reasonable 

estimation of the future trend. 

i. Distance-based measures 

The distance-based measures are computed for each decomposition level 1,.., 1l L= + , 

where 1L +  stands for the approximation, using: 

� The template 
1,( ) NX t ∈�  

� The corresponding wavelet decomposition at the l  level, 
1,( )l Nd X t ∈�  

� The wavelet decomposition of the similar patterns at the same level, 
1,( ) , 1,..,l N P

md Z t m M+∈ =�  

� The corresponding clustering, that is, the representative trends 
1,( )l N Pd Z t +∈� .  

Based on these signals (depicted in Figure 3.22), a set of distance-based measures 
l
iθ  are 

computed as follows: 

1 ( ( ), ( )), 1, ,l lS X t d X t t Nθ = = …  (3.85)

2 ( ( ), ( )), 1, ,l l lS d X t d Z t t Nθ = = …  (3.86)

3 ( ( ), ( )) , 1, , ; 1, ,l l l
mmean S d X t d Z t t N m Mθ  = = =   … …  (3.87)

4 ( ( ), ( )) , 1, , ; 1, ,l l l
mexp std S d X t d Z t t N m Mθ   = − = =     … …  (3.88)
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5 ( ( ), ( )) , 1 , ; 1, ,l l l
mmean S d Z t d Z t t N N P m Mθ  = = + + =   … …  (3.89)

6 ( ( ), ( )) , 1, , ; 1, ,l l l
mexp std S d Z t d Z t t N N P m Mθ   = − = + + =     … …  (3.90)

As result, a vector composed of six measures is obtained, where [0,1]iθ ∈ . 

1 2 6, ,...,l l l l
R Rθ θ θ =

 Θ =     (3.91)

The similarity measure 1 2( ( ), ( )) [0,1]S X t X t ∈  is defined in section 2.5.5, equation (2.105). 

The operators ()mean ⋅  and ()std ⋅  denote the mean and standard deviation operators, 

respectively. 

These measurements can be qualitatively justified as follows: 

� The first measure, 1
lθ , quantifies the similarity between the original template 

and the respective decomposition (at l level). Therefore, it assesses the 

proximity between the original template and the current decomposition. If they 

are similar it means that the current decomposition level is appropriated to be 

included in the determination of the future trend (they present the same 

behaviour). 

� The second measure, 2
lθ , provides a quantification of how the decomposition of 

historic patterns (representative trend) is similar to the decomposition of the 

template at the same level. Basically, it measures the appropriateness of the 

current representative trend (they present a similar dynamics). 

� The third and fourth measures, 3
lθ  and 4

lθ , quantify the variation of the 

patterns, that is, how homogenous the historic patterns are during the time 

instants corresponding to the template. The more homogenous they are, the 

greater is the probability of their future evolution to be consistent.  

� Finally, the fifth and sixth measures, 5
lθ  and 6

lθ , quantify the discrepancy of 

the patterns, that is, how homogenous the historic patterns are through the 

forecast horizon. The main idea is that a homogenous group increases the 

likelihood to achieve a reliable future prediction.  

 

ii. Selection of the optimal trends 

The optimization strategy, through the minimization of a set of distance-based measures 
l
iθ , selects the most appropriate representative trends in order to increase the correctness 

of the future trend. Therefore, a decision regarding the inclusion or exclusion of the 

representative trend in the global trend, is taken according to the values of these 

measures.  
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In order to combine these parameters into a single index ( )lpΘ , a conjunction operator 

is employed. Examples of such operator are the ()product ⋅  and ()minimum ⋅ . Assuming 

that the ()product ⋅  is employed, the index for each representative trend is obtained 

according to: 

1

( ) 1,..., 1
i

R
l l

i

p l Lθ

=

Θ = = +∏  (3.92)

However, since more than a combination of the representative trends can be considered, 

an aggregation operator is used to aggregate the possible combinations. Examples of 

such operator are the ()sum ⋅  or the ()maximum ⋅ . If two levels iL  and jL  are combined 

by the ()maximum ⋅  operator, the global index ( )p σΘ  is obtained according to (3.93), 

{ }( ) max ( ), ( )ji
LLp p pσΘ = Θ Θ  (3.93)

where the subscript σ  denotes the combination of levels iL  and jL . 

It is important to emphasize that the process involves not only each representative trend 

individually, but also takes into account the combinations of the several representative 

trends. In this case, since various decompositions can be simultaneously combined, 

equation (3.93) is modified to reflect this aspect. 

{ }1( ) max ( ),..., ( ),..., ( )i np p p pσ σ σΘ = Θ Θ Θ  (3.94)

In equation (3.94) the variable iσ  denotes each of the possible level combinations, 

resulting from the operator ( , )C nL nN  (combinations of nL  taken nN  at a time).  

( )
( )!

( , )
! !

nL
C nL nN

nL nN nN
=

−
 (3.95)

In particular, considering the decomposition levels [3,4,5,6]L=  (the last three 

decomposition levels and the approximation), a total of 15 combinations ( , 1,..,15i iσ = ) 

are possible. Namely: 

1 2 3 4([3,4,5,6],1) {3},{4},{5},{6} , , ,C σ σ σ σ→ ≡   

5 6 7 8 9 10([3,4,5,6],2) {3,4},{3,5},{3,6},{4,5},{4,6},{5,6} , , , , ,C σ σ σ σ σ σ→ ≡  

11 12 13 14([3,4,5,6],3) {3,4,5},{3,4,6},{3,5,6},{4,5,6} , , ,C σ σ σ σ→ ≡  

15([3,4,5,6],4) {3,4,5,6}C σ→ ≡  

The use of only the last three decomposition levels in the combination process can be 

justified by the results of the wavelet decomposition. In effect, the last levels of the 

decomposition present the slowest dynamics (levels 3, 4, 5, 6), while the low level details 
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(levels 1 and 2) present highest variations and noise. Thus, it makes sense to discard 

these first levels for the prediction task.  

Step 4. Trend prediction 

Finally, the optimal trends are combined to obtain the trend prediction corresponding to 

the template ( )X t , as (3.96) 

�( ) ( ) ( ) 1,..,Y t a Z t d Z t t N N Pσ σ= + = + +∑  (3.96)

where the subscript σ  denotes the representative trends identified by the minimization 

process of the distance-based measures.  
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3.5 Conclusions 

 

The major goal of the present chapter was to propose methodologies for the prediction of 

time series. Although the methods have been developed in the clinical context, they can 

be viewed as of general purpose, suitable to be applied to any type of temporal series. 

The starting point for these prediction strategies is the similarity analysis described in 

Chapter 2. By means of this, signals presenting a dynamics similar to the current time 

series, are retrieved from the historic and then employed to support the prediction of 

that current time series. The main clinical hypothesis is that patterns in physiological 

time series of other patients with similar disease progressions or intra-patient 

occurrences, may have prognostic value in estimating future clinical evolution of a 

current condition. 

Based on the similarities between physiological time series, two main strategies have 

been proposed. The first involves the development of accurate models for the prediction 

of the time series. It is based on a multi-model scheme assuming the existence of a 

suitable dataset (derived from the similarity analysis procedure) for the required training 

process. From among regression models, generalized regression neural network structures 

were chosen to integrate the multi-model scheme, given their approximation and 

generalization properties. The strategy employs a direct approach and, therefore, an 

independent model (multi-models arrangement) has to be trained for each sampling 

instant within the prediction horizon.  

The second approach does not involve the explicit development of a model. The 

methodology consists in the estimation of a trend for the future, supported on the 

“future” evolution of similar historic patterns. The strategy is based on a wavelet 

decomposition, where the most representative trends are extracted at each 

decomposition level. Then, a set of distance-based measures able to assess the likelihood 

of each representative trend is introduced. From an optimization process a subset of 

these trends are selected and aggregated to derive the required time series trend. 
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4. Results 
 

 

 

his chapter presents and discusses the results related with the algorithms 

and methodologies proposed through this thesis.  

Partially integrated in the HeartCyle project, the main focus of the present 

work is the development of algorithms able to detect and predict specific 

cardiovascular conditions, fundamentally based on the electrocardiogram and blood 

pressure signals. The central efforts are on time series similarity search 

methodologies, in order to enable the detection of such conditions, and on predictive 

techniques to be applied in the trend analysis of biosignals and early detection of 

future events. 

Regarding similarity measures, a comparison in terms of the sensitivity of several 

approaches (including the proposed one) is, in a first phase, performed. The results 

highlight the importance of knowing the biosignal characteristics, as well as if a 

greater or lower sensitivity to variations is desired, when selecting a similarity 

measure. Moreover, these results justify the application of the proposed one. 

Then, a methodology for the detection of ischemic episodes is presented and the rest 

of the chapter exploits the capacity of the developed predictive methodologies, 

together with the similarity measure, in the prediction of specific cardiovascular 

events. For this purpose, neural networks multi-models and wavelet decomposition 

are applied in the forecast of hypotensive episodes and in the estimation of 

hypertension risk.  

 

 

 

4.1 Introduction 

Integrated in the Heartcycle project, the final goal of the third workpackage (WP3), 

Multi-parametric Analysis and Decision Support, is to provide patients and professionals 

with the essential information for an optimal management of cardiovascular diseases, 

namely heart failure and coronary artery disease. The main topic of research is the 

development of models and algorithms able to assess relevant cardiovascular conditions, 

as well as globally evaluate patient’s health status condition based on a multi-parametric 

analysis, involving the continuous update of measurements, parameters, and symptoms, 

collected during daily home monitoring process. From the clinical perspective, the 

development of such models will assist a decision support system in the conception of 

recommendations for therapy and care plans management. Moreover, they will be 

valuable to increase patient’s safety through the prompt detection of those specific 

T
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cardiovascular conditions and in the generation of alerts in face of dangerous evolutions 

of important cardiovascular parameters. 

The approach followed in the WP3–Multi-parametric Analysis and Decision Support, as 

well as its connections with other workpackages, is outlined in Figure 4.1.  
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Multi-
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Figure 4.1 − Heartcycle−WP3: Multi-parametric Analysis and Decision Support System. 

 

The WP3 module consists of two main components: i) Health status models, aiming at 

the development of algorithms for assessing the cardiac status of a patient and ii) 

Decision support system, responsible for the implementation of strategies describing the 

expert knowledge to support clinical decisions. The algorithms for cardiac health status 

are based on patient information, in particular on data regularly acquired by sensor 

devices provided by WP2–Sensors and Parameter Extraction. The decision support 

system includes results of these algorithms and clinical knowledge directly provided by 

WP1-Coordination of the medical and technical expertise. 
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4.1.1 Multi-parametric Analysis and Decision Support System 

Decision support system 

As a component of the decision support system (DSS), the Therapy and Care plan 

module provides suggestions for the management of therapies and care plans, namely 

recommendations for new prescriptions and indications for adjusting medication doses. 

These recommendations are based on patient data analysis, namely on cardiovascular 

conditions and advanced health status, in combination with explicit clinical knowledge 

(medical expertise), as well as with guidelines provided by WP1. In this way, the process 

of making recommendations related to treatment is under the control of clinical experts. 

Moreover, two kinds of indications are provided by the therapy and care plan modules: 

the first focus the professional, the second concentrate on the patient. 

There is also a module Recommendations, which does not relate to treatment but 

supports further investigations. For example, in the case of arrhythmias, an implantable 

defibrillator can be recommended to the patient. 

Health status models 

The Health Status Models module aims the identification of specific parameters and 

conditions related with patient’s cardiovascular health status. These include innovative 

health features, derived from advanced data analysis algorithms, which make use of 

patient databases and innovative sensors, major cardiovascular conditions, as well as 

high-level executive summary of patient’s cardiovascular status. 

A central part of the health status models, fundamental to the decision support system, 

consists of algorithms providing an Advanced Health Assessment of patient status. In 

effect, these algorithms offer an advanced form of decision support, given that they use, 

as inputs, high-level cardiovascular parameters and conditions statements, which are 

derived from different sources of information such as, daily measurements 

(electrocardiogram, blood pressure, heart sound, weight, etc), symptoms, biomarkers 

(cholesterol, BNP-B type natriuretic peptide, etc), and extracted parameters from 

biosignals analysis (heart rate, ST elevation, cardiac output, etc). In particular, WP2–

Sensors and Parameter Extraction, is the workpackage responsible for providing 

solutions for sensing biosignals using textile and wearable sensors.  

The health status models to develop may include individual analysis of biosignals, as 

well as other measurements. Moreover, several sources of information can be 

simultaneously processed in a multi-parametric analysis. In effect, three main procedures 

can be considered in the development of these models: 

� 1. Individual processing: where signals are independently analysed in order to 

extract relevant features. For example, deviations from a given threshold, to 

generate a simple alert, can be integrated here. Determination of the heart rate 

from the ECG, involving R peaks detection, is another example of such 

processing. 
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� 2. Multi-parametric analysis: where the information coming from different 

sources (sensors, symptoms) is merged in order to define relevant clinical 

conditions/applications. Basically, it is assumed that these conditions can be 

characterized based on the analysis of biosignals and on their dynamic 

evolution. Examples of these are congestion, haemodynamic status, sleep 

disorders, pulmonary oedema, etc.  

� 3. Global assessment models: consider the combination of multi-parametric 

models (clinical conditions), as well as results from individual signals analysis, 

to summarize the clinical condition of a patient. Examples of such global 

assessment models are the advanced health assessment module, the 

cardiovascular risk assessment module, the prioritization of alerts/patients and 

the detection of worsening heart failure. 

Clinical conditions/applications 

In order to accomplish the advanced decision support system, several clinical 

applications, that is, cardiovascular conditions, centred on the patient needs and 

relevant for cardiac disease management, have been identified by WP1 (clinical 

expertise). These applications are supported on innovative sensors, including i) the bed 

sensor (ballistrocardiography signal) that provides information about the heart rate, 

respiration, and movements during patient sleep, to enable night arrhythmias and sleep 

disorders analysis; ii) the BIM sensor (bioimpedance monitor) for congestion detection 

and; iii) the Sensatron device (acquires heart sounds, photoplethymographic and 

electrocardiogram signals) for estimating cardiac output and system vascular resistance 

in the hemodynamic status application.  

On the other hand, in addition to the innovative sensors, other clinical applications 

make use of further inputs, such as symptoms from questionnaires and data from 

electronic health record, as well as information related with standard sensors, namely 

ECG, weight, and blood pressure.  

4.1.2 Specific Clinical Applications 

Following this direction, the key challenge of the present thesis in the context of 

HeartCycle was the development of specific clinical applications based on the analysis of 

the ECG and blood pressure signals. These goals should be achieved by means of 

research on advanced algorithms for biosignal analysis, as well as on computational 

intelligence approaches for modelling and prediction purposes. The main effort was on 

time series similarity methodologies, in order to enable the detection of specific 

cardiovascular conditions, and on predictive techniques to be applied in the trend 

analysis of the biosignals and early detection of future events.  
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As result, the investigation conducted in this work was oriented in two main directions:  

i) ECG analysis: The development of techniques for similarity detection in biosignal 

time series, particularly in the ECG signal, which enable to detect specific cardiovascular 

conditions (e.g. ventricular arrhythmias, ischemic episodes and ventricular 

dyssynchrony). Methods that exploit the time-frequency characteristics of the signals 

were investigated and described in Chapter 2, and the corresponding results will be 

presented and discussed in section 4.2-Similarities Detection, and in section 4.3-Ischemia 

Detection.  

ii) Trend analysis: Development of predictive methods to be applied in the trend 

analysis of biosignals, in particular blood pressure, and consequent prediction of future 

hypertension risk. For this purpose, wavelet multi-resolution was researched in Chapter 

3 and its application will be presented and discussed in section 4.5-Trend Prediction of 

BP Signals. 

ECG analysis 

In particular, some relevant cardiovascular conditions have been investigated in the 

context of heart failure (HF) and coronary artery disease (CAD): i) ventricular 

arrhythmias assessment; ii) dyssynchrony and heart block; iii) detection of ischemic 

events. 

 

i. Ventricular arrhythmias 

In the context of cardiovascular problems, the ventricular arrhythmias assume a very 

important role since they can lead to situations of severe complexity and risk. 

Particularly, ventricular fibrillation (VF) is potentially fatal, being considered the main 

cause of sudden cardiac death. Moreover, ventricular arrhythmias evolve from simple 

premature ventricular contractions, which are in most situations benign, to ventricular 

tachycardia (VT) and finally to critical ventricular fibrillation episodes. Therefore, the 

development of methodologies able to detect the occurrence of these arrhythmias is of 

extreme importance for the conception of early prevention systems. 

The work proposed in this framework was centred on a non-linear dynamic signal 

processing approach. Based on the phase space reconstruction of the electrocardiogram 

(Rocha et al., 2008), some features were extracted. Features from current and previous 

time instants were provided to a dynamic neural network classifier, enabling 

arrhythmias detection.  

 

ii. Dyssynchrony and heart block 

The main goal of this clinical application was to assess the severity of the heart 

dyssynchrony. Asynchronous condition has serious effects on ventricular pump function, 

leading to prolonged contraction period, thus to the reduction of the ejection fraction. If 

properly diagnosed, dyssynchrony can be treated (by means of cardiac resynchronization 
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therapy) to increase survival, as well as to improve symptoms in patients with 

congestive heart failure. 

Using parameters extracted from the ECG, namely from the QRS complex analysis, in 

conjunction with impedance cardiography and heart sound signals (collected using 

Sensatron system), the severity of the heart dyssynchrony was addressed. 

 

iii. Ischemic events 

In patients of coronary artery disease, coronary arteries become narrowed by 

atherosclerosis, restricting the supply of blood and oxygen to the heart. Ischemia can be 

silent, without evidence of symptoms, or characterized by chest pain also known as 

angina pectoris. A severe and sudden blockage of coronary arteries causing a prolonged 

lack of blood supply to the heart, may lead to a myocardial infarction (heart attack) due 

to cellular necrosis. Moreover, myocardial ischemia is the pathological substrate to 

originate serious abnormal heart rhythms (arrhythmias), which can cause fainting or, 

frequently, sudden death. For the exposed reasons, its early diagnosis and treatment is 

of great importance to improve patient’s health. In effect, if blood supply of heart 

muscle is timely re-established, myocardial ischemia can be reversed, cellular necrosis 

limited and all complications avoided. 

For ischemia detection, a strategy was developed using the time-frequency analysis of 

the ECG to characterize ST segment deviation events, and Hermite basis functions for T 

wave and QRS complex morphology characterization. 

The approach proposed for the detection of ischemic events is presented in section 4.3-

Ischemia detection. 

 

Trend analysis  

High blood pressure or hypertension, is among the top most factors associated with 

cardiovascular diseases. In fact, uncontrolled and prolonged elevation of blood pressure 

can result in a multiplicity of alterations in the myocardial structure, coronary 

vasculature, and conduction system of the heart, which can lead to the development of 

left ventricular hypertrophy, coronary artery disease, myocardial infarction, cardiac 

arrhythmias, heart failure, among others (Riaz and Ahmed, 2012)§1. 

This module aims at the development of predictive methods to estimate biosignals future 

values. In particular, the research addresses the trend analysis, in order to predict if 

blood pressure signal of a given patient evolves towards hypertension values or, on the 

contrary, is maintaining or decreasing to normal values.  
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4.1.3 Detection of Acute Hypotensive Episodes 

During the course of this thesis, in 2009, Physionet in cooperation with Computing and 

Cardiology proposed its annual challenge1 which goal was to predict which patients in a 

specific dataset would experience an acute hypotensive episode (AHE) beginning within 

a forecast window. The fundamental purpose was the prediction of blood pressure 

signals, strongly related with the objectives of the present thesis (trend prediction of BP 

signals). However, according to the challenge definition of an AHE, future accurate 

values for BP signals were required. Therefore, to take into account these constraints 

(specific dataset and accurate values), a particular strategy based on a multi-model 

scheme involving neural networks was proposed. Its description was introduced in 

Chapter 3 and the corresponding results will be presented in section 4.4 - Prediction of 

Acute Hypotensive Episodes. 

4.1.4 Implementation and Databases 

All the algorithms, the accesses to the different datasets and respective validations were 

implemented using the Matlab software2§2. Moreover, for the implementation and training 

of support vector regression models the libsvm3 framework was employed. 

In order to test and validate the developed algorithms, public and private datasets were 

used. With respect to public datasets, there are available databases of ECG and other 

physiological recordings for distinct purposes (arrhythmias, ischemia, etc.). Of special 

relevance is the Physionet4§3, possibly the largest and best organized source of information 

currently available. The private datasets are the result of the TEN-HMS study (Cleland 

et al., 2005)§4 and MyHeart project5§5.  

In particular, the following databases were used for validation purposes in the present 

thesis: 

Ventricular arrhythmias 

� MIT-DB6
§6: The Massachusetts Institute of Technology-Beth Israel Hospital 

Arrhythmias Database (48 records, 35 minutes each) 

� CU-DB7
§7: The Creighton University Sustained Ventricular Arrhythmia database 

(35 records, 8 minutes each) 

 

                                           
1 physionet.org/challenge/2009/ 
2 www.mathworks.com/products/matlab/ 
3 www.csie.ntu.edu.tw/~cjlin/libsvm/ 
4 www.physionet.org 
5 www.hitech-projects.com/euprojects/myheart/ 
6 www.physionet.org/physiobank/database/mitdb/ 
7 physionet.org/physiobank/database/cudb/ 
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Similarity measure analysis (section 4.2) 

� MIMIC-II8§8 - Multiparameter Intelligent Monitoring in Intensive Care, is a 

multi-parametric long-term dataset comprising ICU patients. It contains high 

temporal resolution data including lab results, electronic documentation, and 

bedside monitor trends and waveforms.  

� TEN-HMS (Cleland et al., 2005)§9 - The Trans-European Network Homecare 

Monitoring Study (TEN-HMS) is a home telemonitoring consisting of self-

measuring of weight, blood pressure, heart rate and rhythm. 

Ischemic episodes (section 4.3) 

� ESC ST-T DB9
§10: The European Society of Cardiology ST-T database (90 

records, 2 hours each) 

Hypotension episodes (section 4.4) 

� MIMIC-II8§11 

Trend analysis of blood pressure (section 4.5) 

� TEN-HMS 

� MyHeart5§12 - Telemonitoring system enabling to monitor vital body signs with 

wearable technology. This system was used in a clinical observational study 

carried out with 148 patients, daily measuring weight, blood pressure, heart 

rate, breathing rate and bioimpedance. 

 

 

 

                                           
8 mimic.physionet.org/ 
9 www.physionet.org/physiobank/database/edb/ 
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4.2 Similarity Measure Analysis 

4.2.1 Introduction 

One of the main goals of this work was the development of effective methods to evaluate 

the similarity between historic signals collected from a telemonitoring system (blood 

pressure, heart rate, respiration rate, etc.) and a particular template (e.g., sudden 

increase in blood pressure). On the other hand, the proposed measure should be able to 

deal with some aspects inherent to clinical environments, namely with noise artefacts, 

with signals that are not perfectly aligned in time and with signals that present similar 

trends (analogous behaviour).  

The major objective of this section is to provide a quantitative comparison between 

some similarity measures, including the one proposed in Chapter 2. To this aim, specific 

variations in time and in amplitude were induced in the template, in order to evaluate 

the sensitivity of the referred measures to those different alterations (Lhermitte et al., 

2011)§13. For this purpose, four similarity measures were considered: i) Euclidean distance, 

ii) linear correlation coefficient, iii) Fourier based measure and, finally, iv) Wavelet-KLT 

based similarity measure (developed in this thesis). Experimental and simulation results 

were conducted using: i) blood pressure signals collected in intensive care units 

(MIMIC-II dataset) and; ii) blood pressure and iii) heart rate signals collected by a 

telemonitoring system (TEN-HMS dataset). 

The diversity in terms of the sensitivity of the several approaches, highlights the 

importance of understanding the biosignal characteristics before selecting a given 

similarity measure. In particular, the proposed similarity measure that combines the 

Haar wavelet with the Karhunen-Loève transforms, is especially adequate to deal with 

noisy signals, with signals that are not aligned in time, as well as with trends. 

This section is organized as follows: firstly, in subsection 4.2.2, some similarity measures 

are presented and some specific time series variations are introduced. Then, in 

subsection 4.2.3, the performance of the similarity measures is assessed using the 

aforementioned datasets and, finally, in subsection 4.2.4, some conclusions are drawn. 

 

4.2.2 Time Series Similarities and Variations  

The capacity of a given similarity measure to detect variations in time series trajectories 

depends on several aspects. First of all, the times series behaviour, such as the temporal 

correlation between the data and seasonal components, influences the performance of 

any similarity detection strategy. This type of correlation occurs when observations in a 

time series are correlated with different temporal observations. In biosignals, this is 

typical of cyclical systems, which present a periodic behaviour. Examples of these are 
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the ECG and the circadian rhythms, in particular daily variations of blood pressure. On 

the other hand, the characteristics of a specific similarity measure (time domain 

approach, transform-based, etc.), as well as the template variations, decisively determine 

the similarity measure performance.  

Time series similarity measures 

The performance of four similarity measures is assessed: i) Euclidean distance, ii) linear 

correlation coefficient, iii) Fourier based measure and, iv) the proposed wavelet-KLT 

based similarity measure. These can be grouped in two major categories i) time-domain 

approaches, that are computed directly from the time series data (Euclidean distance, 

linear correlation coefficient), ii) transformed-based approaches, computed indirectly 

with parameters extracted from the original time series data (Fourier based and the 

proposed similarity measures). 

 

i. Euclidean distance 

Given two discrete time series of length N, { }1 1 1( ) (1),  ...,  ( )X t x x N=  and 

{ }2 2 2( ) (1),  ...,  ( )X t x x N= , the Euclidean distance, 0ED +∈ � , between the two time 

series is defined based on their individual values 1( )x t  and 2( )x t  as: 

( ) ( )
2

1 2 1 2

1

( ), ( ) ( ) ( )

N

E

t

D X t X t x t x t

=

= −∑  (4.1) 

The main advantage of the Euclidean distance is that it is easy to compute and to 

interpret. 

 

ii. Linear correlation — Pearson’s coefficient 

The linear correlation coefficient, CC ∈ � , sometimes referred as Pearson’s correlation 

coefficient, quantifies the degree of linear relationship between two time series. It is a 

time-domain approach, computed by (4.2). 

( )
( ) ( )1 1 2 2

1
1 2

2 2
1 1 2 2

1 1

( )  ( )

( ), ( )

( ( ) )   ( ( ) )

N
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N N

t t

x t X x t X

CC X t X t

x t X x t X
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= =

− −

=

− −

∑

∑ ∑
 (4.2)

In the previous equation, 1X  and 2X  are, respectively, the average values of the time 

series 1( )X t  and 2( )X t , obtained as follows: 

1

1
( )      1,2

N

i i

t

X x t i
N

=

= =∑  
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This correlation value (CC ) is a scalar in the range [ 1,  1]− . In case of 1CC = , a 

perfect positive linear relationship (correlation) occurs; in case of 1CC = − , a perfect 

negative linear relationship (anti-correlation) occurs; in case of 0CC =  (zero), there is 

no correlation between the signals (uncorrelated).  

 

iii. Fourier based distance 

The Fourier transform (FT) allows the decomposition of a time series into periodic 

signals in the frequency domain. If the signal is real (typical in most of the applications), 

half of the data is redundant. In effect, since in time domain the imaginary part of the 

signal is zero, in frequency domain both real and imaginary parts of the spectrum are 

symmetric. Discrete cosine transform (DCT), derived from discrete Fourier transform 

(DFT), generates the real spectrum of a real signal avoiding redundant data. Using 

DCT, a discrete time series of length N , ( ) { (1),  ,  ( )}X t x x N= … , can be described by a 

set of scaled cosine waves with amplitude kC , as defined in (4.3). 

1

(2 1)( 1)
( ) ( ) cos     1,...,

2

N

k

k

k t
X t t C t N

N

π
ρ

=

 − − = =  ∑  (4.3) 

In the previous equation, the parameter ( )tρ  is a normalization coefficient defined by 

(4.4). 

1
1

( )
2

2

t
N

t

t N
N

ρ

 == 
 ≤ ≤

 (4.4) 

Based on the DCT coefficients ( ,  1,...kC k N= ) a distance measure using the first m 

coefficients (the most relevant) can be implemented, by means of equation (4.5). The 

variables 1X
kC  and 2X

kC  represent, respectively, the DCT coefficients for the time series 

1( )X t  and 2( )X t . 

( ) 1 2 2
1 2

1

( ), ( ) ( )

m
X X

F k k

k

D X t X t C C

=

= −∑  (4.5) 

Mathematically, the Fourier based distance is equivalent to the Euclidean distance in 

case all set of cosine waves are considered (m N= ). Therefore, the difference between 

the distances FD  and ED  is a result of reducing the number of cosine waves (m N< ). 

The main advantage of FT distance measure is the possibility to distinguish signals with 

a specific period. This is particularly relevant for detecting periodic patterns in 

biosignals, namely respiration cyclic signals. Due to the dimensionality reduction, the 

capacity to deal with noisy signals is another advantage recognized by the Fourier 

distance approach. 
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iv. Wavelet-KLT based distance 

As previously referred in Chapter 2, the similarity measure proposed in this thesis is 

founded on the distance between the coefficients that result from the description of the 

signals being compared in terms of a reduced set of basis, determined by the 

wavelet+KLT procedure. 

Firstly, a time series (template), 1( )X t , is described using a set of wavelet basis ( )j tϕ , 

as (4.6). 

1

1

( ) ( )

J

j

j

X t tϕ

=

= ∑  (4.6) 

Then, a second time series (to compare with the template), 2( )X t , is also described 

using the same set of basis ( )j tϕ , as (4.7). 

2

1

( )  ( )

J

j j

j

X t tα ϕ

=

= ∑  (4.7) 

Considering those descriptions, equations (4.6) and (4.7), a simple distance measure can 

be established by using the corresponding coefficients, as (4.8). 

( ) 2
1 2

1

( ), ( )  = (1 )

J

W j

j

D X t X t α

=

−∑  (4.8) 

As in the Fourier decomposition, Wavelet-KLT based distance is equivalent to the 

Euclidean distance in case all set of basis are considered (J N= ). One of the major 

advantages of the proposed distance measure is its interpretability. In fact, regardless of 

their exact value, if coefficients of equation (4.7) are positive ( 0jα > ), that means that 

signals 2( )X t  and 1( )X t  present the same behaviour, that is, the same evolution or 

trend, with respect to the particular base, ( )j tϕ . In case of a negative value ( 0jα < ), it 

means that the signal and template have opposite trends, with respect to the specific 

base, ( )j tϕ . 

 

Similarity measures computed from distance measures 

Equations (4.1), (4.5) and (4.8) define a distance between two time series. Based on 

those distances, normalized similarity measures, ()iS ⋅ , are defined as (4.9), with 

, ,i E FW=  (respectively, Euclidean, Fourier and wavelet based cases). 

( ) ( )1 2( ), ( )

1 2( ), ( ) i
X t X tD

iS X t X t e−=  (4.9) 

The similarity measure ( iS ) is a scalar in the range [0,  1] . In case 0iD =  (time series 

are equal), the similarity measure is 1iS = . On the other hand, the similarity measure 

decreases as the distance increases (when iD → ∞ , 0iS → ).  
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In the case of the correlation coefficient, equation (4.2), a similarity measure in the 

range [0,  1] , can be directly implemented by means of equation (4.10). 

( )
( ) ( )

( )
1 2 1 2

1 2

1 2

( ), ( )        ( ), ( ) 0
( ), ( )

0        ( ), ( ) 0
C

CC X t X t if CC X t X t
S X t X t

if CC X t X t

 >= 
 ≤

 (4.10) 

Based on this approach, all similarity measures are normalized in the range [0,  1] , 

therefore, possible to compare. 

( )1 2( ), ( ) [0,1]    , , ,iS X t X t i E C F W∈ =  (4.11) 

Template variations 

An example of a biosignal template ( )X t , designated as baseline, is illustrated in Figure 

4.2. In this particular case, it is characterized by a peak shape behaviour, during about 

one month (more precisely, 32 days). It is important to note that this is just an example 

and that the shape of the template can assume any other form. In fact, it is randomly 

selected from the original time series. 

 

( )X t

 

Figure 4.2 − Template or baseline. 

 

Although several types of changes can affect the baseline, three main types are 

considered here: amplitude, time and shape variations. 

1) Amplitude variations basically result in changes in the difference of amplitudes 

between the baseline, ( )X t , and the modified time series, ( )Y t . Amplitude scaling, 

( )asY t , occurs when the baseline peak is stretched or compressed along the y-axis (Figure 

4.3a). Amplitude translation, ( )atY t , occurs when time series is obtained by shifting the 

baseline along the y-axis (Figure 4.3b).  
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2) Time effects are the result of modifying the time location of the peak or the form of 

the baseline, along the time axis. For the baseline template, ( )X t , illustrated in Figure 

4.2, time scaling, ( )tsY t , results from stretching or compressing, in time, the width of the 

peak (Figure 4.3c). Another typical variation is time translation, ( )ttY t , occurring when 

the time series is shifted in time, without changing the baseline form (Figure 4.3d).  

3) Shape effects take place when the behaviour of the baseline is changed. Here, two 

types of variations affecting the global shape of the baseline are considered. The first 

one, trends variation, ( )trY t , results in the alteration of the baseline trajectory (trend) 

(Figure 4.3e). The second, noise variation, ( )noY t , consists in introducing a random 

disturbance in the baseline (Figure 4.3f) 
 

( )X t

( )atY t

( )X t

( )asY t

( )X t

( )tsY t

( )X t

( )ttY t

( )X t

( )trY t

( )X t

( )noY t

( , ( )c ct X t

 
Figure 4.3 − Variations in the baseline. 

a) amplitude scaling, b)amplitude translation, c) time scaling, d) time translation,  

e) trend variation, f) noise disturbance. 
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The several variations, ( )varY t , with { }, , , , ,var as at ts tt tr no= , illustrated in Figure 4.3, 

are generated from the baseline, ( )X t , through equations (4.12) to (4.17). 

( ) ( ) ( )as asY t X t B tυ= +  (4.12)

( ) ( )at atY t X t υ= +  (4.13)

( ) ( )ts tsY t X tυ τ= −  (4.14)

( ) ( )tt ttY t X t υ= −  (4.15)

( ) ( ( ),  ,  )tr tr cY t rotate X t tυ=  (4.16)

( ) ( ) ( )noY t X t tζ= +  (4.17)

The parameters asυ , atυ , tsυ , ttυ , trυ  are scalars, the variables τ  and ct  are time 

instants and the variable ( )tζ  denotes a white noise signal, with normal distribution 
2( , ) (0,1)N Nµ σ = .  

The amplitude scaling, equation (4.12), is obtained by adding to the baseline, a similar 

signal ( )B t  (peak shape) affected by a factor asυ , where asυ  determines how strong the 

scaling effect is. The amplitude translation, (4.13), is straightforwardly achieved by 

introducing an offset value, atυ . The time scaling, equation (4.14), compresses the 

baseline by a factor tsυ , being the signal centred on t τ= , and the time translation, 

equation (4.15), introduces a time shift ttυ  to the baseline. The trend variation, equation 

(4.16), is obtained by applying a ( )rotate ⋅  operator. This rotates the baseline, ( )X t , trυ  

degrees, around a random point ( , ( ))c ct X t . Finally, the signal disturbed by noise, 

equation (4.17), results from introducing random noise into the observations. 

 

4.2.3 Results 

Datasets 

To quantify the sensitivity of the four similarity measures, three different types of 

signals belonging to two datasets were used. 

Firstly, arterial blood pressure signals available in the context of the 

Physionet/Computers in Cardiology Challenge 2009 were employed. These records, 

included in the MIMIC-II database8§14, are composed of 110 signals, each one with 10 

hours of duration. Template signals, ( )X t , with a duration of 64N =  minutes 

(approximately one hour), were randomly selected from each one of the 110 available 

blood pressure signals and subsequently modified according to the equations (4.12)-

(4.17). These signals will be designated as BP-M (Blood Pressure – MIMIC). 

From the TEN-HMS dataset (Cleland et al., 2005)§15, that consists of signals daily 

acquired during a telemonitoring study, two signals were considered: systolic blood 

pressure and heart rate. Template signals, ( )X t , with a duration of 32N =  days 
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(approximately one month), were randomly selected from each one of the available 

signals (50 records corresponding to 50 patients) and modified according to the 

equations (4.12)-(4.17). These signals will be designated as BP-T, HR-T, respectively for 

Blood Pressure and Heart Rate (TEN-HMS dataset). 

Baseline variations 

The sensitivity of the four similarity measures was assessed in the presence of the 

referred variations { },  , , , , ,var var as at ts tt tr noυ = . The amount of variations introduced 

depended on the parameters varυ , as detailed in Table 4.1. Moreover, in order to obtain 

a similar effect in the different amplitude variations, scaling parameters varυ  were 

normalized by a factor ( )range ⋅ . This factor was computed for each specific baseline, as 

defined in (4.18). 

( ) ( ) ( )( ) ( ) ( )range X t max X t min X t= −  (4.18)

For each group of variations the same number of elements (21) was considered. As an 

example, the notation [0 : 0.1 : 2]asυ = , shown in Table 4.1, means that the minimum 

and maximum value of asυ  is, respectively, 0 and 2, with an increment of 0.1  (a total of 

21 elements).  

 

Table 4.1  

Variations of the parameters in the different experiments. 

 BP-M, BP-T, HT-T Description 

Amplitude scaling [0 : 0.1 : 2]as rangeυ = ×  asυ : scaling effect 

Amplitude translation [0 : 0.1 : 2]at rangeυ = ×  atυ : scaling effect 

Time scaling [1 : 0.15 : 4]tsυ = ; 
2

N
τ =  

tsυ : scaling effect 

N : length of baseline ( )X t  

Time translation [0 : 1 : 20]ttυ =  ttυ : time delay 

Trend variation [0 : 1.25 : 25]ºtrυ = ; [0, ]ct N∈  
trυ : rotation angle (degrees) 

ct : random instant 

Noise disturbance [0 : 0.05 : 1]no rangeυ = ×  
noυ : standard deviation 

White noise: 
2 2( , ) (0, )noN Nµ σ υ=  
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Similarity measures 

The similarity measures based on the Euclidean distance and on the linear correlation, 

were implemented as defined in (4.1) and (4.2). 

On the other hand, for the Fourier based similarity measure, the first 4m =  coefficients 

( 1X
kC  and 2X

kC  1,...,4k = ) were considered, equation (4.5) (corresponding approximately 

to an accuracy of 90%). With respect to the number of wavelet basis, ( )j tϕ , equations 

(4.6) and (4.7), a pre-defined accuracy of 0.92ε=  was established. As result, in 

average, the number of basis used to represent the baseline, ( )X t , was 4J = .  

Assessment of the similarity measures 

Figure 4.4, Figure 4.5, and Figure 4.6, illustrate the effect of amplitude, time and shape 

variations on the similarity measures iS , , , ,i E C FW=  (Euclidean, Correlation, Fourier 

and Wavelet), respectively for the BP-M, BP-T and HR-T time series. 

Based on the obtained results, it can be concluded that similarity values are very close 

when computed using the three different types of signals. In fact, for the three cases that 

were investigated (blood pressure-intensive care unit, blood pressure-telemonitoring 

system and heart rate-telemonitoring system), the evolutions of the four similarity 

measures, when considering the referred baseline variations, are analogous.  
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i. BP-M: Blood pressure-MIMIC dataset 

 

5 10 15 20
0

0.5

1

a) Amplitude scaling.

5 10 15 20
0

0.5

1

b) Amplitude translation.

5 10 15 20
0

0.5

1

c) Time scaling.

5 10 15 20
0

0.5

1

d) Time translation.

5 10 15 20
0

0.5

1

e) Trend variation.

5 10 15 20
0

0.5

1

f) Noise disturbance.

ES Euclidian⋅ CS Correlation⋅ FS Fourier⋅ WS Wavelet⋅

W CS S≡

E FS S≡

S
im

il
a
ri
ty
 m

ea
su
re

variation
S
im

il
a
ri
ty
 m

ea
su
re

S
im

il
a
ri
ty
 m

ea
su
re

S
im

il
a
ri
ty
 m

ea
su
re

S
im

il
a
ri
ty
 m

ea
su
re

S
im

il
a
ri
ty
 m

ea
su
re

variation

variation variation

variation variation

  

Figure 4.4 − Blood Pressure (MIMIC): Effect of baseline variation on similarity measures  

(Euclidean, Correlation, Fourier and Wavelet-KLT). 

a) Amplitude scaling, b) Amplitude translation, c) Time scaling, d) Time translation,  

e) Trend variation, f) Noise disturbance. 
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ii. BP-T: blood pressure-TEN-HMS dataset 
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Figure 4.5 − Blood Pressure (TEN-HMS): Effect of baseline variation on similarity measures  

(Euclidean, Correlation, Fourier and Wavelet-KLT). 

a) Amplitude scaling, b) Amplitude translation, c) Time scaling, d) Time translation,  

e) Trend variation, f) Noise disturbance. 
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iii. HR-T: Heart rate-TEN-HMS dataset 
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W CS S≡
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Figure 4.6 − Heart rate (TEN-HMS): Effect of baseline variation on similarity measures  

(Euclidean, Correlation, Fourier and Wavelet-KLT). 

a) amplitude scaling, b)amplitude translation, c) time scaling, d) time translation,  

e) trend variation, f) noise disturbance. 
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Moreover, as expected, it can be observed that similarity values decrease when the level 

of baseline variation is increased. However, also as expected, the sensitivity to these 

changes is not equivalent for all the similarity measures: i) Euclidean based, ii) Linear 

correlation based, iii) Fourier based and iv) Wavelet-KLT decomposition based.  

i. Euclidean distance based similarity measure: ES  

The Euclidean distance based similarity measure, ES , is sensitive to all variations 

introduced in the baseline, exhibiting a global decrease as the degree of variations 

increases. That can be justified by the fact that ES  directly quantifies the difference 

between the raw data (baseline and the respective variations). As result, Euclidean 

based similarity measure reveals a higher sensitivity to all the baseline modifications. 

ii. Correlation based similarity measure: CS  

The similarity measure CS , based on the linear correlation, quantifies the temporal 

relationship and does not account for the difference between time series. Therefore, it 

reveals the expected lower sensitivity when amplitude effects are introduced. Firstly, 

amplitude translations do not affect correlation similarity (Figures 4.4b, 4.5b, 4.6b, 

always equal to 1). On the other hand, for the amplitude scaling case (Figures 4.4a, 

4.5a, 4.6a), correlation measure presents lower sensitivities when facing small variations 

in the baseline. However, for larger values of amplitude scaling variations, the decreasing 

in the similarity measure is visible. In case of time scaling, time translation or noise 

effects, the correlation based similarity measure is very sensitive (when compared with 

the other methods). This is particularly noticeable for noise disturbances (Figures 4.4f, 

4.5f, 4.6f) and time translations (Figures 4.4d, 4.5d, 4.6d). The last introduce a lag 

between the original baseline and corresponding modified time series values. As result, 

correlation between them is severely affected, justifying the low similarity values 

observed.  

iii. Fourier based similarity measure: FS  

The Fourier based similarity measure, FS , is, in general, sensitive to all introduced 

changes. Moreover, excluding noise disturbances, its results are analogous to ES , with a 

comparable sensitivity to amplitude scaling (Figures 4.4a, 4.5a, 4.6a), amplitude 

translations (Figures 4.4b, 4.5b, 4.6b) and trend variation (Figures 4.4e, 4.5e, 4.6e). 

However, it presents a slight lower sensitivity to time scaling (Figures 4.4c, 4.5c, 4.6c) 

and time translation (Figures 4.4d, 4.5d, 4.6d). Furthermore, as expected, it exhibits a 

lower sensitivity to noise disturbances (Figures 4.4f, 4.5f, 4.6f). In effect, time series 

description as Fourier series permits noise reduction by considering a small set of cosine 

basis (on the assumption that noise is only contained in the high frequency Fourier 

components). 

iv. Wavelet-KLT based similarity measure: WS  

The Wavelet-KLT based similarity measure is identical to ES  when all the basis are 

included. Consequently, the differences between WS  and ES  are the result of reducing 

the number of basis ( )J  considered in the time series description, equation (4.8). 



156 4. Results 

The WS  measure shows, in general, the lowest sensitivity values, especially when small 

variations are introduced in the baseline. As the level of variations increases, the WS  

measure tends to present a behaviour comparable to the other similarity measures. 

These aspects (low sensitivity for low levels of variations and high sensitivity for high 

level of variations) are particularly observed in case of amplitude scaling (Figures 4.4a, 

4.5a, 4.6a), time translation (Figures 4.4d, 4.5d, 4.6d), trend variation (Figures 4.4e, 

4.5e, 4.6e) and noise disturbances (Figures 4.4f, 4.5f, 4.6f). 

The robustness (low sensitivity) of the WS  measure for small degree variations, reveals 

the importance of an adequate selection of the number of wavelet basis. In effect, by 

means of the wavelet-KLT decomposition scheme, the main characteristics of the 

baseline are captured employing a reduced set of basis. When variations of small 

magnitude are introduced in the baseline, the sensitivity of wavelet-KLT is still low, 

since part of the variability due to the introduced effects is still captured by the same 

basis.  

Additionally, in the same way as Fourier decomposition, wavelet-KLT scheme presents 

low sensitivity to noise disturbances, given the possibility to approximate the baseline 

by a small set of wavelet basis. 

The results achieved for the specific similarity measures, clearly show the importance of 

understanding the time series characteristics before selecting any specific similarity 

measure. Effectively, the dynamics of the particular template (baseline), as well as the 

possible level of variations affecting this template, definitely determine the value of the 

similarity measure. Therefore, it is not reasonable to conclude or claim that a similarity 

measure is better than the others. In effect, if the objective is to detect small level of 

baseline variations, high sensitivity measures are desirable; on the other hand, if the goal 

is to have robust similarity measures (less affected by baseline variations), low 

sensitivity measures are more adequate. 

The proposed wavelet-KLT similarity measure 

Given the previous results, and in the context of the present work (signals acquired by 

telemonitoring systems), the proposed wavelet-KLT similarity measure is justified. In 

effect, it is particularly appropriate to assure low sensitivity values in the presence of 

small levels of baseline variations. As result, it shows an adequate behaviour to deal 

with the evaluation of similarity between historic signals and a particular template 

(baseline). Basically, if the signals are analogous or are almost analogous, the similarity 

measure presents comparable results. Otherwise (a large variation occurs in relation to 

the template) the similarity measure tends to considerably decrease.  

As mentioned before, one of the characteristics of the proposed similarity measure is its 

interpretability and simplicity. In fact, regardless the exact values of the coefficients jα  

(that result from the wavelet-KLT decomposition), it is possible to straightforwardly 

assess the similarity between two time series. By definition, for the baseline ( )X t , these 

coefficients are fixed and equal to one, that is, 1jα = . The signal ( )Y t , obtained by 
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introducing variations in the baseline, is described using the same set of wavelet basis, 

weighted by coefficients jα . As result, it can be stated that: 

� 1. In case all coefficients are positive ( 0,   j jα > ∀ ), thus having the same sign 

as the baseline coefficients (all equal to 1), the two signals present the same 

behaviour (trend).  

� 2. In case one of the coefficients is negative ( 0jα < ), it means that the two 

signals present opposite trends for the corresponding basis ( jϕ ). 

Figure 4.7 illustrates this idea. For all the experiments with the three types of signals 

(BP-M, BP-T and HR-T, resulting in 110+50+50=210 experiments), the average 

number of coefficients that present negative sign is depicted. These results correspond to 

the six variations considered (amplitude scaling, amplitude translation, time scaling, 

time translation, trend variation, and noise disturbance). 

 

Figure 4.7 − Negative coefficients present in the wavelet representation of modified baseline. 
a)amplitude scaling, b)amplitude translation, c)time scaling, d)time translation, e)trend variation, f)noise 

disturbance. 
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From the figure, it may be concluded that, with the exception of amplitude translation, 

there are no negative coefficients when small variations are introduced in the baseline. 

As the level of variations increases, the number of coefficients with negative value 

(reflecting an opposite behaviour, when compared with the baseline) increases. For 

example, for the first four variations in the time scale, ( ),   1,..., 4ts i iυ = , the baseline 

and the modified baseline exhibit coefficients with the same sign. As result, it can be 

stated that they present the same behaviour in this range of variation. However, for a 

level of variation higher than the fifth, ( ),  i 5ts iυ ≥ , there exists a negative coefficient. 

Therefore, in the time region corresponding to the basis that has a negative coefficient, 

the behaviour of the baseline and of the modified baseline, are opposite. 

Thus, by means of this approach (sign of coefficients), a binary similarity strategy (yes 

or no) can be implemented. Basically, it depends on the number of wavelet basis used to 

describe the template (baseline), that is essentially determined by the parameter ε , 

subsection 2.5.4, equations (2.76)$ and (2.77)$. Nevertheless, if the objective is to quantify 

the similarity measure, a quantitative measure has to be used (equations (4.8) and (4.9)) 

and compared with a predefined threshold η , subsection 2.5.5, equation 2.105$.  

The average values ( { },  , , , , ,varS var as at ts tt tr no= ) obtained by the wavelet-KLT 

similarity measure, for the three types of signals (210 experiments) are illustrated in the 

Figure 4.8 and detailed in Table 4.2. Additionally, the associated 95% confidence 

intervals ( µ± ), indicating the reliability of the estimated values, are also presented. In 

this table only the even similarity values are shown ( ( ), 0, 2, 4,.., 20i iυ = ). 

 

Table 4.2 

Average values of wavelet-KLT similarity measure and respective 95% confidence intervals. 

  υ(2) υ(4) υ(6) υ(8) υ(10) υ(12) υ(14) υ(16) υ(18) υ(20) 

Amplitude 

scaling 

asS µ−  0.99 0.95 0.87 0.77 0.67 0.57 0.48 0.41 0.35 0.29 

asS  0.99 0.96 0.88 0.79 0.70 0.61 0.52 0.45 0.39 0.34 

asS µ+  1.00 0.97 0.90 0.81 0.72 0.64 0.56 0.49 0.44 0.39 

Amplitude 

translation 

atS µ−  nd nd Nd nd nd nd nd nd nd nd 

atS  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

atS µ+  nd nd Nd nd nd nd nd nd nd nd 

Time scaling 
tsS µ−  0.98 0.94 0.90 0.89 0.88 0.86 0.84 0.84 0.83 0.83 

tsS  0.98 0.95 0.92 0.91 0.90 0.90 0.88 0.88 0.88 0.88 

tsS µ+  0.98 0.96 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92 

Time 

translation 

ttS µ−  0.99 0.91 0.84 0.78 0.74 0.70 0.69 0.67 0.67 0.67 

ttS  0.99 0.92 0.86 0.80 0.76 0.74 0.73 0.72 0.72 0.71 

ttS µ+  0.99 0.93 0.87 0.82 0.79 0.77 0.76 0.76 0.76 0.76 

Trend 

variation 

trS µ−  0.99 0.93 0.85 0.78 0.70 0.63 0.56 0.54 0.50 0.48 

trS  0.99 0.94 0.87 0.80 0.73 0.66 0.60 0.59 0.55 0.52 

trS µ+  1.00 0.95 0.89 0.82 0.75 0.70 0.64 0.63 0.59 0.57 

Noise 

disturbance 

noS µ−  0.99 0.97 0.94 0.90 0.84 0.79 0.76 0.70 0.62 0.56 

noS  1.00 0.98 0.95 0.92 0.87 0.83 0.80 0.74 0.66 0.60 

noS µ+  1.00 0.99 0.97 0.94 0.89 0.86 0.84 0.78 0.71 0.65 

nd – Not defined. 
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Figure 4.8 − Average values of wavelet-KLT similarity measure and respective 95% confidence intervals. 

a) amplitude scaling, b)amplitude translation, c) time scaling, d) time translation,  

e) trend variation, f) noise disturbance. 
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4.2.4 Conclusions 

The major objective of this section was to provide a quantitative comparison of some 

common similarity measures. In particular, the results of four similarity measures were 

compared: i) Euclidean distance, ii) linear correlation coefficient, iii) Fourier based 

measure and iv) Wavelet-KLT based similarity measure (the measure proposed in this 

thesis). 

To evaluate the sensitivity of the referred measures when applied under distinct 

circumstances, specific variations in time and in amplitude were induced in a template. 

The results showed that those measures present different sensitivities to the induced 

variations. In particular, the proposed similarity measure that combines the Haar 

wavelet with the Karhunen-Loève transforms, is especially adequate to deal with noisy 

signals, with signals that are not aligned in time, as well as with trends. 
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4.3 Ischemia Detection 

In this section a strategy for the automatic detection of ischemic episodes is presented. A 

measure for ST deviation based on the time-frequency analysis of the ECG and the use 

of a reduced set of Hermite basis functions for T wave and QRS complex morphology 

characterization, are the key points of the proposed methodology. 

Usually ischemia manifests itself in the ECG signal by ST segment deviation or by QRS 

complex and T wave changes in morphology. These effects might occur simultaneously. 

Time-frequency methods are especially adequate for the detection of small transient 

characteristics hidden in the ECG, such as ST segment alterations. A Wigner-Ville 

transform based approach is proposed to estimate the ST shift. To characterize the 

alterations in the T wave and QRS morphologies, each cardiac beat is described by 

expansions in Hermite functions. These demonstrated to be suitable to capture the most 

relevant morphologic characteristics of the signal. A lead dependent neural network 

classifier considers, as inputs, the ST segment deviation and the Hermite expansion 

coefficients. The ability of the proposed method in ischemia episodes detection is 

evaluated using the European Society of Cardiology ST-T database. A sensitivity of 

96.7% and a positive predictivity of 96.2%, reveal the capacity of the proposed strategy 

to perform ischemic episodes identification. 

This section is organized as follows: the first subsection, 4.3.1, introduces the problem 

and its clinical relevance. In subsection 4.3.2, the proposed methodology is described, in 

subsection 4.3.3, validation results using the European Society of Cardiology (ESC) 

ST-T database are presented, and, finally, in subsection 4.3.4, some conclusions are 

drawn. 

 

4.3.1 Introduction 

The World Health Organization estimates that 17.3 million people died of cardiovascular 

diseases in 2008, representing 30% of all global deaths. Out of these, 7.3 million were due 

to coronary artery disease (CAD) (WHO, 2011)10§16. As one of the leading causes of death 

worldwide, this cardiovascular condition represents a focus of international interest. On 

the other hand, the use of new monitoring technologies and specialized processing based 

on wearable information technology, provide professionals with the adequate information 

for the evaluation of cardiovascular conditions and symptoms progression, enabling the 

early detection of forthcoming clinical severe conditions (Reiter and Maglaveras, 2009)§17.  

This section focuses coronary artery disease and, in particular, the development of 

algorithms for myocardial ischemia detection.  

                                           
10 www.who.int/mediacentre/factsheets/fs317/en/index.html 
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In CAD, coronary arteries become narrowed by atherosclerosis, restricting the supply of 

blood and oxygen to the heart. This deprivation may originate a cardiac disorder called 

myocardial ischemia, which can be silent, without evidence of symptoms, or it might be 

characterized by chest pain also known as angina pectoris. A severe and sudden blockage 

of coronary arteries causing a prolonged lack of blood supply to the heart, may lead to a 

myocardial infarction due to cellular necrosis. Moreover, myocardial ischemia is the 

pathological substrate to originate serious abnormal heart rhythms (arrhythmias), which 

can cause fainting or frequently sudden death. Hence, it is observed that early diagnosis 

and treatment of CAD is of primary importance to avoid serious consequences for 

patient’s health, treatment success and quality of life. In effect, if blood supply of the 

heart muscle is timely re-established, myocardial ischemia can be reversed, cellular 

necrosis limited and severe complications avoided. 

The analysis of the electrocardiogram’s (ECG) characteristics, namely the ST segment 

deviation as well as the QRS complex and T wave morphologies, are determinant for 

accurate detection of ischemic episodes (Barill, 2003)§18.  

The automatic diagnosis of myocardial ischemia based on the ECG signal usually 

involves two phases: ischemic beat classification and ischemic episode identification. In 

the first phase, each cardiac beat is labelled as normal or ischemic and, in the second 

phase, sequential ischemic beats are appropriately grouped in order to identify ischemic 

episodes.  

In the context of ischemic beat detection and ischemic episodes identification using the 

ECG, several methodologies have been developed. Time, frequency and time-frequency 

domain analysis techniques (Akselrod et al., 1987)§19, (Benhorim et al., 1996)§20, (Badilini et 

al., 1992)§21, (Garcia et al., 2000)§22, (Ranjith et al., 2003)§23, (Milosavljevic and Petrovic, 2006)§24 

have been successfully applied for feature extraction and analysis. Some authors have 

explored the projection onto different sets of basis functions for feature extraction. In 

this context, principal component analysis (PCA) and Karhunen-Loève transform (KLT) 

(Castells et al., 2007)§25, (Pang et al., 2005)§26, (Afsar et al., 2008)§27, have been extensively 

utilized, while a few number of works have used discrete Hermite functions 

(Gopalakrishnan et al., 2004)§28. The classification stage has been tackled using different 

approaches. For instance, artificial neural networks based methods (Maglaveras et al., 

1998)§29, (Papaloukas et al., 2002)§30, (Mohebbi and Moghadam, 2007)§31, have been proposed. 

Other authors favour rule-based (Papaloukas et al., 2001)§32, (Andreao et al., 2004)§33 and 

fuzzy rule (Vila et al., 1997)§34, (Exarchos et al., 2007)§35 approaches. In terms of time and 

frequency domain analysis techniques, Akselrod et al., (1987)§36, proposed the first method 

for the direct analysis of the ST segment. It is based on a single measure of the 

magnitude of the point located 104 ms after the R peak. Another method was proposed 

by Benhorim et al., (1996)§37, in which two points, considered as the start and end points 

of the ST segment, are calculated depending on the RR interval of each beat. Badilini et 

al., (1992)§38, presented an algorithm that uses statistic variables, extracted from the 

frequency distributions of ST displacements, to discriminate between normal and 

ischemic ambulatory ECG recordings. Furthermore, ischemic episodes are identified by 
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using a cluster technique. Garcia et al., (2000)§39, applied an adaptive amplitude threshold 

method to the root mean square series of differences between ST-T complex (or ST 

segment) and an average pattern segment, to detect ischemic episodes. Ranjith et al. 

(2003)§40, employed a wavelet transform to determine ECG characteristic points from 

which ST segment deviation and T wave amplitude measures are obtained and used to 

detect ischemic episodes. Milosavljevic and Petrovic, (2006)§41, proposed the use of 

wavelets for extracting myocardial ischemia characteristic patterns, which are obtained 

through different decomposition scales. ST deviation is calculated for each beat and the 

number of ST deviations is correlated with the time of consecutive appearances in order 

to distinguish normal from ischemic ECGs.  

Regarding methods based on neural networks, Maglaveras et al. (1998)§42, introduced an 

adaptive backpropagation neural network to identify ischemic beats. In this approach, 

ischemic episodes classification is achieved by analysing a sequence of classified beats. 

Mohebbi and Moghadam, (2007)§43, also proposed a beat classification method based on an 

adaptive backpropagation neural network. Papaloukas et al. (2002)§44, employed a feed-

forward neural network (trained using a Bayesian regularization method) as a beat 

classifier, which was integrated into a four-stage procedure for the detection of ischemic 

episodes.  

With respect to PCA and KLT approaches, Castells et al. (2007)§45 reviewed the 

application of principal component analysis techniques for the detection of myocardial 

ischemia and abnormalities in ventricular repolarization. Pang et al. (2005)§46 utilized 

Karhunen-Loève transform parameters extracted from ST-T complex and a measure of 

the ST segment deviation to detect ischemia by means of an adaptive neuro-fuzzy logic 

classifier. In turn, Afsar et al. (2008)§47 used Karhunen-Loève transform to reduce ST 

segment data together with an ensemble of lead-specific neural networks classifiers to 

detect ST segment deviation episodes. In terms of Hermite functions based methods, 

Gopalakrishnan et al. (2004)§48 used ECG expansion in discrete Hermite functions for a 

real-time monitoring of ischemic changes. Namely, the first fifty Hermite coefficients are 

applied as inputs to a committee neural network classifier, trained to identify ischemic 

beats. 

Regarding rule-based methods, Papaloukas et al. (2001)§49, proposed a strategy to detect 

ECG changes suggestive of ischemia using a rule-based expert system. Specifically, the 

system is able to distinguish between episodes of ST segment deviation and T wave 

changes. Andreao et al. (2004)§50, presented an ischemia detection system that uses a 

hidden Markov model approach for online beat detection and segmentation, and a rule-

based classifier for ischemic episodes detection, derived from some heuristic rules defined 

by cardiologists. 

Vila et al. (1997)§51, developed an intelligent monitoring system supported on fuzzy set 

theory, which uses three electrocardiographic leads and one invasive cardiovascular 

pressure signal in real time to detect ischemic episodes. Exarchos et al. (2007)§52, proposed 

a methodology to create fuzzy expert systems for ischemic beats detection that involves 

a set of rules extraction using a decision three. 
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Despite of the many works that have been developed in the context of ischemia 

automatic detection, the results achieved in terms of Sensitivity and Positive 

Predictivity can yet be improved. Thus, the search for better results is an incentive for 

further investigation. 

In the present section a new methodology for automatic detection of ischemic episodes is 

proposed considering the ST segment deviation, and the T wave and QRS morphology 

variations. In effect, it is known that variations in the ST segment are not always 

associated with ischemia. For example, sudden changes in QRS morphology can reflect 

shifts in the electrical axis and ventricular depolarization of the heart, which usually 

causes considerable alterations in the ST segment level (Castells et al., 2007)§53. Thus, 

taking into account the QRS morphology, it is expected to improve the detection of true 

ischemic beats. A new measure of the ST deviation based on the time frequency analysis 

of the signal, and the expansion onto Hermite basis functions to capture the T wave and 

QRS complex morphologies, are the key points of the proposed strategy. 

4.3.2 Proposed Methodology 

Figure 4.9 depicts the schematic diagram of the methodology followed in this work. The 

input consists of a discrete ECG signal, which is passed through a set of pre-processing 

stages for noise reduction, fiducial points identification, premature ventricular 

contractions (PVCs) elimination and baseline removal. Following this, the algorithm 

involves two processing steps: firstly, each individual beat is classified as normal or 

ischemic. For this end, features based on the ST deviation, and on the T wave and QRS 

complex morphologies, are considered. Secondly, ischemic episodes detection is 

performed using a sliding window procedure. The detailed algorithms are introduced in 

the next subsections. 

 

 

Figure 4.9 − Proposed ischemic episode detection methodology. 



4.3 Ischemia detection 165 

Pre-processing 

The first stage of pre-processing is concerned with noise reduction. This is achieved by 

applying a low pass filter to the ECG signal. In particular, a 4th  order Butterworth low-

pass filter, with a cut-off frequency of 40 Hz, is employed for this purpose.  

Afterwards, a segmentation algorithm is used in order to identify the beginning, the 

peak and the end of each ECG characteristic wave (P, Q, R, S and T). The applied 

algorithm is based on the work introduced by Sun (Sun, 2001)§54. After the segmentation 

stage, PVCs are detected and removed from the signal. The algorithm implemented for 

this task is adapted from Couceiro et al. (2008)§55. 

The final pre-processing stage consists of baseline wander removal. Baseline wander 

presence increases the difficulty of the ECG analysis, especially while assessing ST 

segment deviation. Since the spectrum of baseline wander and the low frequency 

components of the ECG usually overlap, baseline removal using filtering can cause 

significant distortion of important clinical information, particularly, ST segment 

alterations. An effective baseline removal approach has been proposed by Wolf (Wolf, 

2004)§56. This method does not require the isoelectric level determination and preserves the 

low frequency ECG information. Originally, the method considered the average of the 

distances between consecutive R peaks to split the signal into cardiac cycles. As it is 

illustrated in Figure 4.10, based on the segmentation procedure previously mentioned, 

Wolf’s method is modified to consider as starting and ending points the start of the P 

wave ( beginP ) and the end of the T wave ( endT ), respectively. The average of the first 

and last csN  cardiac cycle samples (in this work 5csN = ) is used to define a first order 

polynomial. Fundamentally, baseline shift is approximated by this first order 

polynomial, being the baseline removal procedure completed by subtracting this baseline 

shift from the original cardiac cycle signal. 

 

 
Figure 4.10 − Baseline removal. 
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Features extraction 

The approach followed here, assumes that variations in the T wave and QRS complex 

morphologies, and the ST segment shift estimation, can be used to discriminate ischemic 

from non-ischemic episodes. 

 

i. ST segment deviation 

The ST segment deviation is assessed considering two different approaches. In the first, 

the ST deviation is evaluated based on the heart rate and on the R peak location. This 

information can be easily obtained by means of any ECG segmentation algorithm. 

Mainly for this reason, this is a very simple and practical method, guarantying 

robustness, even in the presence of noise and artifacts. However, since it basically 

depends on the R peak location and not on the ECG waves morphology, this method 

does not guarantee accurate results. On the other hand, the second approach, based on 

the time frequency analysis is able to explicitly capture the transient characteristics of 

the ECG waves. Given these properties, this method is ideal to estimate the ST 

deviation being, however, more sensitive to noise and artifacts. The strategy followed in 

this work aims to take advantage of both approaches by providing accurate ST 

estimation in the case of noise free signals, while ensuring satisfactory results in the 

presence of artifacts.  

 

ST segment deviation based on R peak location 

Through a correlation analysis procedure, three algorithms for ST shift estimation 

(Akselrod et al., 1987)§57, (Pang et al., 2005)§58 and (Taddei et al., 1992)§59 have been 

implemented, compared and validated using the ESC ST-T database. In view of the 

obtained results, the method proposed by Pang et al. (2005)§60, was chosen for this task. In 

this method, the ST segment deviation is evaluated in a point that depends on the heart 

rate and on the R peak location, according to Table 4.3. 

 

Table 4.3  

ST deviation – measuring point. 

Heart Rate (bpm) Measuring point 

< 100 Rpeak + 120 ms 

100 ~ 110 Rpeak + 112 ms 

110 ~ 120 Rpeak + 104 ms 

>120 Rpeak + 100 ms 

 

 



4.3 Ischemia detection 167 

ST segment deviation based on time-frequency analysis 

In general, time-frequency methods are applied to provide a more detailed view of the 

time distribution of the spectral components that constitute a signal. In particular, it is 

recognized that time-frequency methods are especially adequate for the detection of 

small transient characteristics hidden in the ECG, such as ST segment alterations. Thus, 

this work proposes a new approach for the estimation of ST deviation based on a time-

frequency analysis, in particular using the Wigner-Ville transform that it offers a good 

balance between time and frequency resolutions. 

Figure 4.11 illustrates the Wigner-Ville transform, corresponding to the cardiac cycle 

shown in Figure 4.12a).  
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Figure 4.11 − Wigner−Ville transform of a cardiac beat. 

 

Through the Wigner-Ville transform, a time-frequency representation of each heart beat 

is performed. Then, using this time-frequency map, frequency characteristics of specific 

time regions can be analysed. In particular, for the ST shift estimation, the difference 

between the ST segment and the isoelectric line has to be computed. Therefore, two 

main points have to be identified: the isoelectric point and the J point. From the clinical 

perspective, these two points correspond to stable regions, where the heart’s electrical 

activity is constant. Moreover, the isoelectric point is located between the end of the P 

wave and the onset of the QRS complex; the J point is to be found after the end of the 

QRS complex and before the begin of the T wave. 

One of the hypothesis assumed in this work is that the energy content of the 

Wigner-Ville distribution can be employed to identify these points. Thus, in a first step, 

two time bands were considered (time band 1 and time band 2), as shown in Figure 4.11 

and Figure 4.12a). The time band 1 corresponds to the time period between the end of P 

wave and the onset of the QRS complex; the time band 2 corresponds to the time period 

between the end of QRS complex and the onset of the T wave. 
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Then, in a second phase, for those time bands, the respective high frequency components 

of the Wigner-Ville transform were analysed. In particular, it is assumed that the sum of 

the absolute values of these frequency components in each time band (time band 1 and 

time band 2) can identify, respectively, the isoelectric point and the J point. 

Figure 4.12b) illustrates this idea, depicting the corresponding high frequency 

components of the heart beat shown in Figure 4.12a). These frequency components 

correspond to values in the range [0.5,1.0] , considering normalized frequency values in 

the interval [0.0,1.0] . 
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Figure 4.12 − Cardiac cycle and respective high frequency components. 

 

ii. QRS complex and T wave characterization 

As mentioned, ischemia may induce morphology alterations in the T wave and in the 

QRS complex. In order to characterize these changes in morphology, each cardiac beat is 

represented in a space spanned by a limited number of Hermite basis functions. 

Basically, using the expansion in Hermite functions method, the signal of interest is 

decomposed into a linear combination of orthonormal basis functions, which coefficients 

can be used as features in the classification process, just as with the Principal 

Component Analysis technique (Castells et al., 2007)§61. However, the former has the 

advantage to be patient independent, since the set of basis functions are predefined 

(Figure 2.4$, subsection 2.3.3) and do not require any prior knowledge of the data set. 

This reason, coupled with its ability in capturing the relevant morphology changes using 

a low number of basis functions, led to the choice of the expansion in Hermite functions 

methodology for using in the present work. 
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Coefficients of the expansion in Hermite functions  

The Hermite functions form an orthonormal base of 2( )L R , the space of integrable 

functions. They can be determined as the product of a Gaussian by the Hermite 

polynomials with some normalization constants (Clifford et al., 2006)§62, as described in 

equation (4.19) (subsection 2.3.3, equation (2.14)$). 
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=  (4.19) 

In the previous equation, ( / )nP t l  represents the Hermite polynomial of order n, with l 

as a scaling factor (allows width adjusting). The Hermite polynomials can be recursively 

determined, see subsection 2.3.3, equation (2.15)$.  

In order to approximate as close as possible the shape of each beat to the shape of the 

Hermite functions, while using a reduced number of coefficients, each cardiac cycle was 

divided in two segments: Segment1 is defined from the end point of the P wave until the 

J point and Segment2 is defined from the J point until the end of the T wave. Thus, two 

expansions in Hermite functions were actually carried out for each cardiac beat. The 

goal was to describe each discrete signal segment, 1,( ) NY t ∈ � , as (4.20). 
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In the previous equation, 1,ˆ( ) NY t ∈ �  stands for the estimated signal segment, m defines 

the number of basis functions and jc  correspond to the expansion coefficients. The last 

ones can be obtained by a criterion error, consisting of minimizing the sum squared 

error, as follows: 
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Consider a given signal 1,( ) NY t ∈ � , and a matrix formed by the Hermite functions, 
,m NH ∈ � , defined as (4.22). 

0 1 1,  ,  . . . ,   
T

mH H H H − =   
 (4.22) 

The vector of coefficients, ,1mC ∈ � , defined according to (4.23), can be obtained by 

using a least square error formulation, thus, through a pseudo inverse computation, as 

presented in equation (4.24). 
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One of the assumptions in this work is that the expansion coefficients C  can reflect the 

changes in the ECG morphology induced by ischemia and, therefore, be adequate to 

represent the second set of features used in beat classification process. Figure 4.13 

depicts a real cardiac beat and the corresponding approximation using its expansion in 

Hermite functions. The Hermite coefficients were evaluated for each segment (each one 

resampled to 64 samples) using m=6.  

The scaling factors for Segment1 and Segment2, were, respectively, l = 5 and l = 8, 

determined in order to minimize the approximation error. For each segment, the 

resulting coefficients were C1 and C2 presented below.  

1 [ 0.9835   -0.1700   -0.2926    0.1298    0.0595   -0.0840 ]C =  

2 [ 0.1631  -0.0041   -0.0451   0.0294  -0.0107  0.0188 ]C =  
(4.25) 

 

 

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

Segment2

Segment1

J’ point 2
ˆ ( )Y t1

ˆ ( )Y t

1( )Y t
2( )Y t

samples

A
m
p
li
tu
d
e

 

Figure 4.13 − Approximation of a cardiac beat using expansion in Hermite functions. 

 

It is important to highlight that it is not fundamental to obtain very low approximation 

errors. In fact, the underlying idea is that the approximated signal and, indirectly, the 

Hermite coefficients, have the capacity to capture the most relevant morphologic 

characteristics of the signal.  
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In order to determine the adequate number of Hermite basis functions an experiment 

was carried out, which results are presented in Figure 4.14. In effect, for a selected set of 

representative cardiac beats, several expansions were done considering different numbers 

of basis functions and the respective errors calculated (as the difference between the real 

signal and the estimated one). Figure 4.14 presents the mean error obtained from the 

selected set of signals, which is separately indicated for Segment1 and Segment2. From 

the analysis of both error curves it can be concluded that a total of 6 Hermite basis 

functions is a choice that leads to an acceptable error at the same time that guaranties a 

number of coefficients sufficiently low. 

 

 

Figure 4.14 − Approximation of Segment1 and Segment 2 using Hermite functions. 

 

To analyse how changes in the ECG morphology are reflected in the Hermite 

coefficients, a simulated cardiac beat was created: the first segment presenting a deep Q 

wave and the second segment exhibiting an inverted T wave. Figure 4.15 shows this 

simulated cardiac beat and the respective Hermite approximation. The corresponding 

Hermite coefficients are C1 and C2 presented below, with the same scaling factors as 

before. 

1 [  0.8561    0.3626   -0.2008    0.0496   -0.1550    0.1959 ]C =  

2 [ -0.3369   -0.2261    0.0349    0.0955   -0.0562   -0.0092 ]C =  
(4.26) 
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Figure 4.15 − Approximation of a cardiac beat using Hermite expansion. 

 

For these two particular situations, the coefficients revealed the morphology changes in 

the ECG. In fact, for the first segment, the major variation occurred in the second 

coefficient that assumed a value of −0.1700 for the original signal and of 0.3626 for the 

simulated one. This disparity reflects the Q wave variation, mainly corresponding to the 

Hermite function observed in Figure 2.4$ of subsection 2.3.3, with n=1. For the second 

segment, the major variation was verified in the first coefficient, which took a value of 

0.1631 in the case of the original segment and of -0.3369 in the case of the simulated 

one. Clearly, this difference is related to the T wave inversion, as observed in Figure 2.4$ 

of subsection 2.3.3, with n=0. These results confirm that the QRS complex and T wave 

morphologies can be characterized by a relatively small number of Hermite functions 

and that the corresponding coefficients have the potential to be used as features for 

ischemic beats identification. 

Classification 

The first classification strategy considered two classifiers: one to deal with ST elevation 

and other to manage ST depression. However, since the morphology of the ECG waves 

depends on the specific ECG acquisition lead, the results achieved with this approach 

were not significant when compared to the ones presented in literature. Therefore, to 

deal with the particularities of each lead configuration, a lead dependent classification 

system was the chosen solution. As a result, a specific classifier is implemented for each 

lead.  
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Given their properties, neural networks have been recognized as a powerful tool for 

pattern classification problems, especially when applied to numeric data classification. In 

the context of ischemic beats classification, neural networks have been extensively 

applied with significant performance results (Maglaveras et al., 1998)§63, (Papaloukas et al., 

2001)§64, (Mohebbi and Moghadam, 2007)§65. Due to their universal approximation nature, 

low complexity and excellent results achieved in similar classification tasks, neural 

networks were used in this work.  

Figure 4.16 depicts the main modules of the classification scheme. 

 

Figure 4.16 − Proposed classification scheme. 

 

i. Beat Classification 

For classifier selection several experiments were carried out with different types of neural 

networks. The chosen strategy consists of two independent Feed-Forward Neural 

Networks (FFNNs) (Figure 3.7$, subsection 3.3.3.) for each lead: the first classifies the 

nature of the ST elevation of each beat and the second distinguishes beats with ST 

depression from others. After beat classification a sliding window with size of 40 beats is 

applied to each FFNN output signal in order to eliminate isolated misclassified beats. At 

the end, the outputs from both networks (elevation and depression) are combined by an 

OR operation. 

Episode Detection 

Ischemic episodes detection involves two steps: first a sliding window procedure is 

applied to the entire ECG signal. The window’s length is set to 40 beats. It is considered 

as an ischemic episode if more than 50% of the beats are classified as ischemic. In a 

second phase, the classification done in the previous step is reviewed and episodes with a 

separation of less than 40 beats are merged.  
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4.3.3 Results 

For algorithm validation purposes, the European Society of Cardiology ST-T database 

was used (Taddei, et al., 1992)§66, (Goldberger et al., 2000)§67. This database consists of 90 

annotated excerpts of ambulatory ECG recordings from 79 subjects for which 

myocardial ischemia was diagnosed or suspected. Each record is two hours in duration 

and contains two signals from 8 different leads (V1, V2, V3, V4, V5, MLI, MLIII and 

D3). These signals are sampled at 250 Hz. From the 90 complete records of this 

database, 48 records are freely available and were used in this work.  

To assess the quality of the proposed algorithms, sensitivity (SE) and positive 

predictivity (PP) have been evaluated, according to equations (4.27) and (4.28), 

respectively. 

TP
SE

TP FN
=

+
 (4.27)  

TP
PP

TP FP
=

+
 (4.28) 

In the equations above, TP (true positives) represents the annotated beats/episodes in 

the database that were identified by the algorithms, FN (false negatives) corresponds to 

the annotated beats/episodes that were not detected and, finally, FP (false positives) 

denotes the number of beats/episodes that were not annotated in the database, but that 

were incorrectly identified by the algorithms. 

Features extraction 

The extracted features in each cardiac cycle were related with ST segment deviation as 

well as with the QRS and T wave morphology changes. ST deviation was evaluated 

using both approaches described in subsection 4.3.2. In turn, each cardiac beat segment 

(Segment 1 and Segment 2) was approximated by a linear combination of the first six 

Hermite functions (order 0 to 5). Taking into account that the expansion of each 

segment originated 6 coefficients, a total of 14 features were determined for each cardiac 

beat: 2 features related to the ST deviation and 12 Hermite coefficients. Subsequently, a 

moving average filter of order 10 was applied to all the features. 

To validate the potential of the referred features in discriminating normal from ischemic 

beats, a linear correlation analysis procedure took place. Therefore, the correlation 

coefficients between these parameters and the classification values in the ESC ST-T 

database were computed. Table 4.4 presents the average correlation coefficients and the 

respective standard deviations for all the signals considered in this study, where ST1 and 

ST2 represent the ST deviation calculated using the two different approaches mentioned 

before, and the Hj denote the Hermite coefficients from order 0 to 5. 
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Table 4.4 

Features correlation analysis. 

 
ST 

Deviation 
Hermite coefficients for 

Segment1 
Hermite coefficients for 

Segment2 

Correlation 

coefficient 
ST1 ST2 H0 H1 H2 H3 H4 H5 H0 H1 H2 H3 H4 H5 

Average  0.63 0.64 0.30 0.34 0.41 0.40 0.37 0.35 0.35 0.41 0.28 0.46 0.48 0.63 

Standard deviation 0.21 0.23 0.25 0.22 0.27 0.26 0.24 0.26 0.26 0.26 0.20 0.24 0.23 0.22 

 

The values presented in Table 4.4 confirm the potential of the features in question.  

 

The Figure 4.17, Figure 4.18, and Figure 4.19, illustrate this correlation analysis 

performed on the e0103 record, channel 2, lead MLIII, which is composed of 6997 beats. 

In order to simplify the visualization, only some of the features are depicted. Thus, 

Figure 4.17 depicts the ST deviation obtained using the Wigner-Ville approach. Figure 

4.18 shows the first three Hermite coefficients corresponding to Segment1 and Figure 

4.19 presents the first three Hermite coefficients corresponding to Segment2. For this 

particular example, the correlation coefficients obtained are presented in Table 4.5. 

 

Table 4.5 

Correlation analysis for the e0103 record. 

 
ST 

Deviation 
Hermite coefficients for 

Segment1 
Hermite coefficients for 

Segment2 

 ST2 H0 H1 H2 H0 H1 H2 

Correlation 

Coefficient 
0.82 0.53 0.49 0.79 0.83 0.11 0.44 
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Figure 4.17 − ST deviation. 

 

 

 

Figure 4.18 − First three coefficients of Hermite expansion: Segment1. 
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Figure 4.19 − First three coefficients of Hermite expansion: Segment2. 

 

The correlation coefficients presented in Table 4.5, as well as the respective visualization 

in Figure 4.17, Figure 4.18, and Figure 4.19, demonstrate the discrimination effectiveness 

of the selected features. 

Training and validation 

Dataset 

Regarding training and validation, data subsets from the 48 freely available signals of 

the ESC ST-T database were selected according to each lead. Each ECG record was 

split into two sub-records, that is one from channel 1 and another one from channel 2, 

originating 96 signals for training and validation. The specific classifier for each lead, 

was trained and validated using signals contained in the database for that lead type. 

Moreover, after the pre-processing phase, some of the cardiac cycles were removed and 

were considered neither for training nor for validation purposes. In this category are 

PVCs and noisy beats.  

To validate beat classification, 81 of the 96 available signals were utilized. In effect, 

some signals containing annotations that were not considered consistent were discarded. 

An example of an ambiguous situation is illustrated in Figure 4.20. The first part of the 

figure (Figure 4.20a) shows a four seconds section of the e0207 record, channel 1, lead 

V5, starting at index 1620900. The second part (Figure b) shows a four seconds section 

of the e0303 record, channel 2, lead V5, starting at index 1107300.  
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Figure 4.20 − Non consistent beat classification examples. 
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According to the ESC ST-T database classification, the first signal (Figure 4.20-a)) was 

annotated as normal, while the second (Figure 4.20-b)) was considered as having ST 

depression. However, as can be observed, this classification contradicts what one might 

expect.  

Table 4.6 presents the exact number of cardiac cycles used for each lead (after PVCs, 

noisy and non-consistent beat elimination). The discarded signals, for each lead, were: 

e0207 for lead MLI, e0109, e0121, e0609 and e0613 for lead MLIII, e0403 for lead V1, 

e0415 and e0603 for lead V2, e0119, e012 and e0161 for lead V4, and e0207, e0213, e0303 

and e0405 for leadV5. 

 

Table 4.6 

Training and validation dataset. 

Lead Nº of signals 
in database 

Cardiac cycles 
in database 

Nº of signals 
considered 

Cardiac cycles 
considered 

V1 5 33554 4 30548 

V2 8 49704 6 35110 

V3 3 14487 3 14487 

V4 19 134872 16 108107 

V5 27 192249 23 162747 

MLI 8 63851 7 56990 

MLIII 25 159142 21 133477 

D3 1 1465 1 1465 

Total 96 649324 81 542931 

 

 

Training and Validation 

For training purposes only a small portion of representative signals (30 beats before and 

after the annotated episodes transitions) were applied. As already mentioned, beat 

classification was lead dependent and was carried out by means of two FFNNs per lead. 

Considering the 8 different leads (V1, V2, V3, V4, V5, MLI, MLIII and D3) present in 

the ESC ST-T database, a total of 16 neural networks were utilized. A neural 

architecture composed by two hidden layers (sigmoid tangent activation functions) was 

considered. The number of hidden neurons was experimentally determined and the 

parameters (weights and bias) that characterize all the FFNNs were trained using the 

Levenberg Marquardt algorithm.  

 

Table 4.7 presents, for each lead, the architecture of each classifier. The notation used is 

the number of neurons corresponding to [inputs, first layer, second layer, output]. 
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Table 4.7 

Lead NN Structure.  

Lead NN structure 

V1 [14, 5, 3, 1] 

V2 [14, 5, 3, 1] 

V3 [14, 5, 3, 1] 

V4 [14, 6, 4, 1] 

V5 [14, 7, 3, 1] 

MLI [14, 3, 3, 1] 

MLIII [14, 5, 3, 1] 

D3 [14, 5, 3, 1] 

 

For ischemic episode validation, beat sequences of annotated and identified episodes 

were compared. If the beginning and the end of them matched within a defined tolerance 

(40 beats) then episode detection was considered as successful. Otherwise, it was 

considered as unsuccessful. In Figure 4.21, a representative example of ischemic episodes 

identification by the proposed algorithms is presented using the e0103 record. In fact, 

the manifest overlap between the annotated episodes and the ones identified by the 

algorithms, testifies the ability of the methodology to perform the intended detection 

task. 

 

  

Figure 4.21 − Ischemic episodes validation (e0103 record). 
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Results and discussion 

The results achieved by the proposed algorithms for ischemic beat classification and 

ischemic episode detection are presented in Table 4.8 and Table 4.9.  

 

 

Table 4.8 

Beat classification performance. 

Lead Nº of 
Signals 

Nº of 
Beats 

FFNN Neg. FFNN Pos. 

SE PP SE PP 

V1 4 30548 100.0% 100.0% - - 

V2 6 35110 99.6% 99.9% 100.0% 100.0% 

V3 3 14487 100.0% 99.3% - - 

V4 16 108107 94.6% 92.8% 100.0% 100.0% 

V5 23 162747 95.7% 97.5% 100.0% 100.0% 

MLI 7 56990 99.2% 98.7% 99.6% 99.3% 

MLIII 21 133477 100.0% 100.0% 96.4% 97.0% 

D3 1 1465 - - 100.0% 100.0% 

Total 81 542931 98.4% 98.3% 99.3% 99.3% 

 

 

 

Table 4.9 

Episodes detection performance. 

Lead Episodes TP FP FN SE PP 

V1 5 5 0 0 100.0% 100.0% 

V2 5 5 0 0 100.0% 100.0% 

V3 2 2 0 0 100.0% 100.0% 

V4 34 32 2 4 88.9% 94.1% 

V5 38 35 3 6 85.4% 92.1% 

MLI 5 5 1 0 100.0% 83.3% 

MLIII 32 32 0 0 100.0% 100.0% 

D3 1 1 0 0 100.0% 100.0% 

Total 122 117 6 10 96.7% 96.2% 

 

As can be observed in the previous tables, the global sensitivity and positive predictivity 

reached average values of 96.7% and 96.2%, respectively. 
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Despite the importance of evaluating the performance of the proposed algorithms with 

respect to other state of the art methods, it is realized that this is a very difficult task 

due to the fact that different data sets are applied to derive the reported results in many 

of these papers. Badilini et al. (1992)§68, uses a private database. Although many authors 

use the ESC ST-T database to evaluate their algorithms, it is observed that some (e.g. 

(Milosavljevic and Petrovic, 2006)§69, (Gopalakrishnan et al., 2004)§70 ) do not specify the 

number of records (although the latter refers the number of ischemic/normal beats 

used). Others, e.g. Papaloukas et al. (2002)§71 use all the available records of the database 

but with reviewed annotations. In other studies, as those reported in (Mohebbi and 

Moghadam, 2007)§72, (Exarchos et al., 2007)§73, only a small set of records are utilized (5 and 

10, respectively) for validation purposes. On the other hand, some authors evaluate their 

methods using all database records with the original annotations. This is the case of 

Pang (Pang et al., 2005)§74 and Vila (Vila et al., 1997)§75 (ischemic episodes detection), where 

SE varies from 81.3% to 83.0% and PP ranges from 74.7% to 75.0%. For ST segment 

deviation episodes, Garcia et al. (2000)§76 and Papaloukas et al. (2002)§77, report for SE 

between 84.7% and 92.0%, while PP ranges from 86.1% to 93.8%. Another group of 

authors base their evaluation on the 48 records freely available. This is the case of the 

method for ischemic episodes detection introduced by Andreao et al. (2004)§78, that 

achieves a SE of 83.0% and a PP of 85.0%. The algorithm reported by (Afsar et al., 

2008)§79 for ST segment deviation episodes achieves a SE of 90.8% and a PP of 89.2%. For 

obvious reasons, it would be unfair to compare the current work with the group that 

used the entire records of the database as they would be in disadvantage. In fact, the 

most suitable studies for comparison are actually those reported by Andreao et al. 

(2004)§80 and by Afsar et al. (2008)§81 since the data set used for their evaluation is basically 

the same as the one applied in the present study. Consequently, it can be concluded that 

the results presented in Table VII significantly improve the results achieved by the 

methods reported by these authors, both in terms of sensitivity (96.7%), as well as in 

terms of positive predictivity (96.2%). 

It should be stressed that all modules of the algorithm have been designed to operate on 

short signal windows (40 beats). This is an important aspect, since it does not require 

significant durations of ECG to perform ischemia characterization. Since the proposed 

detection scheme is based on neural network models, the classification process is very 

fast. For these reasons, and given the importance that the early detection of ischemic 

events assumes in the management of CAD patients, the described methodology was 

included in the telemonitoring system of the HeartCycle project. 
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4.3.4 Conclusions 

In this section a strategy for ischemic episode detection was proposed. The methodology 

consists of two main steps: first, each individual beat is classified as normal or ischemic, 

considering features based on the ST deviation, and on the T wave and QRS complex 

morphologies. To handle the particularities of each lead configuration, a lead dependent 

classification scheme is implemented using two FFNNs per lead, specifically designed to 

deal with ST elevation and ST depression, respectively. In the second stage of the 

algorithm, ischemic episodes detection is performed based on a sliding window 

procedure.  

The most innovative aspects are the new approach for accurate ST shift and isoelectric 

point estimation based on the time-frequency analysis, and the ECG beat morphology 

effective characterization using the expansion in Hermite functions. 

The methodology’s potential was confirmed by using the European Society of Cardiology 

ST-T database. In fact, the achieved results (sensitivity of 96.7% and positive 

predictivity of 96.2%) are relevant when compared with similar works reported in 

literature. 
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4.4 Prediction of Acute Hypotensive Episodes 

 

This section deals with the application of neural network multi-models to the prediction 

of adverse acute hypotensive episodes (AHE) occurring in intensive care units (ICU).  

A generic methodology consisting of two phases is considered. In the first phase, a 

similarity analysis between the current blood pressure time signal (template) and a 

collection of historical blood pressure signals is carried out. From this procedure, the 

most similar signals are determined and the respective prediction neural models, 

previously trained, selected. Then, in a second phase, the multi-model structure is 

employed to predict the future evolution of current blood pressure signal, enabling the 

detection of AHE.  

The effectiveness of the methodology was validated in the context of the 10th 

Physionet/Computers in Cardiology Challenge - Predicting Acute Hypotensive Episodes, 

applied to a specific set of blood pressure signals, available in MIMIC-II database. A 

correct prediction of 10 out of 10 AHE for event 1 and of 37 out of 40 AHE for event 2 

was achieved, corresponding to the best results of all entries in the two events of the 

challenge. 

4.4.1 Introduction 

Hypotension, a clinical condition characterized by abnormal low blood pressure values, is 

one of the recurrent situations occurring in intensive care units. Among the most 

frequent events, acute hypotensive episodes (AHE) are particularly critical, since they 

may result in irreversible organ damage and, eventually, death (Piccini and Nilsson, 

2006)§82. As a consequence, the characterization of such episodes is of fundamental 

importance in the management of critical ill patients. In fact, when promptly detected, 

it is possible to improve the clinical decision concerning which intervention is more 

appropriated for each specific condition (sepsis, myocardial infarction, cardiac 

arrhythmia, pulmonary embolism, haemorrhage, dehydration, or any of a wide variety of 

other causes of hypovolemia, insufficient cardiac output, or vasodilatory shock). 

Additionally, early detection of AHE will give professionals enough time to select a more 

effective treatment, without exposing the patient to additional risks of delaying therapy. 

Therefore, the development of methodologies able to detect not only the presence of this 

condition but also to predict its occurrence, is of extreme importance concerning 

appropriate clinical interventions. Moreover, since the interventions to treat such events 

are usually invasive and aggressive, a prediction system that could identify an imminent 

episode would be a significant benefit to timely support non-invasive and preventive 

treatments. 

It is clinically accepted that if there exists enough patient’s clinical information, then a 

prediction system for hypotensive episodes, over a specific time period, can be developed. 
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Typically this information is based on the medical record, such as clinical history, 

laboratory tests and medications, as well as on information extracted from physiological 

vital signals, such as electrocardiogram, blood pressure and respiration. In this context, 

Singla et al. (2006)§83 showed the correlation between some independent variables and the 

development of early hypotension episodes. These variables included age, sex, body mass 

index, history of hypertension, diabetes mellitus, anaemia, heart rate, systolic and 

diastolic blood pressure. Similarly, Lin et al. (2008)§84 studied the association of specific 

variables with the increasing risk of hypotensive episodes, namely weight, height, 

American Society of Anaesthesiologists physical status, surgical category (orthopaedics, 

plastic surgery, general surgery, obstetrics, and urology) and systolic blood pressure. 

Based on these variables, Lin et al. (2008)§85 proposed a logistic regression model to assess 

the risk of developing an hypotensive episode. 

In practice, the development of automatic solutions for hypotensive episodes prediction 

has explored the correlation between patient’s clinical information collected in real-time, 

such as arterial blood pressure (ABP), heart rate (HR) and oxygen saturation (SO2), 

and the onset of the hypotensive episode. In particular, Bassale (2001)§86 proposed the use 

of parametric and non-parametric methods to analyse and characterize ABP before 

hypotensive episodes. He concluded that ABP variability and shape features have the 

potential to predict such events. Crespo et al. (2002)§87 also suggested the use of changes in 

the ABP morphology occurring immediately before an episode of hypotension. They 

proposed the variance of the ABP signal and the variance of the wave slope as the most 

relevant features to consider when predicting AHE. Lehman et al. (2008)§88 presented a 

similarity-based searching and pattern matching algorithm, applicable to classification 

and forecasting tasks. Using real physiological measurements, they employed the 

methodology to forecast hypotensive episodes in intensive care units. Also, Saeed (2006)§89 

and Saeed et al. (2007)§90 and  introduced a new temporal similarity metric, based on a 

transformation of time series data into an intuitive symbolic representation. They used 

wavelet decomposition to characterize time series dynamics at multiple time scales. 

Their algorithm was employed to identify similar physiological patterns in hemodynamic 

time series from ICU patients, with potential to be used in the detection of imminent 

hemodynamic deterioration. Frolich et al. (2002)§91 suggested the use of baseline HR as a 

significant predictor of obstetric spinal hypotension. Basically, they showed that higher 

baseline HR could be a useful parameter to predict postspinal hypotension. Using 

spectral analysis of HR and ABP variability, Pelosi et al. (1999)§92 identified precursors of 

hypotensive episodes during renal dialysis. Also using frequency analysis techniques, 

Reich et al. (2005)§93 investigated the correlation between HR variability analysis and 

hypotension events. Chamchad et al. (2004)§94 found a significant correlation between non-

linear HR variability dimension analysis and the presence of hypotension, occurring after 

spinal anaesthesia for caesarean delivery. Hanss et al. (2005)§95 also concluded that HR 

variability analysis could be used to predict the occurrence of hypotension during spinal 

anaesthesia. In particular, they investigated the ratio of low to high frequency peaks of 

the HR variability power spectrum (LF/HF) for the prediction of hypotension events 

after spinal anaesthesia, in the specific cases of pregnant women and elderly men. 
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Mancini et al. (2008)§96 showed the potential of SO2 short-term variability in anticipating 

the hypotension onset. Recently, Lee and Mark (2010)§97 investigated the existence of 

discriminatory patterns in ICU data that could be indicative of impending hypotensive 

episodes. Based on neural networks, they proposed a binary classification scheme 

(normotensive vs. hypotensive) and an estimation strategy for predicting future mean 

blood pressure values.  

This work proposes the forecast of acute hypotensive episodes through the development 

of predictive multi-models, applicable to the mean ABP (MAP) time-series signal. To 

achieve this goal, a generic methodology consisting of two main phases is considered. In 

the first phase, a similarity analysis procedure is carried out between the current MAP 

signal and a representative set of historical MAP evolution trends. The most similar 

ones are identified and the corresponding predictive neural multi-models, previously 

trained using those historical signals, selected. In the second phase, these models are 

employed to the current MAP signal to predict its future evolution and, therefore, the 

detection of an AHE occurrence. Basically, the prediction methodology consists of a 

multi-model scheme using neural network structures. Multi-models do not recursively 

use model outputs as inputs for step ahead predictions, therefore, prediction errors are 

not propagated and long-term predictions can be accurately estimated. Among 

regression models, neural networks have shown considerable capabilities to learn and to 

generalize from non-linear environments, enabling to capture the fundamental data 

dynamics. Moreover, multi-models can be trained by means of simple standard 

backpropagation algorithms. In fact, since an independent neural sub-model is used for 

each sampling instant and does not depend on previous predictions, a static training 

algorithm, as the referred backpropagation, can be employed.  

The effectiveness of the proposed approach was validated in the context of 2009 

Physionet/Computers in Cardiology challenge - Predicting Acute Hypotensive Episodes. 

The data for training and validation purposes was obtained from MIMIC-II dataset8 §98 

that includes data before and during the prediction horizon. The forecast was made 

using the trained neural multi-model structure, only considering the information 

available before the forecast period. The occurrence of an AHE within the forecast 

window (one hour) was assessed according to AHE definition (Moody and Lehman, 

2009)§99. A sensitivity of 94.74% and a specificity of 93.55% revealed the effectiveness of 

the strategy, which obtained the best results of the challenge11.  

This section is organized as follows: in subsection 4.4.2. the 2009 Physionet/Computers 

in Cardiology challenge is presented. In subsection 4.4.3., it is described the general 

methodology for the prediction task as well as how it can be used to address the 

challenge. In subsection 4.4.4., results using MIMIC-II dataset are presented and 

discussed, in the context of the Physionet/Computers in Cardiology challenge. Finally, 

in subsection 4.4.5., some conclusions are drawn.  

                                           
11 www.physionet.org/challenge/2009/final-scores 
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4.4.2 The 2009 Physionet/Computers in Cardiology 
Challenge 

Challenge goal 

The 2009 challenge was the tenth in the annual series of open challenges hosted by 

Physionet in cooperation with Computers in Cardiology Conference. The goal of that 

year’s challenge was to predict which patients in the available dataset (MIMIC-II) would 

experience an acute hypotensive episode beginning within the forecast window, 

motivated by the possibility of improving care and survival of those patients (Moody 

and Lehman, 2009)§100. 

The challenge dataset included, among other data, time series of mean arterial blood 

pressure (MAP) at one-minute intervals. Each sample of the series was an average of the 

blood pressure measured in the radial artery over the previous minute. Given such a 

time series, an AHE was defined, for the purposes of the challenge, as any period of 30 

minutes, or more, during which at least 90% of the MAP measurements were at or 

below 60 mmHg. The forecast window was defined as the one-hour period immediately 

following a specified time instant 0t  (Figure 4.22). In the test sets, all data following 0t  

was withheld and the forecast should be made using the available information before 0t .  

 

0t

 

Figure 4.22 − 2009 Physionet/Computers in Cardiology challenge goal. 

 

MIMIC-II project 

Data used in this challenge was collected and contributed to Physionet by the MIMIC-II 

project (Multi-parameter Intelligent Monitoring for Intensive Care), a Bioengineering 

Research Partnership funded by the US National Institutes of Health and its National 

Institute of Biomedical Imaging and Bioengineering, with additional support from 

Philips Medical Systems. The MIMIC-II project has collected data from about 30,000 

ICU patients to date, including recorded physiological signals and time series, as well as 

accompanying clinical data such as interventions performed in the ICU, laboratory tests, 

observations and medication (Saeed et al., 2002)§101. Basically, this information is organized 
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in two main databases: numerics record that contains time-series data and clinical 

records that deals with clinical information (observations, medication, etc.). The intent 

is that a MIMIC-II record should be sufficiently detailed to allow its use in studies that 

otherwise would require access to an ICU, e.g., for basic research in intensive care 

medicine, or for development and evaluation of diagnostic and predictive algorithms for 

medical decision support.  

Training and test datasets 

The 2009 challenge dataset consisted of selected patient records from the MIMIC-II 

database. In the training set, the records included all available data before and after 

instant 0t . In the test sets the records were truncated at 0t , being the data after this 

instant unknown during the period of the challenge and made available only after its 

conclusion. The records that were chosen for the challenge dataset included, at a 

minimum: i) at least 12 hours of data before 0t , and at least one hour of data after 0t ; 

ii) ECG and arterial blood pressure (ABP) signals sampled at 125 Hz; iii) time series of 

vital signs sampled once per minute (in the training set) and once per second (in the test 

sets). These comprised heart rate and mean systolic and diastolic ABP. The majority of 

the records included a variety of additional vital signs time series, most often containing 

respiration rate and oxygen saturation.   

In particular, the training set consisted of 60 records (with data after 0t ) belonging to 

two groups: H and C. Records in group H contained an episode of acute hypotension 

beginning during the forecast window (the one-hour period following 0t ), while records 

in group C contained no AHE within the forecast window. Within group H, 15 records 

belonged to subgroup H1 - patients who received pressor medication, and 15 belonged to 

subgroup H2 - patients who did not receive pressor medication. Within group C, 15 

records belonged to subgroup C1 - patients with no documented AHE at any time 

during their hospital stay, and 15 records belonged to subgroup C2 - patients who had 

AHE before or during the forecast window.  

The validation set consisted of two datasets, A and B. The test set A comprised 10 

records, excluding data after 0t . From these, 5 records were from subgroup H1 (AHE in 

subjects receiving pressors), and 5 were from subgroup C1 (no AHE in subjects receiving 

pressors). The test set B consisted of 40 records, also excluding data after 0t . Between 

10 and 16 from these belonged to group H, and between 24 and 30 belonged to group C. 

Challenge events 

The challenge comprised two events. The event 1, using A dataset, focused on patients 

who were receiving pressor medication and aimed to distinguish between two groups of 

ICU patients: the ones who would experience an acute hypotension episode and those 

who would not. The event 2, using B dataset, addressed the broad question of predicting 

an AHE in the general population. 
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4.4.3 Methodology 

The proposed scheme is depicted in Figure 3.14$, subsection 3.4.1. The detection of a 

future acute hypotensive episode (AHE) is carried out by means of neural network 

multi-models trained using mean arterial blood pressure signals (MAP). 

The input consists of a MAP signal available before 0t  (template), the instant where 

the forecast period starts. From a similarity analysis procedure, between the template 

and a set of MAP signals, representative of historical MAP evolution trends, the most 

similar ones are identified. After that, the corresponding neural multi-models, previously 

trained using those historical representative signals, are selected and employed to predict 

the future evolution of the template, from instant 0t  until the end of the forecast 

window. Finally, the occurrence of an AHE is straightforwardly determined.  

This section starts by reviewing the general multi-model approach for prediction 

purposes. Then, the neural network models structure and their incorporation into the 

multi-model scheme are presented. Finally, the prediction of AHE based on this strategy 

is addressed. 

Multi-models 

Using a multi-model strategy, one independent sub-model is employed for each sampling 

instant within the prediction horizon. Consequently, future predictions do not depend on 

previous predictions, allowing to obtain more accurate estimations. In general, a specific 

future time instant P can be expressed by equation (4.29), being ()Pf ⋅  a mapping such 

that : n
Pf →� � . 

( )0 0 0 0(̂ | ) ( ), ( 1), ..., ( ( 1)Py t P t f y t y t y t n+ = − − +  (4.29)

Thanks to this structure, predictions over a forecast horizon do not depend on previous 

predictions, but only on information available at the current instant k , ( )kϕ . On the 

other hand, one independent model ( ()if ⋅ ) has to be used for each sampling instant 

within the prediction horizon. As result, if P future instants have to be predicted, P 

distinct regression models have to be derived.  

Neural-network regression models 

Each regression sub-model ( ()if ⋅ ) is here implemented by means of a neural network 

model. In particular, generalized regression neural networks (GRNN), a type of radial 

basis function networks, are considered. As mentioned in section 3.4.2 the principal 

advantages of GRNN are their aptness for smooth function-approximation, their ability 

to predict the behaviour of systems based on few training samples and their 

interpolation properties between training samples (Bauer, 1995)§102. They enable a fast 

learning and are often more accurate than multi-layer perceptron networks. On the 

other hand, although multi-models are used for long-range prediction, each neural 

network can be trained by means of a standard backpropagation algorithm. Actually, as 

referred, the dimension of the training dataset, { ( ), ( )}  1,..,t t t M=X Y , predetermines 
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the number of hidden neurons (NP). Thus, the training of a GRNN only involves the 

estimation of the kernels width, λ . In the application of the GRNN structure to the 

particular problem of AHE prediction, the number of previous instants considered by 

each model (designated here as the order) together with the time period before the 

starting of the forecast window (designated here as size) determine the dimension of the 

dataset, therefore the number of the hidden layers. These size and order parameters will 

be detailed in subsection 4.1.1.  

4.4.4 Application to the Prediction of AHE 

The prediction of an AHE is based on a set of multi-models trained using mean arterial 

blood pressure signals (MAP), obtained from MIMIC-II numerics record dataset (H and 

C datasets). No information from clinical records was used. 

The input consists of a discrete MAP signal (sampled once per minute) considering the 

information available before 0t . This template passes through a set of pre-processing 

techniques, namely to deal with missing information, noise reduction and normalization. 

Then, a similarity analysis procedure is carried out between the processed template and 

a set of MAP signals, representative of historical MAP evolution trends. From this 

similarity analysis the most similar signals are identified and the corresponding multi-

models, previously trained, are selected. These specific neural multi-models are then 

employed to predict the future evolution of the template, from instant 0t  until the end 

of the forecast window (one hour). Finally, an AHE is identified if, according to the 

challenge definition, at least 90% of the MAP predicted signal is at or below 60 mmHg 

during a period of 30 minutes or more. 

Pre-processing 

Firstly, a pre-processing procedure is applied to the original MAP signal. This involves 

resampling the raw signals, deal with missing values and perform a noise reduction, as 

illustrated in Figure 4.23. 

Resampling Noise reductionMissing values
MAP

( )rY t ( )mY t ( )Y t

 

Figure 4.23 − Pre-processing stages. 

 

In the first phase all MAP signals are resampled to 1 sample per minute, resulting in the 

signal ( )rY t . Thus, for signals presenting a sampling rate of 1 Hz (A and B testing 

datasets) the average of the blood pressure measured in each 60 samples is considered.  

To deal with missing values a simple procedure is carried out. In case of missing values 

in the MAP signal, a first order linear interpolation is performed, enabling to obtain the 
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signal ( )mY t . This process uses the values in the limits of the missing interval, e.g., the 

last available value (on the left) and the first available value (on the right).  

For noise reduction, a simple first order filter is used, considering a pole at 0.8, as 

described in (4.30). 

1

1

0.2 
( ) ( )

1 0.8 
m
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Y t Y t
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−

−
=
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Finally, it is assumed the same duration, equal to T=11 hours, for all the signals ( )Y t . 

Specifically, periods of 10 hours before 0t , and 1 hour after 0t  are considered. 

Figure 4.24 illustrates the pre-processing procedure for the particular signal H1_#1 

(training set group H1 signal #1, h1_a40439). As can be seen, missing values, 

approximately between instants 320 and 380 minutes, and between 480 and 580 minutes, 

are replaced using the described technique. 

( )Y t

( )mY t

( )rY t

0t

 

Figure 4.24 − Pre-processing phases: ( ) :rY t  resampling of MAP signal (1sample per minute); 

 ( ) :mY t
 
replacing of missing values; ( ) :Y t filtered signal. 

MAP signals and GRNN multi-models 

To identify the representative MAP signals, a historical dataset composed of past and 

future tendencies has to be considered. In the proposed strategy, the dataset consists of 

59 training records (H and C), available in Physionet/CinC challenge 11§103. Actually, one 

signal was excluded (C2_#4, c2_40234), since it presented a significant discontinuity in 

the neighbourhood of the instant 0t , which caused serious difficulties during the 

training phase. Therefore, a matrix of M  signals, M TY ×∈ � , with 59M =  and 

660T =  minutes, is defined. 



192 4. Results 

1

2
1         , 1...

...
i T

M

Y

Y
Y with Y i M

Y

×

 
 
 
 
 = ∈ =
 
 
 
   

�  (4.31)

The pre-processing phase, described in the last section, is applied to each 
iY  signal.  

To address future predictions, each of these time series signals (H and C) is modelled 

using the GRNN multi-model approach. These models are trained using past and future 

information (before and after 0t ). Moreover, to reduce the number of sub-models, each 

GRNN structure is trained to deal with 15 step ahead predictions. As result, given the 

forecast period (1 hour), 4 neural sub-models are considered for each MAP 

representative signal ( 1 2 3 4, , ,f f f f ). Consequently, the total number of models is 

59×4=236. 

Prediction of MAP signals 

Given a new MAP testing signal, truncated at time instant 0t , the forecast is done 

based on previously trained GRNN multi-models. To select the specific multi-models, a 

similarity analysis procedure takes place. Basically, in a first stage, the strategy 

proposed in Chapter 2 is employed to assess the similarity between new MAP data and 

stored MAP signals.  

From this analysis, a vector composed of similarity measures, 1 M
MS

×∈ � , is computed 

for a specific period of time (size), starting before the forecast window until instant 0t  

(size parameter will be introduced in the next section). The signal ( )X t  represents the 

new MAP signal, with dimension ' 10 T hours= , 1 '( ) TX t ×∈ � . As referred, the 
iY  

represents the 
thi  signal ( 1,...,i M= ) of the matrix Y.  

In a second stage, the MAP signals that present the highest similarity measure are 

selected. In particular, being 1 M
MS

×∈ �  the vector composed of these similarities 

(sorted in descending order), the first m  signals (m M< ) are selected, such that 

equation (4.32) is verified. 
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The parameter λ  is a pre-defined scalar, aiming to only select the most relevant multi-

models (with the highest similarities). Therefore, using this approach a variable number 

of multi-models is selected for each particular MAP signal.  

Finally, the occurrence of an AHE is assessed according to its definition (Moody and 

Lehman, 2009)§104, considering the predicted MAP signal ( )pY t  over the forecast window. 
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For the prediction of the MAP signal, a weighted average of the predictions performed 

by the m  multi-models is computed, as described by equation (4.33). 
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4.4.5 Results 

This section focuses on the validation results of the proposed strategy. Firstly the 

concepts of size and order, essential to the MAP modelling through GRNN, are 

introduced, as well as information about the neural networks training process. Then, 

AHE prediction results are presented in detail and discussed.  

GRNN multi-models  

GRNN size and order 

When modelling each MAP signal, the selection of the order and the size is of particular 

importance. The parameter size is defined as the period before the starting of the 

forecast window, from where information is used for training purposes. The parameter 

order defines the previous instants considered by each model. In order to estimate these 

parameters an optimization procedure was carried out, by means of the minimization of 

the least square prediction error over the forecast window.  
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t t

min t Y t

= +

= +

−∑  (4.34)

Variables ( )Y t  and ( )pY t  define, respectively, the actual and the predicted MAP signal. 

The referred minimization procedure was performed considering different values for the 

order and size parameters, specifically in the ranges [60,  90]order ∈  and 

[120,  180]size ∈ , with increments of 10 minutes.  

Figure 4.25 depicts the histogram regarding the order and size parameters obtained for 

all test datasets (H and C datasets, 60 signals). As can be seen, the predominance of the 

models can be described by (order, size)=(60, 170) and (order, size)=(80, 140). The 

statistical analysis of mean and standard deviation, results in the following values: 

mean(size)=152 minutes, std(size)=15 minutes; mean(order)=70 minutes, std(order)=9 

minutes. Based on these results, in can be concluded that the evolution of the MAP 

signals can be characterized, on average, using the past 70 minutes (order), and the 

models should be trained using the past 2,5 hours (size). 
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Figure 4.25 − Size and order parameters, estimated for training signals (H and C dataset). 

 

GRNN training  

The GRNN structures were defined and trained using the newgrnn function 2§105, available 

in Matlab toolbox. Basically, the training of a GRNN is performed in a single step (no 

backpropagation of error is involved). In particular, the training comprises the 

determination of kernels widths. Figure 4.26 presents the training results for the 

particular testing record H1_#4 (h1_a40834). For this specific signal, the size and 

order values are, respectively, 140 and 80 minutes. 

0t

 

Figure 4.26 − GRNN training: testing signal H1_#4 (h1_a40834). 
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It is important to stress that the neural network multi-models predict future behaviour 

of signals over the whole prediction horizon, only using information available before the 

starting of the forecast window (instant 0t ).  

AHE prediction in the challenge context 

Using the present strategy, test datasets available in the Physionet/CinC challenge (10 

records of A dataset, and 40 records of B dataset) were used for validation purposes. 

Firstly, each of these 50 signals was compared with the MAP representative signals, 

considering a specific period of size minutes before instant 0t  (which depends on the 

specific signal). The corresponding GRNN models, determined from the similarity 

analysis procedure, were used to predict future MAP values.  

Figure 4.27 shows the prediction over the forecast window for the particular signal 

A_#10 (a_110bnm). For the determination of models to be employed, a value of 

0.15λ =  (tolerance) was considered in equation (4.32). From this computation, 4 signals 

(m=4) were obtained. These signals correspond to the training records C2_#9 

(c2_a40329), H1_#9 (h1_a41835), C2_#8 (c2_a40306) and C2_#10 (c2_a40355), 

with similarity measures of 0.5370, 0.5126, 0.5031 and 0.4997, respectively.  

 

 

Figure 4.27 − Prediction of MAP signal A_#10 (a_110bnm) using neural multi-models. 

 

The final MAP predicted signal is computed as the weighted average of all four 

estimated predictions, equation (4.33), being the identification of an episode 

straightforwardly performed using the definition of AHE. In this work, an AHE is 

considered to occur if in a period of 20 minutes or more, at least 90% of the MAP 

measurements are at or below 60 mmHg (instead of the 30 minutes originally defined by 

the challenge). This reduction is mainly due to the pre-processing phase, since it 
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introduces some delay in the signal evolution, as well as it produces a smoothness of the 

original signal. Figure 4.28 shows the prediction of the specific MAP signal A_#10 

(a_110bnm) over the forecast horizon, resulting from the weighted average of the 

mentioned signals. For this particular case, using the previous definition an AHE is 

identified. 
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Figure 4.28 − MAP prediction and AHE identification; testing signal A_#10 (a_110bnm). 

 

Table 4.10 presents the global results for the 2009 Physionet/Computers in Cardiology 

challenge. As can be observed, for the event 1 (using dataset A), 5 AHE were identified 

corresponding to the signals {1, 2, 4, 9, 10}. For the event 2 (using dataset B), 15 

episodes were identified.  

The proposed methodology achieved a correct prediction of 10 out of 10 AHE for event 

1, and of 37 out of 40 AHE for event 2, which were the best results of all entries in the 

two events of the challenge. 

 

Table 4.10  

AHE detection. 

 AHE detected 

Dataset A  1, 2, 4, 9, 10 

Dataset B  2, 3, 5, 7, 9, 14, 17, 18, 22, 23, 25, 26, 34, 38, 39 
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Discussion of results 

The obtained results can be described in terms of sensitivity, specificity and accuracy. 

Sensitivity (SE), equation (4.35), gives the percentage of actual AHE that were correctly 

identified; specificity (SP), equation (4.36), gives the percentage of AHE that did not 

occur and were correctly identified, and accuracy (AC), equation (4.37), gives the total 

percentage of correct predictions. 

TP
SE

TP FN
=

+
 (4.35)

TN
SP

TN FP
=

+
 (4.36)

TP TN
AC

TP TN FP FN

+
=

+ + +
 (4.37)

 

The variables TP, TN, FP and FN define, respectively, true positive, true negative, false 

positive and false negative events detected.  

In the validation phase, three incorrect predictions were made: one FN event {B_#26} 

and two FP events, {B_#5, B_#24}. As result, the global sensitivity, specificity and 

accuracy values were, respectively, SE=94.74%, SP=93.55% and AC=94.00%. 

 

Figure 4.29 shows the predicted results, as well as the actual MAP signals for the AHE 

incorrectly classified (the last were made available only after the conclusion of the 

challenge). 
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Figure 4.29 − MAP signals incorrectly classified: predicted and actual values. 

 

Concerning the FN episode (record B_#24), as can be seen in Figure 4.29a), actual 

MAP signal presents a sudden drop approximately at instant ( 0t +35) minutes. 

Although the multi-model strategy was able to capture the evolution trend of the signal, 

it was not fast enough to identify the AHE event. 
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Regarding the FP episodes (records B_#5 and B_#26), there is not an obvious 

justification for the verified situations. Since the proposed strategy only uses MAP 

history and no clinical information (observations, medication), possibly for these 

particular cases other sources of information (such as clinical record data) should be 

considered in order to achieve a correct prediction. On the other hand, given that the 

prediction scheme is based on the set of representative signals, the evolutions of these 

particular templates can be interpreted as uncommon behaviours. 

In conclusion, although the obtained results are relevant, the experiments performed 

have suggested that additional clinical information, such as medication, should be 

considered in a future implementation.  

 

4.4.6 Conclusions 

In this section, generalized regression neural network models, integrated into a 

multi-model structure, were proposed to address time-series prediction over a forecast 

horizon. Although this is a generic technique may be with potential to be employed in 

different areas, it was validated in the prediction of acute hypotensive episodes. The 

methodology consists of two steps: in the first, a similarity analysis procedure is carried 

out between the current signal and a representative set of historical evolution trends 

signals. The most similar ones are identified and the corresponding prediction neural 

models, previously trained using those historical signals, selected. In the second step this 

multi-models structure is employed to the current signal to predict its future evolution.  

Applied to the mean arterial blood pressure (MAP) time-series, considered in the 2009 

Physionet/Computers in Cardiology challenge, the referred strategy allowed to 

adequately capture MAP evolution and, consequently, to detect the occurrence of 

hypotensive episodes. In this context, a correct prediction of 10 out of 10 AHE for event 

1, and of 37 out of 40 AHE for event 2, was achieved (SE=94.74% and SP=93.55% ), 

enabling to obtain the best results of all entries in the two events of the challenge.  
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4.5 Trend Prediction of Blood Pressure 
Signals 

 

High blood pressure or hypertension, one of the leading public health problems, is among 

the top most factors associated with cardiovascular diseases. In fact, uncontrolled and 

prolonged elevation of blood pressure can lead to a multiplicity of alterations in the 

myocardial structure, coronary vasculature, and conduction system of the heart, which 

can lead, among others, to the development of left ventricular hypertrophy, coronary 

artery disease, myocardial infarction, cardiac arrhythmias and heart failure (Who, 2011)§106.  

On the other hand, hypertension is an important modifiable risk factor, in particular for 

coronary artery disease and congestive heart failure (Perry, 1998)§107, (Kannel, 1996)§108. Thus, 

if blood pressure signals are continuously available, the analysis of their evolution may 

help clinicians in the management of the patient, namely in making decisions and in the 

adjustment of the care plan (Mancia et al., European guidelines for the management of 

arterial hypertension, 2007)§109, (Sierra and Sierra, 2008)§110. 

According to Mancia et al. (2007)§111, being cardiovascular diseases a dynamic process, an 

early detection of hypertensive conditions and, consequently, adequate cardiovascular 

risk stratification, appears to be one of the most important strategies in order to prevent 

the development of CV diseases. In truth, the analysis of the future evolution of blood 

pressure can be of valuable importance considering that the earlier the treatment the 

better the prognosis of the patient (Chughtai and Peixoto, 2003)§112. 

Therefore, an important procedure to help reducing the burden of hypertension-related 

diseases is providing patients with adequate mechanisms for managing blood pressure 

(Bosworth and Oddone, 2004)§113, (Marchiando and Elston, 2003)§114, Bosworth and Oddone 

(2004)§115. In this context, telemedicine solutions play a decisive role, such as the ones 

offered by HeartCycle. 

The present section focuses on the analysis of blood pressure (BP) signals daily collected 

by means of a telemonitoring platform. The main goal is to assess the effectiveness of 

the developed predictive strategy to estimate the evolution trend of such signals, namely 

in case the patient is facing a potential hypertension condition. To achieve this 

objective, signals collected during the TEN-HMS and MyHeart studies are employed in 

two set of experiments.  

The first group assesses the capacity of the proposed wavelet multi-resolution scheme in 

the trend prediction of blood pressure signals. Moreover, the performance of this scheme 

is compared with other typical prediction strategies, namely a linear regression model, 

the autoregressive integral moving average model - ARIMA, and two non-linear 

regression models, the generalized regression neural network - GRNN and the support 

vector regression – SVR.  
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The second set of experiments selects patients with blood pressure values in a critical 

range (around the threshold of hypertension), and uses the previously estimated trend to 

determine the risk of hypertension. Specifically, the goal is to evaluate whether during 

the following week the blood pressure signal of a given patient evolves towards 

hypertension values or, on the contrary, is maintaining or decreasing to normal values12§116. 

The remainder of this section is organized as follows. In subsection 4.5.1, some relevant 

definitions and information about the hypertension condition are introduced, as well as a 

brief presentation of the datasets (TEN-HMS and MyHeart) used in the experiments. In 

subsection 4.5.2, the effectiveness of the proposed wavelet multi-resolution scheme to 

estimate trends is assessed and compared with other common methodologies. In turn, 

subsection 4.5.3 shows the application of the predicted trends in checking the evolution 

of blood pressure signals to hypertension values. Finally, in subsection 4.5.4, some 

conclusions are outlined. 

 

4.5.1 Introduction 

The precise definition of hypertension is difficult to find and, therefore, the threshold for 

this condition should be considered flexible, based on the level and profile of the 

patient’s cardiovascular risk (Mancia et al., European guidelines for the management of 

arterial hypertension, 2007)§117. For example, a blood pressure value may be considered as 

unacceptably high for patients in high risk state, but still acceptable for low risk 

patients.  

On the other hand, the diagnosis of hypertension is made by measuring blood pressure 

and checking if levels are above the normal limit. However, a high value alone is not 

synonymous of disease. In fact, an hypertensive individual has necessarily to present 

elevated levels in a series of evaluations. Nevertheless, it is the responsibility of the 

clinician to diagnose the disease, that is, to decide if the individual suffers from 

hypertension not only based on blood pressure measurements, but also on the patient’s 

history. 

Typically in clinical practice, the minimum hypertension levels are defined as 140/90 

mm Hg (systolic BP/diastolic BP) in awake, and 125/80 mm Hg during sleep. In case of 

ambulatory blood pressure, these values are considered slightly lower, as shown in Table 

4.11. It should be noted that for the present work only systolic blood pressure signals 

were considered. 

 

 

 

                                           
12www.min saude.pt/portal/conteudos/enciclopedia+da+saude/doencas/doencas+do+aparelho+circulatorio 

/hipertensao+arterial.htm 
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Table 4.11  

Ambulatory blood pressure vs. clinic blood pressure thresholds. 

Hypertension Clinical blood pressure 
(mmHg) 

Ambulatory blood pressure 
(mmHg) 

Daily 140/90 135/85 

Nigh time 125/80 120/75 

 

The selection of a forecasting horizon is an essential step when predicting time-series 

data. From a clinical perspective, this period should be longer enough to allow a timely 

intervention in order to avoid an undesirable outcome. From the prediction perspective, 

the period should be as shorter as possible, since trends in data may not persist for too 

long. Taking into account these aspects, a forecast period of approximately one week 

(eight days, 8P = ) was stipulated. In terms of the length of the template, that is, the 

past information used in the prediction, the value suggested by the clinical partners was 

about a month ( 32N = ). As described in subsection 4.5.2, this number was confirmed 

to be adequate through a set of experiments. Moreover, the values of N  and P  are 

powers of two, to simplify the wavelet transform operations.  

TEN-HMS dataset 

The Trans-European Network Homecare Monitoring Study (TEN-HMS) was designed to 

assess whether home based telemonitoring could reduce morbidity and mortality in 

patients with heart failure, compared with usual care or regular telephone contact. In 

this study, a total of 426 patients with a recent admission due to HF and left ventricular 

ejection fraction <40%, were assigned randomly to home telemonitoring (168), nurse 

telephone support (173) and usual care (85). Particularly, home telemonitoring consisted 

of twice-daily self-measuring of weight, blood pressure, heart rate and rhythm, with 

automated devices linked to a cardiology centre, during the period of two years. 

For the present work, a subsection of the complete dataset containing data from 83 

patients was made available. In terms of strategy validation, only blood pressure signals 

were employed. Furthermore, only patients for whom there were BP measurements in, 

at least, 150 days (5 months) were selected for this purpose, resulting in a total of 51 

patients. 

MyHeart dataset (FP7- IST-2002-507816) 

The MyHeart vision is of a home telemonitoring system that follows the health of the 

heart failure patient, enabling intervention when appropriate. This is done by 

monitoring vital body signs with wearable technology, processing the measured data and 

giving recommendations (when appropriate) to the patient and professional users of the 

system. Using the measured data to give user feedback, the system “closes the loop” of 

measurement and therapy. 
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This system was used in a clinical observational study carried out with 148 patients 

from six clinical centres in Germany and Spain. The trial had an enrolment phase of 9 

months with 12 months of patient follow up. During the clinical study patients were 

requested to daily measure weight, blood pressure, and, using a vest, HR and 

bioimpedance, as well as heart rate, breathing rate and activity during the night by 

means of a bed sensor. Moreover, they were requested to complete each day two 

questionnaires of symptoms and mood/general well-being. From the 148 patients 

recruited, 102 (69%) were considered analyzable, that is, with more than 30 days of 

telemonitoring measurements.  

Data pre-processing 

Firstly, a pre-processing procedure is applied to the original BP signals collected through 

the telemedicine platform. The result of this procedure is a historic dataset of blood 

pressure time series signals, with a value per day (sampling rate of 1 day).  

This process involves: i) averaging of values (in case two measurements have been 

performed in the same day), ii) dealing with missing values and, iii) noise reduction. To 

deal with missing values a simple procedure is carried out, analogous to the one 

presented in subsection 4.4.4. Fundamentally, a simple first order linear interpolation is 

performed. However, if the number of consecutive missing values exceeded five days the 

corresponding patient was discarded. For noise reduction, a simple first order filter was 

used. Additionally, the wavelet transform incorporated in the prediction scheme 

naturally deals with noisy signals.  

4.5.2 Analysis of Evolution Trend 

In a first group of experiments, the capability of the proposed wavelet scheme in 

predicting trends of blood pressure signals is assessed and compared with other 

regression models, namely ARIMA, GRNN and SVR. As mentioned, the main strategy 

is supported on the idea that similar patterns in the historic dataset can be used in the 

prediction of the current trend. In fact, when considering a given time instant in the 

past, it is possible to access its past and “future”. The hypothesis to test here is that 

this information (past and “future”) can be helpful in the prediction of the current 

signal.  

1. Basics 

The experimental process runs as follows (illustrated in Figure 4.30):  

� Templates: for each patient in the dataset (a total of 51 patients), a template, 

that is, a signal with length 32N = , 1,( ) NX t ∈ � , is randomly generated; 

� Regression models: the current template is used to estimate the ARIMA, 

GRNN and SVR parameters. These models are then used to iteratively predict 

future instants (as described in equation (3.17)$, subsection 3.3.2); 
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� Similarity-based prediction: from all patients in the historic dataset, the M  

most similar patterns, 1,( ) , 1,...,N P
mZ t m M+∈ =� , are identified and used in 

the proposed strategy to predict the trend evolution �( )Y t , over the forecast 

horizon ( 8P = ). 

 

( )X t

0t

( )tX ( )tY

ˆ( )Y t

32N = 8P =

1 1 1( ) ( ) ( )Z t X t Y t =   

( ) ( ) ( )m m mZ t X t Y t =   

 

Figure 4.30 − Trend analysis strategy. 

2. Predictive methods 

Five methods were applied and compared in the prediction of future BP signals. The 

choice of the first method, ARIMA, is due to its sound theoretical basis and the 

numerous research publications based on it. In effect, the ARIMA model is, in theory, 

the most general class of linear models for forecasting a time series and has dominated 

many areas of time series prediction, including medicine. However, being a linear model, 

the approximation of ARIMA to complex non-linear problems may not be adequate. On 

the other hand, using neural networks, non-linear relationships embedded in the data 

can be captured. Moreover, neural networks are well known for their notable capabilities 

of approximation. Therefore, the second method to be implemented employs a neural 

network structure, in particular, a generalized regression neural network (GRNN). 

Support vector machines (SVMs) are support vector networks commonly used for 

classification. They present a structure similar to radial basis neural networks, being 

trained with a learning algorithm derived from statistical learning theory. The learning 

forms the key feature of a SVM, guaranteeing superior generalization properties. For 

regression purposes the corresponding structures are the support vector regression 

(SVR), which were included here. The fourth method simply considers the average value 

of signals ( )mY t , as an estimation for the prediction of �( )Y t . Finally, the last method 

implements the wavelet multi-resolution strategy proposed in subsection 3.4.3. 
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i. Auto regressive integral moving average model (ARIMA) 

As mentioned in subsection 3.3.2, the build-up of a general ARIMA model requires a 

series of well-defined steps, namely: i) model identification; ii) estimation of the 

coefficients of the model and; iii) verification of the model.  

The first stage involves the identification of the order of the model ( , , )a cARIMA n d n . 

The parameters an , d  and cn  identify, respectively, the number of autoregressive 

terms, the degree of differencing and the number of lagged forecast errors in the 

prediction equation. 

Degree of differencing (d): the first step is to determine the order of differencing needed 

to make the time series stationary. In other words, if the time series shows a strong 

trend (increase or decrease), then the process is clearly not stationary. The differencing 

operator can modify this by making the mean, variance, and autocorrelation constant 

over time. In practice, one or two degrees of differencing are often enough to reduce a 

non-stationary time series to an apparent stationary one. The estimation of the 

differencing order is performed by evaluating the autocorrelation of the time series. 

Typically, the correct degree of differencing is the lowest order that yields a time series 

fluctuating around a well-defined mean value and whose autocorrelation function decays 

fairly rapid to zero. From the experiments carried out with the blood pressure signals, 

considering 1d =  and 2d = , the value 1d =  was selected. After been differencing, the 

ARIMA model results in an ARMA model, as described by (4.38), where the variable 

( )dy t  is the differencing operator defined as ( ) ( ) ( 1)dy t y t y t= − − . 

 1 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )na a nc cdy t a dy t a dy t n e t c e t c e t n+ − + + − = + − + + −  (4.38)

Note that differencing a time series and computing the autocorrelation analysis can be 

done with the diff(⋅) and autocorr(⋅) Matlab commands, respectively.  

Regressive and moving average orders (na and nc): after a time series has been made 

stationary by differencing, the next step is to determine the AR or MA orders, 

respectively, an  and cn . The examination of the autocorrelation and partial 

autocorrelation functions of the differenced series, is used in the estimation of these 

parameters. Basically, a set of rules is tested (Tran and Reed, 2004)§118, taking into account 

the way the autocorrelation and the partial autocorrelation functions decay over time. 

Experiments using blood pressure signals considering 1,2,3an =  and 1,2,3cn = , 

suggested 2a cn n= = . As result, the ARIMA structure is ARIMA(2,1,2). The 

autocorrelation and partial autocorrelation analysis was done, respectively, with the 

autocorr(⋅) and parcorr(⋅) Matlab commands. 

Estimating the coefficients of the model: once the model is established, the respective 

parameters can be estimated using a least mean square approach. In practice, the 

estimation of parameters was carried out with the armax(⋅) Matlab command. Moreover, 

to ensure that only models corresponding to stable predictors are tested, the Matlab 

algorithm performs a stability test of the predictor. 
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As conclusion, for all the templates, the structure was predetermined and given by 

ARIMA(2,1,2). However, for each template, a set of parameters 1 1{ , ..., , ,..., }na nca a c c  

was computed.  

 

ii. Generalized regression neural networks (GRNN) 

Generalized regression neural networks, are similar to radial basis function networks. In 

fact, GRNN structures can be seen as normalized radial basis function networks, in 

which there is a hidden unit centred at every training case. These units are called 

"kernels" and, usually, are probability density functions, such as Gaussian functions. The 

weights from the hidden to output layer are just the target values, so the output is 

simply a weighted average of the target values of the training cases, close to the given 

input case. As a consequence, the only parameters to be learned are the widths of the 

units.  

In the experiments using the blood pressure signals, the width of the kernels was 

experimentally determined as 0.2λ = . The newgrnn(⋅) MatLab command was used to 

implement this neural model. Moreover, a different neural network had to be trained for 

each template. 

 

iii. Support vector regressions (SVR) 

The implementation of the SVR prediction method was done through the libsbm 

framework13§119, with a new model being trained for each template. The template (training 

data) was previously normalised in the range [ 1,1]− . The parameters for the training 

were (see subsection 3.3.3): 

� type of SVR: epsilon-SVR 

� kernel type: radial basis function 

� with of kernel function ( γ ): 0.5 

� cost (C ): 1 

� tolerance of termination criterion ( ε ): 0.001 

 

iv. Average of the patterns (AVP) 

Basically, the main hypothesis of the proposed prediction scheme is that future evolution 

of similar conditions identified in the historic dataset, support the prediction of the 

current condition. As a result, the forecasting capability of the weighted average, ( )Y t , 

of these identified patterns, computed as (4.39), was assessed. The variable ( )mY t  defines 

each similar time series signal, and mS  is the corresponding similarity measure. 

                                           
13 www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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v. Proposed wavelet multi-resolution prediction scheme (WMM) 

The last approach put into practice the proposed wavelet strategy, considering the 

following parameters (subsection 3.4.3): 

Similarity analysis 

� 32N = , 8P = , where N and P denote, respectively, the time intervals before 

and after the current time instant 

� Number of patterns retrieved from the historic dataset, 5M =  

Wavelet multi-resolution analysis 

� Wavelet decomposition level, 5L =  

 

Selection of the optimal trends 

� Number of decompositions considered in the optimal trend selection 3,4,5,6l =  

(the details are the levels 3,4,5l = ; the approximation is the level 6l = ); 

� The first two levels of detail ( 1,2l = ) were neglected; 

� Conjunction and aggregation operators were, respectively, the ()maximum ⋅  and 

the ()product ⋅  operators. 

3. Prediction metrics 

The accuracy of the forecasting methods was determined in terms of four performance 

metrics: i) the proposed similarity measure based on the wavelet decomposition+KLT 

(SWK), (4.40); ii) the Pearson’s correlation coefficient (CORC), (4.41); iii) the 

normalised root mean squared error (NRMSE), (4.42) and iv) the mean absolute 

percentage error (MAPE). 

�( )( ), ( ) 1,...,SWK S Y t Y t t N N P= = + +  (4.40)

( ) � �( )
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In the previous equations, ( )Y t  is the actual BP value, �( )Y t  is the forecasted BP, Y  

and �Y  are, respectively, the means of the actual and the estimated signals. 

The metrics NRMSE and MAPE were transformed to exp( )NNRMSE NRMSEκ= −  

and exp( )MMAPE MAPEκ= − , in order to guarantee that their values are in the range 

[0,1]. The parameters Nκ  and Mκ  are adequate constants, respectively, 0.25Nκ =  and 

10Mκ = . 

 

4. Comparison of prediction methods 

Friedman test 

The correct validation is a decisive and fundamental procedure when comparing the 

results of several methods. Among the available parametric and nonparametric tests, the 

Friedman test is a nonparametric one that enables to perform multiple comparisons in 

experimental studies. This test (Friedman, 1937)§120, (Friedman, 1940)§121 is equivalent to 

ANOVA and is particularly adequate for machine learning studies when the assumptions 

(independency, normality and homoscedasticity) do not hold or are difficult to verify for 

a parametric test (Garcia et al., 2010)§122.  

The objective of the Friedman test is to determine if it is possible to conclude, from a 

set of results, that there is a difference among the several methods. The first step in 

calculating the test statistics is to convert the original results in ranks. Thus, for each 

problem (experiment), the methods are separately ranked, where the best performing 

method should have the rank of 1, the second best the rank of 2, etc. The Friedman test 

then compares the average ranks jR  of each method, computed as (4.44). 

1 j
j i

i

R r
n

= ∑  (4.44) 

The variable j
ir  denotes the rank of the thj  of k  algorithms on the 

thi  of n  data 

experiments. Under the null hypothesis, which states that “Ho: all the algorithms behave 

similarly and thus their ranks jR  should be equal”, the Friedman statistics, equation 
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(4.45), is distributed according to 2
Fχ , with 1k −  degrees of freedom, when n  and k  

are big enough (as a rule of a thumb, 10n >  and 5k > ).  

2
2 2 ( 1)12

( 1) 4
F j

j

k kn
R

k k
χ

 
+ 

= − 
+  

  
∑  (4.45) 

From the computation of the corresponding p value− , the null hypothesis can be or not 

rejected at a given level of significance. 

 

Nemenyi test 

The Nemenyi test enables a parwise comparison of the methods, based on the average 

ranks computed in the Friedman test. Basically, by means of the Nemenyi test, two 

methods are significantly different at 1%α = , 5%α = , or 10%α = , if their average 

ranks differ at least the critical value CD , computed as (4.46). 

( 1)

6

k k
CD q

n
α α

+
=  (4.46) 

The possible values for parameter qα  are listed in Table 4.12, depending on the number 

of involved methods (k ). 

 

Table 4.12  

Critical values for the two-tailed Nemenyi test. 

#methods 
(k) 

2 3 4 5 6 7 8 9 10 

1q  2.576 2.913 3.113 3.255 3.364 3.452 3.526 3.590 3.646 

5q  1.960 2.344 2.569 2.728 2.850 2.948 3.031 3.102 3.164 

10q  1.645 2.052 2.291 2.460 2.589 2.693 2.780 2.855 2.920 

 

For example, considering five methods to be compared ( 5k = ), the Nemenyi test table 

is obtained as depicted in Table 4.13, where jR  denotes the average rank of each 

method. 

 

Table 4.13  

Nemenyi test with k=5. 

#methods (k) 2 3 4 5 

1 2 1R R−  3 1R R−  4 1R R−  5 1R R−  

2  3 2R R−  4 2R R−  5 2R R−  

3   4 3R R−  5 3R R−  

4    5 4R R−  
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Finally, the comparison of each value ( j iR R−  ) with the obtained critical value CDα  

enables to decide about how significantly different two methods are. Basically, a  

method ( j ) is significantly better at a level α  than a method (i ), if the relationship 
( )j iR R CDα− >  is verified.  

5. Experiments with the TEN-HMS dataset 
 

i. Variation in the number of the patterns (M) 

The first group of experiments was performed in order to estimate the most adequate 

number of patterns to consider in the prediction strategy. To this aim, this number was 

successively increased from 5M =  to 30M =  with increments of 5 units, resulting in 

{ 5, 10, 15, 20, 25, 30}M = . For each value of M , a total of 140 experiments were 

performed. Figure 4.31 depicts the corresponding box-plots, with respect to the four 

performance metrics.  

 

Figure 4.31 − Variation in the number of patterns: M={5, 10, 15, 20, 25, 30}. 

 

As can been observed from the figure, the decision regarding the optimal number of 

patterns to be chosen is not clear. Observing all the similarity measures, it is not 

possible to identify an experiment that achieves superior results in comparison with the 

others. Moreover, for the same experiment, different variations occur for the different 

metrics. For example, in the particular case of M=5, higher variations occur in the SWK 

metrics and small variations are present in the NRMSE metrics.  
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i. Comparison of the number of patterns using the SWK metrics 

The Table 4.14 compares the six possible values of the number of patterns, where the 

values in each row result from the average of 7 experiments (total of 20 groups from the 

140 experiments). The values in the parentheses are used in the computation of the 

Friedman test to rank the methods.  

 

Table 4.14  

Comparison of the number of patterns (M) – SWK metrics.  

 M=5 M=10 M=15 M=20 M=25 M=30 

Group1 0.562 (6) 0.299 (2) 0.113 (1) 0.367 (3) 0.389 (4) 0.473 (5) 

Group2 0.470 (6) 0.420 (5) 0.201 (1) 0.319 (3) 0.377 (4) 0.288 (2) 

Group3 0.426 (3) 0.449 (5) 0.311 (1) 0.531 (6) 0.323 (2) 0.436 (4) 

Group4 0.332 (2) 0.318 (1) 0.492 (5) 0.524 (6) 0.355 (3) 0.373 (4) 

Group5 0.297 (2) 0.366 (4) 0.240 (1) 0.354 (3) 0.492 (6) 0.481 (5) 

Group6 0.362 (2) 0.414 (4) 0.398 (3) 0.467 (5) 0.318 (1) 0.572 (6) 

Group7 0.468 (6) 0.318 (1) 0.455 (5) 0.372 (4) 0.372 (3) 0.350 (2) 

Group8 0.550 (6) 0.448 (5) 0.375 (3) 0.377 (4) 0.286 (1) 0.344 (2) 

Group9 0.389 (4) 0.401 (5) 0.333 (2) 0.189 (1) 0.534 (6) 0.385 (3) 

Group10 0.547 (6) 0.388 (3) 0.349 (2) 0.445 (5) 0.299 (1) 0.397 (4) 

Group11 0.321 (2) 0.293 (1) 0.383 (4) 0.337 (3) 0.593 (6) 0.509 (5) 

Group12 0.558 (6) 0.313 (3) 0.301 (2) 0.402 (5) 0.337 (4) 0.252 (1) 

Group13 0.350 (4) 0.292 (1) 0.319 (3) 0.406 (5) 0.295 (2) 0.428 (6) 

Group14 0.393 (5) 0.210 (1) 0.376 (4) 0.363 (3) 0.327 (2) 0.485 (6) 

Group15 0.333 (3) 0.388 (4) 0.492 (6) 0.308 (1) 0.332 (2) 0.412 (5) 

Group16 0.454 (4) 0.338 (3) 0.476 (5) 0.303 (2) 0.224 (1) 0.530 (6) 

Group17 0.568 (6) 0.425 (4) 0.308 (1) 0.323 (2) 0.359 (3) 0.446 (5) 

Group18 0.422 (6) 0.182 (1) 0.303 (3) 0.384 (4) 0.29 (2) 0.387 (5) 

Group19 0.379 (5) 0.195 (1) 0.294 (2) 0.334 (3) 0.356 (4) 0.408 (6) 

Group20 0.467 (5) 0.213 (1) 0.479 (6) 0.398 (3) 0.417 (4) 0.383 (2) 

Average rank 4.45 2.75 3.00 3.55 3.05 4.20 

 

From the average of ranks, the value 2 13.77Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected at a 

significance level of 5% ( 0.0171p value− = ). Then, the Nemenyi test was performed to 

compare the number of patterns, based on the computed average ranks, which results 

are presented in Table 4.5. The performance of the methods is significantly different at 

levels of 1%, 5% and 10%, corresponding to critical values of 1 1.9902CD = , 

5 1.6861CD =  and 10 1.5317CD = , respectively. 
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Table 4.15  

Nemenyi test – SWT metric. 

#patterns M=10 M=15 M=20 M=25 M=30 

M=5 -1.70 * *  -1.45 -0.90 -1.40 -0.25 

M=10  0.25 0.80 0.30 1.45 

M=15   0.55 0.05 1.20 

M=20    -0.50 0.65 

M=25     1.15 

* at a significance level of 10%, * * at a significance level of 5%, * * * at a significance level of 1% 

From the Table 4.15 it can be observed that only the case 5M =  is superior to the 

10M =  (at the level of 5%). No other cases of superiority are verified.  

 

ii. Comparison of the number of patterns using all metrics 

The Table 4.16a) and Table 4.16b) summarize the average ranks and the respective 

values of qui-square and p-value. 

  

Table 4.16  

Comparison of the number of patterns (M) – all metrics.  

 M=5 M=10 M=15 M=20 M=25 M=30 

SWK 4.45 2.75 3.00 3.55 3.05 4.20 

CORC 4.10 3.20 3.40 3.50 3.00 3.80 

NRMSE 3.35 3.20 3.55 3.65 3.05 4.20 

MAPE 3.25 3.50 3.35 3.05 3.45 4.40 

a) Average ranks. 

 2
Fχ  p value−  

SWK 13.77 0.0171 

CORC 4.57 0.4704 

NRMSE 4.74 0.4481 

MAPE 6.29 0.2794 

b) Qui-square and p-value. 

From the Table 4.16b) it can be observed that only for the SWK measure the null 

hypothesis can not be rejected (and, in this case, only 5M =  is superior to 10M =  at 

the level of 5%). Consequently, it can be concluded that the selection of the number of 

patterns is not decisive for the performance of the prediction strategy. Thus, mainly due 

to simplicity reasons, a reduced number of patterns was selected. This number ( 5M = ) 

will be employed as the basis for the next experiments. 

On the other hand, these results are understandable. In effect, the prediction strategy is 

mainly based on the identification of the representative trends, obtained from a 
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clustering process that considers the patterns retrieved from the historic dataset. Thus, 

by means of the referred clustering process, a representative trend corresponds to a 

region where the patterns are more concentrated (the subtractive clustering is a density 

based method). As a result, every time new patterns are added to the clustering process, 

they do not affect significantly the determination of the centre (assuming that the 

similarity with respect to the template decreases as the number of the pattern to be 

compared increases). This aspect is strongly related with the robustness of the clustering 

process: outliers, that is, patterns with lower similarities with the template, tend to be 

neglected. 

 

ii. Variation in the number of days before the current instant (N) 

As referred, from the clinical perspective, the use of one month before the current time 

instant is considered reasonable to perform the desired prediction (one week). These 

experiments aim to investigate the adequateness of this value. For the effect, the number 

of days before the current instant was chosen to be { 8, 16, 32, 64}N =  (a power of 2 to 

simplify the wavelet decomposition process). For each value of N , a total of 140 

experiments were performed. The Figure 4.32 depicts the corresponding box-plots with 

respect to the four performance measures.  

The performance of the methods is significantly different at the levels of 1%, 5% and 

10%, corresponding to critical values of 1 1.2709CD = , 5 1.0488CD =  and 

10 0.9353CD = , respectively. 

 

Figure 4.32 − Variation in the number of days before prediction: N={8, 16, 32, 64}. 
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From the analysis of Figure 4.32, the decision about the most adequate number of 

previous days is not obvious. In fact, the median values obtained for each metric are 

similar, even though variations are different. 

 

i. Comparison of the number of previous days using the SWK metrics  

The Table 4.17 compares the four N  values, where each row results from the average of 

7 experiments (total of 140 experiments). 

 

Table 4.17  

Comparison of SWK among the different number of previous days (N). 

 N=8 N=16 N=32 N=64 

Group1 0.444 (4) 0.351 (2) 0.267 (1) 0.371 (3) 

Group2 0.368 (2) 0.516 (4) 0.363 (1) 0.392 (3) 

Group3 0.350 (3) 0.282 (2) 0.277 (1) 0.360 (4) 

Group4 0.501 (4) 0.440 (2) 0.324 (1) 0.489 (3) 

Group5 0.245 (1) 0.374 (2) 0.400 (3) 0.522 (4) 

Group6 0.393 (3) 0.357 (1) 0.383 (2) 0.409 (4) 

Group7 0.298 (1) 0.328 (2) 0.451 (3) 0.464 (4) 

Group8 0.352 (1) 0.463 (4) 0.420 (3) 0.412 (2) 

Group9 0.403 (2) 0.409 (4) 0.349 (1) 0.405 (3) 

Group10 0.381 (3) 0.378 (2) 0.396 (4) 0.290 (1) 

Group11 0.337 (1) 0.538 (4) 0.365 (2) 0.465 (3) 

Group12 0.372 (2) 0.300 (1) 0.398 (4) 0.392 (3) 

Group13 0.374 (3) 0.368 (2) 0.328 (1) 0.451 (4) 

Group14 0.407 (3) 0.420 (4) 0.363 (2) 0.342 (1) 

Group15 0.374 (2) 0.414 (4) 0.378 (3) 0.344 (1) 

Group16 0.444 (4) 0.351 (2) 0.267 (1) 0.371 (3) 

Group17 0.368 (2) 0.516 (4) 0.363 (1) 0.392 (3) 

Group18 0.350 (3) 0.282 (2) 0.277 (1) 0.360 (4) 

Group19 0.501 (4) 0.440 (2) 0.324 (1) 0.489 (3) 

Group20 0.245 (1) 0.374 (2) 0.400 (3) 0.522 (4) 

Average rank 2.45 2.50 2.25 2.80 

 

From the average of ranks, the value 2 1.86Fχ =  was obtained, equation (4.45), with a 

p value−  of 0.602. As result, the null hypothesis “Ho: all the methods behave similarly” 

could not be rejected.  
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ii. Comparison of the number of previous days using all metrics  

The Table 4.18a) and Table 4.18b) summarize the average ranks and the respective 

values of qui-square and p-value. 

 

Table 4.18  

Comparison of the number of previous days (N) – all metrics.  

 N=8 N=16 N=32 N=64 

SWK 2.45 2.50 2.25 2.80 

CORC 2.30 2.55 2.55 2.60 

NRMSE 2.50 2.35 2.40 2.75 

MAPE 2.05 2.80 2.55 2.60 

a) Average ranks. 

 

 
2
Fχ  p value−  

SWK 1.86 0.602 

CORC 0.66 0.882 

NRMSE 1.14 0.767 

MAPE 3.66 0.306 

b) Qui-square and p-value.  

From Table 4.18b) it is clear that the null hypothesis has to be accepted for all the 

metrics.  In effect, it was not possible to find, with a reasonable degree of confidence, a 

value that contradicts the suggested number of previous days ( 32M = ). Therefore, this 

number was accepted.  

 

iii. Comparison of the prediction methods (ARIMA, GRNN, SVR, AVP, WMM) 

This set of experiments aimed at the comparison of the proposed prediction method 

against the other strategies. For the effect, a total of 300 experiments were performed 

( 5M = , 32N = , 8P = ). The Figure 4.33 depicts the box-plot resulting from the 

comparisons. 
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Figure 4.33 − Comparison of the prediction methods (SWK, CORC,NRMSE, and MAPE metrics) 

using TEN-HMS dataset. 

 

From the analysis of Figure 4.33 and, in global terms, it appears that the proposed 

method is superior to the others. In effect, the wavelet based prediction method (WMM) 

presents the highest median for all the metrics showing, however, a higher variability for 

some of these metrics. 

Three of the methods (ARIMA, GRNN, and SVR) compute the prediction based on an 

iterative approach: a one-step ahead model is iteratively applied during P times, being 

the current predictions used by the model in order to obtain the next forecast. The last 

two methods (AVP and WMM) do not involve the explicit computation of a model, 

thus, they are, to some extent, similar to a direct approach. This fact can justify why 

GRNN and ARIMA present poor results for some metrics (namely SWK and NRMSE). 

Additionally, since the training of the respective parameters is only based on the data 

from the template ( 32N = ), generalization problems can occur. On the other hand, the 

SVR method partially mitigates this drawback through its particular training process 

(probably the main advantage recognized for SVR). 

In order to accurately compare the predictive methods, the Friedman test was 

implemented, considering the four metrics. 
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i. Comparison of the methods using the SWK metric 

The Table 4.19, corresponding to the Figure 4.33a), compares the five methods 

according to the SWK metrics, where the values in each row result from the average of 

groups of 15 experiments (total of 300 experiments). The ranks in parentheses are used 

in the computation of the Friedman test to evaluate the methods.  

 

Table 4.19  

Comparison of SWK among the five prediction methods (TEN-HMS).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.341 (1) 0.403 (4) 0.407 (5) 0.352 (2) 0.368 (3) 

Group2 0.365 (4) 0.300 (1) 0.306 (2) 0.345 (3) 0.386 (5) 

Group3 0.410 (5) 0.354 (2) 0.332 (1) 0.355 (3) 0.369 (4) 

Group4 0.355 (2) 0.292 (1) 0.396 (4) 0.383 (3) 0.422 (5) 

Group5 0.347 (1) 0.350 (2) 0.393 (4) 0.380 (3) 0.430 (5) 

Group6 0.358 (2) 0.351 (1) 0.387 (3) 0.417 (4) 0.448 (5) 

Group7 0.351 (2) 0.325 (1) 0.383 (3) 0.431 (4) 0.468 (5) 

Group8 0.346 (3) 0.321 (1) 0.364 (4) 0.370 (5) 0.342 (2) 

Group9 0.355 (4) 0.347 (2) 0.351 (3) 0.250 (1) 0.391 (5) 

Group10 0.341 (2) 0.348 (3) 0.393 (5) 0.318 (1) 0.362 (4) 

Group11 0.298 (1) 0.340 (2) 0.392 (3) 0.411 (4) 0.462 (5) 

Group12 0.330 (1) 0.339 (2) 0.417 (5) 0.393 (4) 0.389 (3) 

Group13 0.368 (4) 0.326 (1) 0.347 (2) 0.356 (3) 0.424 (5) 

Group14 0.392 (5) 0.325 (1) 0.377 (3) 0.361 (2) 0.380 (4) 

Group15 0.346 (1) 0.447 (5) 0.365 (2) 0.367 (3) 0.411 (4) 

Group16 0.337 (1) 0.388 (2) 0.389 (3) 0.393 (4) 0.434 (5) 

Group17 0.452 (5) 0.340 (1) 0.402 (2) 0.406 (3) 0.449 (4) 

Group18 0.337 (2) 0.288 (1) 0.391 (4) 0.364 (3) 0.421 (5) 

Group19 0.390 (4) 0.357 (2) 0.329 (1) 0.385 (3) 0.404 (5) 

Group20 0.378 (4) 0.366 (3) 0.398 (5) 0.323 (1) 0.347 (2) 

Average rank 2.70 1.90 3.20 2.95 4.25 

 

From the average of ranks, the value 2 23.24Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 0.0001p value− = ).  

In the next phase, the Nemenyi test was performed to compare the methods based on 

the computed average ranks, which results are presented in Table 4.20. The performance 

of the methods is significantly different at the levels of 1%, 5% and 10%, corresponding 

to critical values of 1 1.6275CD = , 5 1.3640CD =  and 10 1.2300CD = , respectively. 
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Table 4.20  

Nemenyi test (SWK metrics - TEN-HMS). 

#methods (k) GRNN SVR AVP WMM 

ARIMA -0.80 0.50 0.25 1.55 * *  

GRNN  1.30 *  1.05 2.35 * * *  

SVR   -0.25 1.05 

AVP    1.30 *  

* at a significance level of 10%, * * at a significance level of 5%, * * * at a significance level of 1% 

 

From the table, it can be concluded that the proposed WMM method outperforms 

ARIMA, GRNN and AVP predictors, respectively at the levels of 5%, 1%, and 10%. In 

turn, at a level of 10%, the SVR outperforms the GRNN method.  

 

ii. Comparison of the methods using the CORC metric 

The Table 4.21, corresponding to the Figure 4.33b), compares the five methods using the 

CORC with the same groups of experiments.  

 

Table 4.21  

Comparison of CORC among the five prediction methods (TEN-HMS).  

 ARIMA GRNN SVR AVP WMM 

Group1 -0.164 (1) 0.095 (3) 0.150 (5) -0.116 (2) 0.112 (4) 

Group2 -0.016 (3) -0.152 (1) -0.105 (2) -0.014 (4) 0.062 (5) 

Group3 0.040 (2) 0.022 (1) 0.091 (4) 0.073 (3) 0.103 (5) 

Group4 0.109 (4) -0.159 (1) 0.040 (3) 0.150 (5) 0.015 (2) 

Group5 -0.141 (1) -0.069 (2) 0.177 (4) -0.017 (3) 0.190 (5) 

Group6 0.130 (3) 0.079 (1) 0.099 (2) 0.178 (4) 0.253 (5) 

Group7 -0.097 (1) -0.071 (2) 0.153 (3) 0.169 (4) 0.191 (5) 

Group8 -0.076 (1) -0.056 (2) -0.019 (3) 0.086 (5) 0.059 (4) 

Group9 0.027 (4) 0.101 (5) 0.008 (3) -0.307 (1) -0.020 (2) 

Group10 -0.062 (2) 0.048 (5) -0.023 (3) -0.121 (1) -0.006 (4) 

Group11 -0.266 (1) -0.047 (2) 0.196 (4) 0.177 (3) 0.235 (5) 

Group12 -0.179 (2) -0.217 (1) 0.169 (5) 0.106 (4) 0.081 (3) 

Group13 0.090 (4) -0.059 (2) -0.140 (1) -0.002 (3) 0.248 (5) 

Group14 -0.061 (2) -0.114 (1) 0.067 (5) -0.021 (3) 0.036 (4) 

Group15 -0.157 (1) 0.098 (4) -0.049 (2) 0.073 (3) 0.209 (5) 

Group16 -0.091 (1) 0.030 (2) 0.075 (3) 0.148 (4) 0.228 (5) 

Group17 0.162 (4) -0.084 (1) 0.122 (3) 0.035 (2) 0.195 (5) 

Group18 0.093 (3) -0.069 (1) 0.163 (4) 0.075 (2) 0.164 (5) 

Group19 0.101 (5) 0.088 (4) -0.262 (1) -0.023 (2) 0.073 (3) 

Group20 0.098 (5) -0.076 (1) -0.012 (4) -0.047 (2) -0.018 (3) 

Average rank 2.50 2.10 3.20 3.00 4.20 
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From the average of ranks, the value 2 30.32Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 0.0004p value− = ). In the next phase, the Nemenyi test was 

performed to compare the methods based on the computed average ranks, which results 

are presented in Table 4.22.  

Table 4.22  
Nemenyi test (CORC metrics - TEN-HMS). 

#methods (k) GRNN SVR AVP WMM 

ARIMA -0.40 0.70 0.50 1.70 * * *  

GRNN  1.10 0.90 2.10 * * *  

SVR   -0.20 1.00 

AVP    1.20 

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

It can be concluded that the proposed WMM method outperforms the ARIMA and the 

GRNN predictors at the level of 1%.  

 

iii. Comparison of the methods using the NRMSE metrics 

The Table 4.23, compares the five methods according to the NRMSE metrics.  

 

Table 4.23  
Comparison of NRMSE among the five prediction methods (TEN-HMS).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.554 (4) 0.512 (1) 0.533 (3) 0.517 (2) 0.578 (5) 

Group2 0.519 (4) 0.299 (1) 0.428 (2) 0.441 (3) 0.560 (5) 

Group3 0.560 (4) 0.414 (1) 0.494 (2) 0.546 (3) 0.574 (5) 

Group4 0.473 (2) 0.334 (1) 0.535 (3) 0.586 (4) 0.637 (5) 

Group5 0.557 (2) 0.453 (1) 0.581 (3) 0.623 (4) 0.674 (5) 

Group6 0.615 (4) 0.358 (1) 0.552 (2) 0.566 (3) 0.667 (5) 

Group7 0.531 (3) 0.311 (1) 0.518 (2) 0.575 (4) 0.609 (5) 

Group8 0.578 (4) 0.463 (1) 0.541 (2) 0.605 (5) 0.574 (3) 

Group9 0.473 (3) 0.345 (1) 0.491 (4) 0.473 (2) 0.600 (5) 

Group10 0.544 (3) 0.402 (1) 0.549 (4) 0.518 (2) 0.579 (5) 

Group11 0.507 (2) 0.359 (1) 0.582 (4) 0.581 (3) 0.681 (5) 

Group12 0.511 (2) 0.364 (1) 0.620 (4) 0.625 (5) 0.610 (3) 

Group13 0.511 (4) 0.406 (1) 0.419 (2) 0.464 (3) 0.539 (5) 

Group14 0.572 (4) 0.363 (1) 0.551 (3) 0.549 (2) 0.597 (5) 

Group15 0.539 (3) 0.398 (1) 0.537 (2) 0.545 (4) 0.615 (5) 

Group16 0.564 (3) 0.494 (1) 0.565 (4) 0.524 (2) 0.635 (5) 

Group17 0.559 (4) 0.370 (1) 0.520 (2) 0.549 (3) 0.619 (5) 

Group18 0.569 (4) 0.353 (1) 0.542 (3) 0.537 (2) 0.592 (5) 

Group19 0.590 (4) 0.427 (1) 0.474 (2) 0.589 (3) 0.602 (5) 

Group20 0.586 (5) 0.357 (1) 0.497 (2) 0.525 (3) 0.534 (4) 

Average rank 3.40 1.00 2.75 3.10 4.75 
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From the average of ranks, the value 2 58.36Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 6.4 12p value e− = − ). In the next phase, the Nemenyi test was 

performed to compare the methods based on the computed average ranks, which results 

are presented in Table 4.24.  

Table 4.24  
Nemenyi test (NRMSE metrics - TEN-HMS). 

#methods (k) GRNN SVR AVP WMM 

ARIMA -2.40 * * *  -0.65 -0.30 1.35 *  

GRNN  1.75 * * *  2.10 * * *  3.75 * * *  

SVR   0.35 2.00 * * *  

AVP    1.65 * * *  

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

From the Table 4.24, it can be concluded that the proposed WMM method outperforms 

GRNN, SVR and AVP predictors at a levels of 1%. It also outperforms the ARIMA 

method at a significance level of 10%.  

 

iv. Comparison of the methods using the MAPE metrics 

The Table 4.25, compares the five methods according to the MAPE metrics.  
 

Table 4.25  

Comparison of MAPE among the five prediction methods (TEN-HMS).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.361 (1) 0.394 (3) 0.416 (4) 0.392 (2) 0.422 (5) 

Group2 0.372 (4) 0.303 (1) 0.330 (2) 0.369 (3) 0.420 (5) 

Group3 0.423 (4) 0.341 (1) 0.376 (2) 0.420 (3) 0.436 (5) 

Group4 0.389 (2) 0.363 (1) 0.400 (3) 0.452 (4) 0.472 (5) 

Group5 0.405 (3) 0.362 (1) 0.396 (2) 0.433 (4) 0.477 (5) 

Group6 0.560 (4) 0.411 (1) 0.510 (2) 0.554 (3) 0.584 (5) 

Group7 0.388 (3) 0.264 (1) 0.377 (2) 0.421 (4) 0.436 (5) 

Group8 0.428 (3) 0.380 (1) 0.422 (2) 0.447 (5) 0.440 (4) 

Group9 0.382 (2) 0.281 (1) 0.387 (3) 0.404 (4) 0.430 (5) 

Group10 0.380 (2) 0.368 (1) 0.387 (3) 0.405 (4) 0.446 (5) 

Group11 0.400 (2) 0.347 (1) 0.415 (3) 0.479 (4) 0.524 (5) 

Group12 0.360 (2) 0.272 (1) 0.418 (4) 0.427 (5) 0.415 (3) 

Group13 0.407 (4) 0.386 (3) 0.356 (1) 0.376 (2) 0.424 (5) 

Group14 0.422 (5) 0.325 (1) 0.389 (2) 0.403 (3) 0.413 (4) 

Group15 0.362 (3) 0.301 (1) 0.351 (2) 0.376 (4) 0.422 (5) 

Group16 0.409 (3) 0.405 (2) 0.403 (1) 0.421 (4) 0.456 (5) 

Group17 0.416 (4) 0.300 (1) 0.354 (2) 0.394 (3) 0.419 (5) 

Group18 0.451 (4) 0.327 (1) 0.409 (2) 0.441 (3) 0.467 (5) 

Group19 0.437 (4) 0.356 (2) 0.320 (1) 0.435 (3) 0.447 (5) 

Group20 0.490 (5) 0.363 (1) 0.443 (2) 0.465 (3) 0.477 (4) 

Average rank 3.20 1.30 2.25 3.50 4.75 
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From the average of ranks, the value 2 54.44Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 4.2 11p value e− = − ). In the next phase, the Nemenyi test was 

performed to compare the methods based on the computed average ranks, which results 

are presented in Table 4.26. 

Table 4.26  
Nemenyi test (MAPE metrics - TEN-HMS). 

#methods (k) GRNN SVR AVP WMM 

ARIMA -1.90 * * *  -0.95 0.30 1.55 * *  

GRNN 0 0.95 2.20 * * *  3.45 * * *  

SVR 0 0 1.25 *  2.50 * * *  

AVP 0 0 0 1.25 *  

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

From the Table 4.26, it can be concluded that the proposed WMM method outperforms 

GRNN and SVR at a level of 1%, the ARIMA at a level of 5% and the AVP at a level 

of 10%.  

 

v. Comparison of the prediction methods using all metrics  

The Table 4.27a) and Table 4.27b)  summarize the average ranks and the respective 

values of qui-square and p-value. 
 

Table 4.27  
Comparison of the prediction methods–all metrics (TEN-HMS).  

 ARIMA GRNN SVR AVP WMM 

SWK 2.70 1.90 3.20 2.95 4.25 

CORC 2.50 2.10 3.20 3.00 4.20 

NRMSE 3.40 1.00 2.75 3.10 4.75 

MAPE 3.20 1.30 2.25 3.50 4.75 

a) Average ranks. 

 
2
Fχ  p value−  

SWK 23.24 0.0001 

CORC 20.32 0.0004 

NRMSE 58.36 6.4e-12 

MAPE 54.44 4.2e-11 

b) Qui-square and p-value. 

From the analysis of Table 4.37b) the null hypothesis has to be rejected for all the 

metrics. Moreover, from the previous comparison using individual metrics, it can be 

concluded that the proposed method is globally superior to the others. In effect, 

considering the values of Table 4.20, Table 4.22, Table 4.24, and Table 4.26, it is clear 
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that the wavelet based prediction method (WMM) presents, in most cases, higher 

performances. 

iv. A step-by-step example  

The Figure 4.34 illustrates the prediction methodology applied to the signal ( )X t . The 

variable 1( )X t  identifies the section of the signal ( )X t  before the time instant 0 32t =  

(template), and 2( )X t  the respective future (assumed to be unknown). The variable 

( )Y t  represents the result of the prediction method. 

 

0 32t =

2( )X t

( )Y t

1( )X t

1 2( ) ( ) ( )X t X t X t =   

 

Figure 4.34 − Example of the prediction method result. 

 

The Figure 4.35 depicts, for the approximation and details (level 1,2,3,4,5l = ), the 

decomposition of the template 1( )X t , the decomposition of the patterns, 

( ), 1,..,5maZ t m =  and ( ), 1,..,5l
md Z t m = , and the respective representative trends, 

( )aZ t  and ( )ld Z t . 
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Figure 4.35 − Decomposition of the template and of the patterns. 

 

From the optimization process using a set of distance-based measures (subsection 3.4.3) 

the levels l=3 and l=5 were selected for the computation of ( )Y t . In the combination 

process only the approximation and the last three detail levels (l=3,4,5) were used, since 

they present a smooth evolution, and thus are more adequate to represent trends.  
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6. Experiments with the MyHeart dataset 

Comparison of the prediction methods (ARIMA, GRNN, SVR, AVP, WMM) 

Similarly to the tests conducted using the TEN-HMS dataset, a set of experiments was 

carried out based on the MyHeart dataset for comparing the different predictive 

strategies. A total of 500 experiments were performed ( 5M = , 32N = , 8P = ) and the 

respective comparison results are depicted in Figure 4.36. 

 

Figure 4.36 − Comparison of the predictive methods (SWK, CORC, NRMSE, and MAPE metrics) 

using MyHeart dataset. 

 

From the analysis of Figure 4.36 and, in global terms, it appears that the proposed 

method is slightly superior to the others. In effect, the wavelet based prediction method 

(WMM) presents the highest median for all the metrics presenting, however, a higher 

variability for some of these metrics. 
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i. Comparison of the methods using the SWK metric 

The Table 4.28, corresponding to the Figure 4.36a), compares the five methods 

according to the SWK metrics, where the values in each row result from the average of 

groups of 25 experiments (total of 500 experiments).  

 

Table 4.28  

Comparison of SWK among the five prediction methods (MyHeart).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.442 (4) 0.419 (2) 0.391 (1) 0.420 (3) 0.443 (5) 

Group2 0.291 (1) 0.374 (2) 0.433 (4) 0.521 (5) 0.422 (3) 

Group3 0.381 (4) 0.406 (5) 0.354 (2) 0.369 (3) 0.344 (1) 

Group4 0.327 (1) 0.414 (4) 0.362 (2) 0.414 (3) 0.416 (5) 

Group5 0.383 (2) 0.410 (4) 0.359 (1) 0.417 (5) 0.386 (3) 

Group6 0.360 (2) 0.414 (3) 0.296 (1) 0.422 (4) 0.481 (5) 

Group7 0.403 (2) 0.431 (3) 0.397 (1) 0.453 (4) 0.530 (5) 

Group8 0.361 (2) 0.330 (1) 0.383 (3) 0.424 (5) 0.416 (4) 

Group9 0.476 (4) 0.490 (5) 0.292 (1) 0.389 (2) 0.424 (3) 

Group10 0.417 (5) 0.346 (3) 0.327 (1) 0.364 (4) 0.335 (2) 

Group11 0.420 (3) 0.456 (4) 0.358 (1) 0.389 (2) 0.473 (5) 

Group12 0.327 (2) 0.326 (1) 0.394 (5) 0.390 (4) 0.354 (3) 

Group13 0.405 (4) 0.400 (3) 0.381 (1) 0.423 (5) 0.384 (2) 

Group14 0.453 (4) 0.451 (3) 0.373 (1) 0.374 (2) 0.453 (5) 

Group15 0.322 (1) 0.370 (4) 0.336 (2) 0.386 (5) 0.359 (3) 

Group16 0.391 (2) 0.489 (5) 0.290 (1) 0.444 (3) 0.463 (4) 

Group17 0.330 (1) 0.402 (3) 0.375 (2) 0.402 (4) 0.421 (5) 

Group18 0.289 (1) 0.362 (2) 0.375 (3) 0.465 (5) 0.435 (4) 

Group19 0.339 (1) 0.412 (4) 0.434 (5) 0.381 (2) 0.389 (3) 

Group20 0.335 (2) 0.394 (3) 0.311 (1) 0.410 (4) 0.479 (5) 

Average rank 2.40 3.20 1.95 3.70 3.75 

 

From the average of ranks, the value 2 20.44Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 0.0004p value− = ).  

The Nemenyi test was performed to compare the methods based on the computed 

average ranks, which results are presented in Table 4.29. The performance of the 

methods is significantly different at the levels of 1%, 5% and 10%, corresponding to 

critical values of 1 1.6275CD = , 5 1.3640CD =  and 10 1.2300CD = , respectively. 

 

 

 

 



226 4. Results 

Table 4.29  

Nemenyi test (SWK metrics - MyHeart). 

#methods (k) GRNN SVR AVP WMM 

ARIMA 0.80 -0.45 1.30 *  1.35 *  

GRNN  -1.25 *  0.50 0.55 

SVR   1.75 * * *  1.80 * * *  

AVP    0.05 

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

 

From the table, it can be concluded that the proposed WMM method outperforms 

ARIMA and SVR, respectively at the levels of 10% and 1%. In turn, at a level of 10%, 

the GRNN outperforms the SVR method. The AVP method behaves similarly to the 

WMM. 

 

ii. Comparison of the methods using the CORC metric 

The Table 4.30, corresponding to the Figure 4.36b), compares the five methods using the 

CORC metrics with the same groups of experiments.  

 

Table 4.30  

Comparison of CORC among the five prediction methods (MyHeart).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.066 (2) 0.109 (3) 0.025 (1) 0.117 (4) 0.197 (5) 

Group2 -0.297 (1) -0.130 (2) 0.158 (3) 0.331 (5) 0.309 (4) 

Group3 0.018 (2) 0.143 (5) 0.040 (4) 0.022 (3) -0.032 (1) 

Group4 -0.192 (1) 0.151 (3) 0.092 (2) 0.205 (4) 0.234 (5) 

Group5 0.015 (2) 0.127 (4) -0.209 (1) 0.234 (5) 0.081 (3) 

Group6 -0.041 (2) 0.149 (3) -0.203 (1) 0.169 (4) 0.364 (5) 

Group7 0.094 (2) 0.172 (3) -0.120 (1) 0.359 (4) 0.415 (5) 

Group8 -0.068 (2) -0.091 (1) 0.138 (5) 0.127 (3) 0.131 (4) 

Group9 0.252 (4) 0.347 (5) -0.199 (1) 0.018 (2) 0.200 (3) 

Group10 0.087 (5) -0.027 (3) -0.099 (1) -0.084 (2) 0.077 (4) 

Group11 0.117 (3) 0.220 (5) -0.014 (1) 0.111 (2) 0.163 (4) 

Group12 -0.223 (1) -0.028 (2) 0.033 (3) 0.153 (5) 0.069 (4) 

Group13 0.137 (3) 0.140 (4) -0.175 (1) 0.157 (5) 0.020 (2) 

Group14 0.146 (3) 0.211 (4) 0.077 (2) 0.015 (1) 0.305 (5) 

Group15 -0.062 (3) 0.043 (5) -0.103 (2) 0.032 (4) -0.173 (1) 

Group16 0.167 (2) 0.288 (3) -0.229 (1) 0.319 (4) 0.329 (5) 

Group17 -0.065 (1) 0.060 (3) 0.096 (4) 0.024 (2) 0.247 (5) 

Group18 -0.199 (1) -0.033 (3) -0.094 (2) 0.431 (5) 0.160 (4) 

Group19 -0.074 (1) 0.047 (3) 0.195 (5) 0.083 (4) 0.008 (2) 

Group20 -0.007 (2) 0.088 (3) -0.061 (1) 0.101 (4) 0.341 (5) 

Average rank 2.15 3.35 2.1 3.60 3.80 
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From the average of ranks, the value 2 21.24Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 0.0003p value− = ). The Table 4.31 presents the Nemenyi test 

results. 

Table 4.31  
Nemenyi test (CORC metrics - MyHeart). 

#methods (k) GRNN SVR AVP WMM 

ARIMA 1.20 -0.05 1.45 * *  1.65 * * *  

GRNN  -1.25 *  0.25 0.45 

SVR   1.50 * *  1.70 * * *  

AVP    0.20 

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

The results of the Table 4.31 are comparable to the ones of Table 4.29 and, thus, also 

the conclusions that can be inferred. 

 

iii. Comparison of the methods using the NRMSE metrics 

The Table 4.32 compares the five methods according to the NRMSE metrics.  

Table 4.32  
Comparison of NRMSE among the five prediction methods (MyHeart).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.543 (3) 0.551 (4) 0.524 (1) 0.536 (2) 0.594 (5) 

Group2 0.427 (1) 0.438 (2) 0.545 (3) 0.599 (5) 0.547 (4) 

Group3 0.476 (3) 0.438 (1) 0.460 (2) 0.512 (4) 0.519 (5) 

Group4 0.471 (1) 0.529 (2) 0.598 (4) 0.601 (5) 0.583 (3) 

Group5 0.562 (4) 0.475 (1) 0.544 (2) 0.618 (5) 0.558 (3) 

Group6 0.495 (2) 0.518 (3) 0.453 (1) 0.577 (4) 0.621 (5) 

Group7 0.523 (3) 0.486 (1) 0.503 (2) 0.651 (5) 0.635 (4) 

Group8 0.567 (3) 0.419 (1) 0.549 (2) 0.576 (4) 0.581 (5) 

Group9 0.606 (4) 0.572 (3) 0.422 (1) 0.509 (2) 0.630 (5) 

Group10 0.580 (5) 0.449 (1) 0.533 (3) 0.553 (4) 0.532 (2) 

Group11 0.526 (3) 0.510 (2) 0.449 (1) 0.565 (4) 0.648 (5) 

Group12 0.449 (2) 0.402 (1) 0.576 (4) 0.629 (5) 0.534 (3) 

Group13 0.592 (5) 0.505 (1) 0.530 (2) 0.572 (3) 0.582 (4) 

Group14 0.594 (4) 0.463 (1) 0.588 (3) 0.489 (2) 0.618 (5) 

Group15 0.505 (3) 0.463 (1) 0.554 (4) 0.579 (5) 0.476 (2) 

Group16 0.590 (2) 0.596 (3) 0.439 (1) 0.608 (4) 0.608 (5) 

Group17 0.451 (3) 0.396 (1) 0.438 (2) 0.489 (4) 0.515 (5) 

Group18 0.469 (1) 0.484 (2) 0.495 (3) 0.652 (5) 0.577 (4) 

Group19 0.507 (2) 0.503 (1) 0.591 (5) 0.535 (3) 0.537 (4) 

Group20 0.480 (2) 0.404 (1) 0.493 (3) 0.498 (4) 0.592 (5) 

Average rank 2.80 1.65 2.45 3.95 4.15 
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From the average of ranks, the value 2 35.12Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 4.3 7p value e− = − ). The corresponding Nemenyi test is 

presented in Table 4.33.  

Table 4.33  
Nemenyi test (NRMSE metrics - MyHeart). 

#methods (k) GRNN SVR AVP WMM 

ARIMA -1.15 -0.35 1.15 1.35 *  

GRNN  0.80 2.30 * * *  2.50 * * *  

SVR   1.50 * *  1.70 * * *  

AVP    0.20 

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

From the Table 4.33, it can be concluded that the proposed WMM method outperforms 

ARIMA, GRNN and SVR, respectively at the levels of 10%, 1% and 1%. The AVP 

method outperforms the GRNN and SVR, respectively at the levels of 1% and 5%. 

 

iv. Comparison of the methods using the MAPE metrics 

The Table 4.34, compares the five methods according to the MAPE metrics.  

 

Table 4.34  
Comparison of MAPE among the five prediction methods (MyHeart).  

 ARIMA GRNN SVR AVP WMM 

Group1 0.470 (1) 0.512 (4) 0.483 (2) 0.494 (3) 0.554 (5) 

Group2 0.400 (1) 0.424 (2) 0.454 (3) 0.494 (5) 0.472 (4) 

Group3 0.451 (3) 0.440 (2) 0.425 (1) 0.503 (4) 0.540 (5) 

Group4 0.393 (1) 0.442 (2) 0.480 (3) 0.486 (4) 0.490 (5) 

Group5 0.424 (3) 0.409 (2) 0.377 (1) 0.447 (5) 0.433 (4) 

Group6 0.353 (1) 0.421 (3) 0.364 (2) 0.440 (4) 0.468 (5) 

Group7 0.460 (2) 0.479 (3) 0.448 (1) 0.542 (4) 0.573 (5) 

Group8 0.504 (4) 0.472 (2) 0.464 (1) 0.478 (3) 0.505 (5) 

Group9 0.505 (2) 0.545 (4) 0.408 (1) 0.508 (3) 0.578 (5) 

Group10 0.510 (4) 0.464 (2) 0.458 (1) 0.510 (5) 0.483 (3) 

Group11 0.422 (3) 0.408 (2) 0.355 (1) 0.463 (4) 0.518 (5) 

Group12 0.358 (1) 0.390 (2) 0.492 (5) 0.485 (4) 0.458 (3) 

Group13 0.476 (5) 0.467 (4) 0.406 (1) 0.459 (3) 0.449 (2) 

Group14 0.480 (3) 0.415 (1) 0.483 (4) 0.427 (2) 0.561 (5) 

Group15 0.416 (4) 0.408 (3) 0.399 (1) 0.441 (5) 0.400 (2) 

Group16 0.470 (2) 0.536 (5) 0.377 (1) 0.477 (3) 0.508 (4) 

Group17 0.464 (2) 0.465 (3) 0.449 (1) 0.521 (4) 0.553 (5) 

Group18 0.343 (1) 0.377 (3) 0.376 (2) 0.439 (5) 0.421 (4) 

Group19 0.387 (1) 0.401 (2) 0.409 (3) 0.411 (4) 0.423 (5) 

Group20 0.468 (3) 0.424 (1) 0.469 (4) 0.440 (2) 0.545 (5) 

Average rank 2.35 2.60 1.95 3.80 4.30 
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From the average of ranks, the value 2 32.12Fχ =  was obtained, equation (4.45). As 

result, the null hypothesis “Ho: all the methods behave similarly” was rejected with a 

high significance level ( 1.8 6p value e− = − ). The Nemenyi test was performed and the 

obtained results are presented in Table 4.35. 

 

Table 4.35  
Nemenyi test (MAPE metrics - MyHeart). 

#methods (k) GRNN SVR AVP WMM 

ARIMA 0.25 -0.40 1.45 * *  1.95 * * *  

GRNN 0 -0.65 1.20 1.70 * * *  

SVR 0 0 1.85 * * *  2.35 * * *  

AVP 0 0 0 0.50 

* at a significance level of 10%, * *  at a significance level of 5%, * * *  at a significance level of 1% 

 

From the Table 4.35, it can be concluded that the proposed WMM method outperforms 

ARIMA, GRNN and SVR, at a level of 1%. In turn, the AVP method outperforms SVR 

and ARIMA methods, respectively, at a level 1% and 5%. 

 

v. Comparison of the prediction methods using all metrics  

The Table 4.36a) and Table 4.36b) summarize the average ranks and the respective 

values of qui-square and p-value. 

 

Table 4.36  
Comparison of the prediction methods–all metrics (MyHeart).  

 ARIMA GRNN SVR AVP WMM 

SWK 2.40 3.20 1.95 3.70 3.75 

CORC 2.15 3.35 2.10 3.60 3.80 

NRMSE 2.80 1.65 2.45 3.95 4.15 

MAPE 2.35 2.60 1.95 3.80 4.30 

a) Average ranks. 

 
2
Fχ  p value−  

SWK 20.44 0.0004 

CORC 21.24 0.0003 

NRMSE 35.12 4.3e-7 

MAPE 32.12 1.8e-6 

b) Qui-square and p-value. 

From the analysis of Table 4.36b) the null hypothesis has to be rejected for all the 

metrics. Moreover, from the previous comparison using individual metrics, it can be 

concluded that the proposed method is globally superior to the ARIMA, GRNN and 

SVR, but comparable with the AVP method.  
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4.5.3 Evaluation of hypertension risk 

Experiments 

The present group of experiments is particularly applied to patients whose blood 

pressure values are in a critical range (around the threshold of hypertension). The main 

goal is to employ the trend prediction results to assess a patient hypertension risk. 

Specifically, the aim is to determine whether during the following week the blood 

pressure signal of that patient evolves towards hypertension values or, on the contrary, 

is maintaining or decreasing to normal values. The Figure 4.37 illustrates this idea.  

 

0t

 

Figure 4.37 − Assessment of the hypertension risk.  

 

The procedure starts by identifying the patients that have recently shown blood pressure 

values in a critical range, more specifically, that have presented blood pressure values in 

the range [ 5%, 5%]− +  of the limit value of 135 mmHg during 3 consecutive days. 

Then, for those patients, the blood pressure values of the following week are predicted. 

According to the percentage of values that are above the limit threshold (135 mmHg), 

the risk of the patient is assessed: if the percentage is higher than 75%, the patient is 

considered to be at risk of developing an hypertension condition; in the other case (less 

than 75%), the patient is considered to have no hypertension risk. 

Results with the TEN-HMS dataset 

The effectiveness of the proposed strategy was tested by selecting, from a set of 600 

random templates, the ones that verified the referred requirement (to be in the critical 

range). In effect, 68 verified this condition: in 19 cases the patient presented risk of 

developing a hypertension condition, and in 49 cases the patient revealed no risk.  

The Table 4.37 shows the discrimination capability of the method. 
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Table 4.37  

Confusion matrix (TEN-HMS dataset). 

  Actual class 
  No risk In risk 

Predicted 

class 

No risk 37 3 

In risk 12 16 

 

To quantify the validity of the method, the sensitivity (SE) and specificity (SP) were 

determined, resulting in a SE of 84.2% and a SP of 75.5%.  

Although it is not possible to compare these results with other works, considering that 

the prediction involved fully random templates, the obtained SE and SP values are very 

satisfactory. In effect, these metrics demonstrate the potential of the trend prediction 

strategy. 

 

Results with the MyHeart dataset 

Regarding the MyHeart dataset, the same 500 experiments performed in the last section 

(4.5.2), were used for validating the hypertension risk evaluation strategy.  From these, 

95 exhibited values in the critical range: in 21 cases the patient presented risk of 

developing an hypertension condition, and in 74 cases the patient revealed no risk.  

The Table 4.38 shows the discrimination capability of the method. 

 

Table 4.38  

Confusion matrix (MyHeart dataset). 

  Actual class 
  No risk In risk 

Predicted 

class 

No risk 68 3 

In risk 6 18 

 

The sensitivity and specificity were, respectively, of 85.71% and 91.89%, demonstrating 

the potential of the trend prediction strategy. 
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4.5.4 Conclusions 

This section focused the validation of the wavelet multi-resolution based prediction 

scheme using real data collected by two telemonitoring platforms (TEN-HMS and 

MyHeart). 

Firstly, the strategy was compared with other prediction methods, namely a linear 

regression model, the autoregressive integral moving average model - ARIMA,  two 

non-linear regression models, the generalized regression neural network - GRNN and the 

support vector regression – SVR, and the average value of the patterns - AVP. From the 

non-parametric Friedman and Nemenyi tests, it was possible to validate the main goal of 

the developed methodology: the capability to predict trends. 

In a second step, this capability was tested in the assessment of the hypertension risk in 

patients whose blood pressure values were in a critical range (around the threshold of 

hypertension). Particularly, the goal was to evaluate whether during the following week 

blood pressure signals would evolve towards hypertension values. 
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4.6 Conclusions 

 

In this chapter the methodologies and algorithms proposed through this thesis were 

tested and validated. Partially integrated in the HeartCyle project, the main focus of the 

present work was the development of strategies able to detect and predict specific 

cardiovascular conditions, fundamentally based on the electrocardiogram and blood 

pressure signals. The central effort was on time series similarity search methodologies, in 

order to enable the detection of such conditions, and on predictive techniques to be 

applied in the trend analysis of biosignals and early detection of future events. 

Regarding similarity measures, a comparison of several approaches (including the 

proposed one) was performed in section 4.2. To evaluate the sensitivity of the referred 

measures when applied to distinct situations, specific variations in time and in amplitude 

were induced in a template. The results highlighted the importance of knowing the 

biosignal characteristics, as well as if a greater or lesser sensitivity to variations is 

desired, when selecting a similarity measure. In particular, the experiments revealed that 

the proposed similarity measure that combines the Haar wavelet with the Karhunen-

Loève transforms, is especially adequate to deal with noisy signals, with signals that are 

not aligned in time, as well as with trends. 

In the section 4.3 the strategy for ischemic episodes detection was presented and 

validated. The central aspects are the approach for accurate ST shift and isoelectric 

point estimation based on the time-frequency analysis, and the ECG beat morphology 

effective characterization using the expansion in Hermite functions. The effectiveness of 

the methodology was confirmed by using the European Society of Cardiology ST-T 

database. The achieved results (sensitivity of 96.7% and positive predictivity of 96.2%) 

were relevant when compared with similar works reported in literature. 

The sections 4.4 and 4.5 investigated the application of the strategies proposed for 

physiological time series prediction. In the section 4.4 the neural network multi-model 

scheme was employed to the prediction of adverse acute hypotensive episodes (AHE) 

occurring in intensive care units (ICU). The effectiveness of the methodology was 

validated in the context of the 10th Physionet/Computers in Cardiology Challenge - 

Predicting Acute Hypotensive Episodes, applied to a specific set of blood pressure signals 

available in MIMIC-II database. A correct prediction of 10 out of 10 AHE for event 1 

and of 37 out of 40 AHE for event 2 was achieved, corresponding to the best results of 

all entries in the two events of the challenge. 

Finally, in section 4.5, the forecast capacity of the wavelet multi-resolution scheme was 

validated. In a first phase it was compared with other four methodologies (ARIMA, 

GRNN, SVR, AVP), having revealed a superior performance in the trend prediction of 

blood pressure. This was particularly demonstrated by the statistical analysis of 
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correlation coefficient metrics using Friedman and Nemenyi tests. In a second phase, the 

strategy was successfully applied in the evaluation of hypertension risk, that is, in 

estimating if BP signals evolve towards a critical range of values.  
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5. Conclusions and 
Perspectives 

 

 

his thesis aimed at the development of specific clinical applications addressing 

cardiovascular conditions identified as relevant for the CVD management by 

the HeartCycle project clinical partners, mainly based on the analysis and  

processing of the electrocardiogram and blood pressure signals. 

Specifically, the main goals of this work were: i) The development of techniques for 

similarity searching in a set of biosignal time series to detect the occurrence of 

particular patterns which would serve two purposes: helping diagnosis if patterns 

were characteristic of specific cardiovascular conditions, or being the starting point 

of predictive methodologies. These techniques should be efficient in view of the 

possible long duration of the time series, and able to deal with trends, one the main 

characteristics of biosignals to be addressed in this thesis. ii) The implementation of 

predictive strategies to be applied in the forecast of biosignal time series.  

In this chapter, an overview of the main findings of this research is presented and 

discussed, and some suggestions for future work are also introduced. 

 

 

 

 

 

 

5.1 Main research findings 

Contributing to the achievement of the first objective, two methodologies for accessing 

similarities in time series were introduced, both based on the representation of signals as 

linear combinations of a set of orthogonal basis functions. While the first was specifically 

projected for helping in ischemia diagnosis, the second was mainly developed to support 

the predictive methods later referred. 

In effect, a strategy for ischemic episodes detection was presented, which exhibited, as 

the most innovative aspects, the new approach for accurate ST shift estimation based 

on the time-frequency analysis through the Wigner-Ville transform, and the ECG beat 

morphology effective characterization using the expansion in Hermite functions. 

Basically, in order to characterize the changes in T wave and in QRS complex 

morphologies due to ischemia, each cardiac beat was represented by a linear 

combination of orthogonal Hermite basis functions, which coefficients were used as 

features in the classification process. The last was carried out by two independent 

feed-forward neural networks for each ECG lead, which classify heart beats as having 

T
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ST elevation, ST depression, or as normal. Finally, a sliding window applied to the 

entire ECG signal allowed ischemia episodes identification. A comparison of this 

methodology with similar works reported in literature confirmed its potential by the 

relevant results achieved, namely a sensitivity of 96.7%, and a positive predictivity of 

96.2%. 

A more generic methodology consisting in a time series similarity measure and indexing 

scheme based on an optimal basis description obtained from the combination of the 

Haar wavelet decomposition with the Karhunen-Loève transform, was also proposed. 

The main characteristics of the referred similarity measure are its capacity to deal with 

trends, as well as its interpretability and simplicity, since the assessment of similarity 

between two time series is done by simply analysing the coefficients resulting from their 

description in terms of the reduced set of Haar basis. In fact, two time series may be 

considered as similar if their coefficients present the same sign. On the other hand, a 

very efficient procedure for similarity indexing based on an iterative formulation was 

also introduced. The potential of this scheme to be an effective and appropriate tool for 

identifying physiological patterns in biosignal time series, was tested by quantitatively 

comparing the proposed measure with other three measures: the Euclidean distance, the 

linear correlation coefficient and a Fourier based measure. The comparison study 

consisted in the assessment of similarity between a baseline signal (template) and some 

variations (in amplitude, time and shape) induced in that signal. Although from the 

achieved results it was not reasonable to conclude that one similarity measure was 

better than the others, it was found that the proposed one was particularly appropriate 

to assure low sensitivity values in the presence of small levels of baseline variations. 

Consequently, that it was adequate to deal with the evaluation of similarity between 

historic signals and a particular template, the main purpose for which it was designed. 

Regarding the second objective, two predictive methodologies were introduced.  

The first used generalized regression neural networks integrated into a multi-model 

structure for the accurate prediction of a time-series over a forecast horizon. It was 

employed and validated in the context of the 2009 PhysioNet/Computers in Cardiology 

challenge, where the goal was to predict acute hypotensive episodes occurring in 

intensive care units. The methodology consisted of two steps: in the first, a similarity 

analysis procedure was carried out between the current signal (template) and a 

historical dataset. From this, the most similar signals (patterns) were identified and the 

corresponding prediction neural models, previously trained using those historical signals, 

selected. In the second step, the multi-model structure was employed to the current 

signal to forecast its future evolution. The performed predictions corresponded to the 

best results of all entries in the two events of the challenge.  

The second scheme exploited the multiresolution analysis provided by the wavelet 

transform for a rough estimative of a biosignal time series future values, based on 

evolution trends, without involving explicit modelling. The global multiresolution 

scheme comprised three main distinct phases. Firstly, by means of a similarity analysis 
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procedure applied to a historical dataset, patients who displayed in their physiological 

time series a behaviour similar to the patient’s current data (template), were identified. 

Then, a multiresolution decomposition of the time series retrieved from such patients 

(historical patterns) took place. Finally, the future trend of the patient’s current data 

(template) was estimated, by combining the optimal decomposition levels of the 

historical patterns. The effectiveness of the developed method in predicting trends was 

evaluated, by comparing it with other three predictive methodologies, namely ARIMA, 

GRNN, and SVR. From the non-parametric Friedman and Nemenyi tests, in particular 

from the correlation coefficient analysis, the efficacy of the proposed method for the 

intended purpose was demonstrated. In a following stage, this was validated in the 

assessment of the hypertension risk in patients whose blood pressure values were in a 

critical range (around the threshold of hypertension). Specifically, the goal was to 

evaluate whether during the following week blood pressure signals would evolve towards 

hypertension values. The obtaining results using TEN-HMS and MyHeart datasets 

confirmed the potential of the proposed strategy in this type of application.  

 

5.2 Future work 

Although generic, the methodologies researched in this work were limited to specific 

biosignals and particular cardiovascular conditions. In effect, ventricular arrhythmias, 

desynchronization, ischemia, hypotension and hypertension were addressed, based on 

the analysis and processing of individual biosignals, namely the electrocardiogram and 

the blood pressure.  

Given the demonstrated potential of these methodologies, a natural direction of future 

work will be their extension to other conditions, eventually involving the 

multi-parametric analysis of several measurements. In effect, these aspects will be 

investigated in a near future under the HeartWays project - Advanced Solution for 

Supporting Cardiac Patients in Rehabilitation (FP7-315659), planned to start in 

October, 2012.  

On the other hand, based on the individual measurements/parameters acquired during 

the daily monitoring process, and taking into account the collected historic dataset, 

personalized dynamic cardiovascular risk models can also be a topic of future research. 

Additionally, for each individual source of information (time series signals) relevant 

characteristic parameters and/or trend estimations can be achieved by the developed 

approaches. As result, these can be directly used to provide valuable indications and 

generate useful alarms regarding relevant cardiovascular conditions, as well as to predict 

critical future evolutions. For example, simple alarms can be triggered in case of 

abnormal blood pressure values and, by means of a predictive scheme that estimates 

future values of blood pressure, the occurrence of future hypertension events can be 

anticipated.  
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