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Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) films have been prepared for the first time on 

carbon-film electrodes (CFE) in aqueous solution using electropolymerisation by potential 

cycling, potentiostatically and galavanostatically. Characterisation of the modified electrodes

was done by cyclic voltammetry and electrochemical impedance spectroscopy and the 

stability of the polymer films was probed. The coated electrodes were tested for application as 

hydrogen peroxide sensors, by oxidation and reduction. A novel polymer film was also 

formed by modification of CFE by co-electropolymerisation of EDOT and the phenazine dye 

neutral red (NR) - (PEDOT/PNR) with a view to enhancing the properties for sensor 

applications. It was found that hydrogen peroxide reduction at the PEDOT/PNR coated 

electrodes could be carried out at a less negative potential, the sensor performance comparing 

very favourably with that of other polymer-modified electrodes reported in the literature.

Keywords

PEDOT-coated electrodes; poly(neutral red); electropolymerisation; carbon film electrode; 
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1. Introduction

Conducting polymers have been widely used in order to enhance the speed, sensitivity and 

versatility of various sensors and biosensors [1-3] and among them, poly(3,4-

ethylenedioxythiophene) (PEDOT) has proved to have good stability under ambient 

conditions and retains its conductivity even after storage at 120ºC for 1000 h [4].

Electropolymerisation has been mainly carried out on platinum electrodes [1, 4-7]. Other 

electrode substrates have been used relatively little, exemplified by gold in an electrochemical 

quartz-crystal microbalance (ECQM) [8] or glassy carbon [9]; in addition, different 

assemblies containing PEDOT obtained in combination with carbon nanotubes [10] or carbon 

nanofibres [11] have also been reported. PEDOT has been applied to the detection of several 

important chemically and biologically relevant compounds such as hydrogen peroxide [12, 

13], nitric oxide [14], dopamine [9] and ascorbic acid [15].

Carbon has proved to be successful as an electrode support material due to its good 

conducting properties, stability and availability in different forms [16]. The enhancement of 

the performance characteristics of sensors and biosensors, based on carbon electrode

substrates, can be achieved through different surface modification strategies such as the 

deposition of films of polymeric redox mediators [17], application of nanotubes or the 

immobilisation of enzymes into polymer matrices [18, 19]. Ensuring sensor selectivity 

towards a given compound is a constant challenge and hydrogen peroxide (H2O2), selected in 

this work, is a compound with important applications in environmental studies, chemical 

industry, pharmaceutical and industrial research [20,21].

Polyphenazines are also very attractive polymers, acting both as conducting polymers and 

redox mediators. Neutral red (NR), an acid base indicator with pKa ~6.8 from the family of 

azines, can be electropolymerised and poly(neutral red) (PNR) has already been used as redox 

mediator in enzyme electrodes [17,22]. The combination of different polymers to obtain 
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composites with better properties than each polymer by itself is of current interest [13]. To 

our knowledge EDOT and NR have not been previously co-polymerised.

In the present work we describe, for the first time, the polymerisation of EDOT on carbon 

film electrodes (CFE) made from carbon film electrical resistors of 2 [23] that have been 

used successfully in various sensor and biosensor applications [17, 24]. PEDOT modified 

electrodes were prepared in aqueous solution by potential cycling, potentiostatic and 

galvanostatic methods. The resulting PEDOT-modified electrodes were characterised by 

cyclic voltammetry and electrochemical impedance spectroscopy (EIS) in order to evaluate 

which polymer formation method leads to the best properties for application in sensors. 

EDOT was also co-polymerised with the azine dye neutral red (NR) to probe any synergistic 

effects between the polymers in coated electrodes. Up until now most hydrogen peroxide 

sensors have been enzyme-based [12]. Here the development of non-enzymatic sensors for 

H2O2 is described based on the electroanalytical potentialities of PEDOT and PEDOT/PNR 

modified electrodes.

2. Experimental

2.1. Reagents and Solutions

All chemicals were analytical reagent grade, used as received. The monomers 2,3-

dihydrothieno[3,4-b]-1,4-dioxin (EDOT) and neutral red (NR) were from Aldrich, Germany. 

Hydrogen peroxide was purchased from José M. Vaz Pereira, Portugal. 

The electrolytes used in the polymerisation of EDOT were sodium chloride (NaCl, Riedel-de 

Haen, Germany) and 4-styrenesulfonic acid sodium salt hydrate (NaPSS, Aldrich, Germany). 

For polymerisation of NR alone, or with EDOT, a pH 5.5 buffer solution (0.025 M phosphate 

buffer + 0.1 M KNO3) was prepared from di-potassium hydrogenphosphate (K2HPO4, Riedel-
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de Haen, Germany), potassium di-hydrogenphosphate (KH2PO4, Fluka) and potassium nitrate 

(KNO3, Riedel-de Haen, Germany). 

The buffer electrolyte used for hydrogen peroxide measurement was 0.1 M sodium phosphate 

buffer pH 7.0 prepared from sodium phosphate dibasic dihydrate (NaH2PO4.2H2O, Sigma, 

Germany) and sodium dihydrogen phosphate (Na2HPO4, Riedel-de Haen, Germany). 

Millipore Milli-Q nanopure water (resistivity > 18 Mcm) was used for preparation of all 

solutions. All experiments were performed at 25± 1 ºC.

2.2. Instrumentation

Electrochemical experiments were done using a potentiostat/galvanostat (Autolab 

PGSTAT30) connected to a computer with general purpose electrochemical system software 

(GPES v4.9) and frequency analysis software (FRA v4.9) from Metrohm-Autolab (Utrecht, 

Netherlands). 

All experiments were carried out in a three-electrode cell using a modified or unmodified 

carbon-film working electrode, a platinum foil as counter electrode and the reference 

electrode was a saturated calomel electrode (SCE). For impedance experiments a sinusoidal 

voltage perturbation of 10 mV was applied, scanning from 65000 Hz to 0.1 Hz, with ten 

measurement points per frequency decade. The equivalent circuit modelling / fitting was done 

by ZView 2.4 software (Solartron Analytical, UK)

2.3 Electrode preparation

2.3.1 Carbon film electrode pre-treatment

Carbon film resistors were used to prepare carbon film electrodes with an exposed geometric 

area of 0.16 cm2 using the procedure described in [23]. All bare electrodes were first pre-

treated by cycling the applied potential between 0.0 V and 1.0 V in 0.1 M NaCl (or 0.1 M 
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NaPSS) at a scan rate of 100 mV s-1 ten times until a stable voltammogram was achieved. 

2.3.2 Poly (3, 4-ethylenedioxythiophene) electrodeposition

A 0.01 M EDOT solution was prepared by dissolving the appropriate amount of monomer in 

a chosen volume of electrolyte solution (0.1M NaCl or 0.1M NaPSS). Vigorous magnetic 

stirring for about 30 min followed by 10 s of ultrasonic treatment ensured complete monomer 

dissolution. One of the following procedures was then applied to electropolymerise the EDOT 

monomer:

 Potential cycling (CV) from -0.6V to 1.0 V for ten consecutive cycles at a scan rate of 

50 mV s-1;

 Potentiostatically (Pot), applying a fixed potential of +1.0 V, during 100 s;

 Galvanostatically (Galv), using a fixed current density of 0.2 mA cm-2 during 110s.

After electropolymerisation, the modified electrodes were left in air at ambient temperature 

for at least 24 h, before use. 

2.3.3 Poly (3, 4-ethylenedioxythiophene) and poly neutral red (PNR) electrodeposition

For neutral red polymerisation, a 0.5 mM solution of NR monomer was prepared in pH = 5.5 

(0.025 M phosphate buffer + 0.1 M KNO3) and 10 potential cycles were done between -1.0 

and +1.0 V vs. SCE at a potential sweep rate of 50mV s-1. The same experimental conditions 

were used for electropolymerisation of EDOT and NR in different molar ratios (EDOT/NR = 

10, 6, 2, 1), always with 0.5 mM NR.

3. Results and Discussion

3.1 Electrode modification by EDOT polymerisation

Electropolymerisation of EDOT from a solution containing 0.01 M monomer was carried out 

in three different ways – potential cycling, potentiostatically and galvanostatically - in two 
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electrolyte solutions: 0.1 M NaCl and 0.1 M NaPSS. The electrolyte solution was varied as it 

plays an important role in both electron transfer rate and in diffusion processes, having a 

significant effect on the electropolymerisation process and on the properties of the polymer 

films obtained [27]. Before using the carbon film electrodes, they were subjected to 

electrochemical pre-treatment by cycling the potential as described in the experimental 

section. The background current decreases with each cycle due to the decrease of the number 

of the functional groups on the surface of the carbon film electrode [23].

Electropolymerisation, carried out using the three electrochemical techniques, is shown in 

Fig.1: potential cycling in Fig. 1(A), potentiostatically in Fig. 1(B) and galvanostatically in 

Fig. 1(C). As the polymer film grows, there is a visible change in colour from silver-grey

(unmodified carbon film electrode) to opaque dark-blue (electrodeposited PEDOT 

characteristic colour) [28]. 

In previous studies, the polymerisation of EDOT by potential cycling was performed in 

different potential ranges, for example between -1.0 to 1.2 V [29] at a nickel electrode in 0.1 

M LiClO4 or between 0.2 and 1.2 or 1.5 V [4] at platinum electrodes in phosphate buffer with

NaPSS. Vasantha et al. [30] also reported on the modification of glassy carbon electrodes by

PEDOT prepared by potential cycling between -0.6 V and 1.1 V. In order to avoid PEDOT 

overoxidation which is assumed to occur above 1.1 V according to Du [25], in the present 

work the potential range was chosen between -0.6 and 1.0 V. 

Potential cycling in 0.1 M NaPSS electrolyte, Fig. 1(A) shows a clear increase of current 

(solid line) with increasing capacitive current. Nevertheless, in 0.1 M NaCl electrolyte 

solution, there is almost no increase in current with successive cycles. For potentiostatic 

deposition a potential of +1.0 V was chosen, the same positive limit as in potential cycling, 

taking into account the studies in [25, 26], where it was observed that overoxidation of 

PEDOT takes place at potentials higher than +1.1 V, and also that at potentials lower than 0.9 
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V polymerisation does not occur [7]. Electropolymerisation at +1.0 V vs. SCE proceeds well 

in both electrolyte solutions, Fig. 1(B). In NaCl, as electropolymerisation begins, there is a 

slight increase in current until a steady state is achieved; for NaPSS electrolyte solution, 

initial deposition shows an initial spike and then the current falls. However, at the end of each 

polymerisation procedure, a maximum current was reached (750 A cm-2) and the PEDOT 

characteristic colour was observed on the surface of the carbon-film modified electrodes. 

Different curve profiles can be related to different polymerisation mechanisms, where a 

nucleation and growth mechanism are identified by an initial current spike, a falling current to 

a steady value and a final increase to a plateau characteristic of application of a constant 

potential [27].

Finally, electrodeposition at a constant current density of 0.2 mA cm-2 was chosen based on 

the work by Bobacka [5] concerning galvanostatic polymerisation, during 110 s. Fig. 1(C) 

shows the attainment of a constant potential in both electrolyte solutions: +1.0 V in NaCl 

solution and +0.85 V in NaPSS solution; hence, a lower potential can be employed for EDOT 

polymerisation in NaPSS. PEDOT-deposited films become visible as the characteristic colour 

progressively changes. The difference between the polymerisation potential in the two 

electrolytes (0.15 V) was also observed under similar conditions on platinum electrode 

substrates [5].

From the results of the three electropolymerisation techniques used, it can be concluded that 

the PSS- anion aids polymer film formation, compared with Cl-, as doping anion, except using 

fixed potential, where the results are similar. These observations might be explained by a 

mechanism of strong electrostatic interactions between EDOT radicals and PSS anions, as 

suggested in [5].
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3.2. PEDOT-coated electrode characterisation

Bare and PEDOT-coated carbon-film electrodes were characterised by CV and EIS. It is 

already well known that the electrolyte used affects conducting polymer properties and thus, 

this effect was explored, using the same electrolytes as for electropolymerisation.

3.2.1 Cyclic voltammetry

The charge accumulation capacity of each type of PEDOT-coated electrode was calculated by 

numerical integration from the cyclic voltammograms recorded in the corresponding buffer 

electrolytes between -0.5V and +0.5V vs. SCE at 50 mV s-1, before and after polymerisation. 

In this potential range, the cyclic voltammograms of the coated electrodes show a capacitive 

current and do not reveal any well-defined oxidation or reduction peaks. The same 

observation was made previously by Bobacka [5] and Sundfors [6]. The results are shown in 

Fig. 2(A) for polymerisation in NaCl and Fig. 2(B) for polymerisation in NaPSS solution. 

When polymerisation was performed in 0.1 M NaCl electrolyte solution, Fig. 2(A), the 

highest charge accumulation was obtained for the polymer formed potentiostatically (9.5 and

11.0 µC in NaCl and NaPSS respectively); an intermediate value was achieved when the 

polymer was obtained galvanostatically (6.0 and 6.2 µC in NaCl and NaPSS) and the lowest 

charge was recorded when potential cycling was used (1.2 and 1.4 µC in NaCl and NaPSS). 

Potential cycling under these experimental conditions appears to be a relatively ineffective 

polymerisation procedure. The potentiostatic method is the best choice for 

electropolymerisation in 0.1 M NaCl electrolyte solution; as it shows a charge ten times that 

of potential cycling and two times higher than that achieved by the galvanostatic method. 

Fig. 2(B) shows the charge accumulation when polymerisation was done in 0.1 M NaPSS

solution. The potentiostatic method (12.8 and 13.4 µC In NaCl and NaPSS) is still the best 

choice, whereas potential cycling (6.0 and 6.2 µC in NaCl and NaPSS) is better than the 
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galvanostatic method (3.0 and 3.2 µC in NaCl and NaPSS, respectively). Thus, the polymer 

film formed by the potentiostatic method showed the highest charge in both electrolytes, 

higher when formed in NaPSS. For the other cases, it is not clear which of the electrolytes 

confers better characteristics but, in general, NaPSS appears to be better. Independent of the 

electrolyte in which the polymer was formed, higher charges are obtained in NaPSS media. 

Moreover, the polymer formed in NaCl is more dependent on the anion of the supporting 

electrolyte, as seen by the accumulated charge in the two electrolytes. This behaviour has 

been already reported in [5]; however, in that study the PEDOT formed in NaCl presented a 

higher charge in NaCl solution than in NaPSS, unlike here. Thus, the final conclusion is that 

for both electrolytes used for polymer formation there is anion exchange between the polymer 

film and solution.

The PEDOT-coated electrode stability was tested through thirty successive potential cycles, at 

a potential sweep rate of 50 mV s-1 between -0.5V and +0.5V vs. SCE in 0.1 M NaPSS. A 

change in the capacitive current was observed for each electrode. The percentage charge 

variation after 30 cycles in relation to the initial value (2nd cycle) was calculated, Table 1. It 

was found that the loss in charge was between 0 % and 15 %, these extremes corresponding to 

electrodes polymerised galvanostatically in NaCl and NaPSS, respectively; for all the others 

intermediate values were obtained. No particular reasons for these differences can be 

advanced, except that they reflect variations in the polymer structures formed.

3.2.2 Electrochemical impedance spectroscopy 

EIS was used to investigate the interfacial properties of PEDOT films on the carbon film 

electrode. Studies on the reduction or oxidation of H2O2 have been done at potentials ranging 

from -0.7V to +0.6V vs. SCE [20, 31]; the results that are discussed here are those at -0.4V 

and at +0.4V vs. SCE, being the more relevant for H2O2 detection applications. Spectra were

recorded in 0.1M NaPSS electrolyte solution (Figure 3), since the cyclic voltammetry studies 
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showed this to be better than 0.1M NaCl. Equivalent electrical circuits were used to model 

both unmodified and modified electrodes and the fitting results are shown in Table 2.

The circuit used to fit the spectra was the same at both -0.4 V and +0.4 V for unmodified and 

PEDOT-modified electrodes (except at +0.4 V for PEDOT obtained potentiostatically). This

circuit consists of a cell resistance RΩ and a constant phase element CPE1 in parallel with a 

charge transfer resistance R1; CPE1 is assumed to be a non-ideal capacitance with roughness 

factor , where is equal to 1 for a perfectly smooth surface and 0.5 for a porous electrode

[23]. For the PEDOT-Pot modified electrode at +0.4 V a straight line was obtained (Figure 

3B), so the circuit was RΩ in series with a constant phase element, consistent with no electron 

transfer. Values of RΩ were around 17  cm2 in all cases. 

For unmodified electrodes, the charge transfer resistance at -0.4 V vs. SCE was 4.20 k cm2

and the capacitance was C1 = 123 µF cm-2 s. At +0.4 V, the charge transfer resistance was 

higher (75.5 k cm2) and the capacity lower (49.4 µF cm-2 s).

The values of R1 at -0.4 V for the PEDOT-modified electrodes and bare electrodes are almost 

the same, showing that the polymer is not undergoing any redox process at this potential. For 

PEDOT-CV and PEDOT-Galv modified electrodes at +0.4 V, the curvature in the complex 

plane spectra and thence the necessity of the resistance R1 might be explained by the fact that 

polymer film does not completely cover and block access to the carbon film electrode 

substrate surface, hence the behaviour shows some similarities to the bare carbon film 

electrode. The values of the exponent increase at both potentials (from 0.84-0.87 to 0.94-

0.98) showing a decrease in non-uniformity with modification of the electrodes by the 

polymer film. The values of capacitance increase significantly for all modified electrodes, 

being the highest in the case of PEDOT-Pot modified electrodes. These results are consistent 

with potential cycling where it was also observed that charge accumulation was the highest in 

the case of the PEDOT-coated electrode modified potentiostatically.
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3.3 Determination of H2O2 with PEDOT-modified electrodes 

To investigate the possibility of H2O2 oxidation or reduction at the PEDOT-modified 

electrodes, CVs, between -0.6 V and +0.8 V vs. SCE, were recorded in phosphate buffer 

solution pH=7.0 in the absence and in the presence of 1 mM and 2 mM H2O2. A small 

increase in the cathodic current after addition of H2O2 was found at around -0.50 V and also 

an increase in the oxidation current at around +0.55 V vs. SCE (not shown). 

Amperometric experiments at a constant potential of -0.50V and +0.55V were conducted with 

each type of coated electrode. Thus, after baseline stabilisation, known aliquots of hydrogen 

peroxide were added to buffer solution and the change of the current was recorded. 

Calibration curves were plotted and from their linear regression analysis sensor performance 

characteristics were determined (Table 3). 

Regarding the oxidation of H2O2, similar sensitivities were obtained for the three types of 

electrode, a little higher for the polymer formed by the galvanostatic method. Despite the 

higher detection limit, the polymer obtained by potentiostatic method shows a much wider 

linear range, whilst the other two exhibited similar detection limits and linear ranges. For the 

reduction of H2O2 the detection limits do not vary as much as for oxidation. The narrower 

linear range was obtained for the polymer formed by potential cycling, which also shows the 

lowest sensitivity. In addition, the linear range of potentiostatically and galvanostatically 

formed modified electrodes was two times higher and sensitivity about three and four times 

higher, respectively. The linear range obtained with the proposed modified electrodes is 

comparable to that reported in [12], where a PEDOT/PSS matrix was used to modify indium-

tin-oxide electrodes; the sensitivity they obtained of 0.544 µAcm-2 mmol-1 dm3, is also due to 

the fact that the determination of hydrogen peroxide was enhanced by using horseradish 

peroxidase (HRP). Thus, carbon film electrodes modified with PEDOT films proved to be 

effective candidates for the determination of H2O2 by both oxidation and reduction.
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3.4 PEDOT/PNR electrode modification 

It has been shown previously that phenazine dyes are successful redox mediators [17]. Thus,

seeking to enhance PEDOT coated electrode performance characteristics, a combination of 

different molar ratios of EDOT and NR monomers was used (EDOT/NR = 10, 6, 2, 1) to 

make polymer films. For comparison, NR by itself was also polymerised on CFE. Carbon 

film electrodes were modified by potential cycling for 10 cycles in 0.025 M K2HPO4 + 

KH2PO4 (pH 5.5) containing 0.1 M KNO3. This buffer was chosen because it has been shown 

that NR film growth is strongly dependent on the acidity of the solution and a similar 

polymerisation procedure of NR films onto carbon film electrodes has already been tested 

[17] - for EDOT polymerisation it was observed that the differences in the films obtained are 

not significant when prepared at different pH values. Potential cycling was preferred to 

potentiostatic because NR polymerises more efficiently this way, as observed in separate

experiments. However, since PEDOT by itself was better formed at fixed potential, 

polymerisation at +1.0 V for 100 s with both monomers was also performed and the resulting 

modifier films compared.

During the polymerisation process of NR by CV, an irreversible oxidation peak appears at 

around 1.0 V (Fig. 4(A)) corresponding to monomer oxidation leading to cation radical 

formation and two redox couples also appear: one at about -0.55 V ascribed to 

monomer/polymer oxidation/reduction and the other around +0.25 V corresponding to 

doping/de-doping of the polymer [17]. The height of the oxidation peak at -0.5 V increases

with the number of cycles, demonstrating PNR polymer growth. The size of this oxidation 

peak was used as a control parameter to monitor the growth of the polymer mixture and to 

choose the best electrode for use in further studies. It was observed that each EDOT/NR ratio 

led to a different voltammetric profile (data not shown) and the highest increase was obtained 

for a ratio of EDOT/NR = 2 (Fig. 4 (B)). At fixed potential it was observed that the current 
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density reached in the EDOT/NR polymerisation is 15.2 µA cm-2
, about half that found when

forming PNR alone and 50 times less than that with EDOT alone.

3.5 PEDOT/PNR characterisation

The PEDOT/PNR films obtained by potential cycling and potentiostatically were compared 

using cyclic voltammetry. The CV profiles show characteristics of both PEDOT and PNR, 

mainly of the latter, and the response was much higher (~30 %) for the potentiodynamically-

obtained copolymer (Fig. 5A). Hence, this type of polymer-modified electrode was chosen for 

further studies.

A more detailed characterisation of PEDOT/PNR modified electrodes was carried out by 

cyclic voltammetry and impedance spectroscopy. CVs were recorded in different electrolytes 

including 0.1 M KCl, 0.1 M NaCl, 0.1 M NaPSS, 0.1 M sodium phosphate and 0.025 M 

potassium phosphate buffer pH 5.5 with and without 0.1 M KNO3. In NaCl and KCl the 

response is similar, slightly higher in NaCl. In NaPSS the peaks were not well defined 

(probably due to the high pH value, around 10). .The higher response in sodium phosphate 

buffer than in potassium phosphate, can also be due to the different buffer concentrations. In 

potassium phosphate buffer in the presence of KNO3 the response was higher by 13 %, 

suggesting that nitrate anions play an important role in the polymer mixture doping. The 

PEDOT/PNR films appear to be more selective to anions when the largest anions are present 

in solution, perhaps due to a shielding effect that makes the participation of cations difficult, 

especially potassium cations. So both cations and anions participate as counterions during 

charge compensation processes in PEDOT/PNR films, as observed before for PNR [32]. 

Cyclic voltammetry was performed in sodium phosphate buffer at different scan rates (Fig. 

5B) and it was observed that there is an increase of current with increase in scan rate linearly

dependent on the square root of scan rate, consistent with a diffusion-controlled process. The 
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linear regression curves obtained were: jpa (µA cm-2) = -7.7 + 277 v1/2 and jpc (µA cm-2) = -20 

- 290 v1/2, the slope of the reduction peak being a bit higher, meaning that this process occurs

at a higher rate. Since counterion diffusion through the polymer film is the rate determining 

step of the redox process, this can be explained by diffusion-controlled expulsion of the 

counterion which occurs during oxidation being slower than its diffusion-controlled insertion. 

The behaviour is similar to that observed for PNR/CFE [33]. In order to elucidate whether 

some fragments of oligomers of the two polymers are present on the electrode surface, an 

experiment was performed by dipping the modified electrodes in buffer overnight. After 48h 

no colouration of the buffer solution occurs, meaning that the presence of short-chain 

oligomers in the polymer film can be excluded.

Characterisation by electrochemical impedance spectroscopy was also carried out. The 

measurements were performed in both NaPSS and phosphate buffer and the shape of the 

spectra were similar. To enable comparison with PEDOT, the results to be discussed here are 

those obtained in the same electrolyte, namely NaPSS - see Figure 6 and Table 2. Two 

different circuits were used to fit the spectra: at +0.4 V the circuit consisted in the cell 

resistance in series with a parallel combination containing a constant phase element (CPE1) 

and a resistance (R1), a simplified version of the circuit used in [34] for the fitting of PNR-

ITO modified electrodes and the same as that used previously for PEDOT-modified 

electrodes. Although the R1 value is much higher, the value of C1 is much lower. At -0.4 V a 

second parallel combination of constant phase element (CPE2) and resistance (R2) was 

necessary to adjust the experimental data. At this potential, close to the redox couple of PNR,

the polymer combination seems to behave as distinct layers: electron transfer can occur at the 

interface of one polymer with solution and at the interface between the two polymers.
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3.6 Determination of H2O2 at PEDOT/PNR modified electrode

The PNR peak position and height depends on pH [35] and it was also reported that PNR acts 

better as mediator in acidic media. Thus, studies with H2O2 were performed in phosphate 

buffer pH 5.5. First, CV analysis was performed with PNR and PEDOT/PNR modified 

electrodes before and after the addition of aliquots of H2O2; in both cases the voltammograms 

exhibited a decrease in the oxidation current at -0.36 V and a increase in the reduction current 

around -0.75 V (not shown). Following this, amperometry at fixed potential (-0.36 V) was 

then carried out and the performance characteristics were calculated, showing a sensitivity of 

0.92 μA cm-2 μmol-1 dm3  and a detection limit of 80 μmol dm-3 (Table 3). 

Importantly, using this combination of monomers (EDOT/NR=2) to form the PEDOT/PNR 

film, hydrogen peroxide can be determined at a less negative potential (-0.36V) than when 

using just PEDOT (-0.50V). Additionally, the PEDOT/PNR combination gives a robust 

modifier film.

In the literature, a combination of EDOT with (4-vinylpyridine/PSS) [13] has been used to 

detect H2O2 and the analytical parameters (linear range 0 to 30 μmol dm-3; sensitivity 0.130 

μA cm-2 μmol-1 dm3) are less than in the present work and HRP enzyme was used by them to 

amplify the signal. In another study [36] with the polymer 5,2´:5´,2”-terthiophene-3´-

carboxylic acid polymer (TCAP)), also with HRP, hydrogen peroxide reduction was 

measured at -0.2 V vs. Ag/AgCl and the response was more sensitive (0.48 μA cm-2 mmol-1

dm3), with a wider linear range (up to 1.5 mmol dm-3) but the detection limit of 0.2 mmol 

dm-3) was higher than in the present work. There are very few reports in the literature 

concerning the determination of hydrogen peroxide without enzyme amplification at 

electrodes modified with conducting polymers [37] or composites containing polymer [38]; 

hence the method proposed in this work presents an important advantage for wider 
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application. More detailed studies concerning performance as a sensor for various analytes are 

under way.

4. Conclusions

Modification of carbon electrodes by PEDOT has been successfully achieved by 

electropolymerisation of EDOT monomer, by applying potential cycling, potentiostatic and 

galvanostatic methods in aqueous electrolytes. These polymer films have a charge 

accumulation capacity that is dependent on the electropolymerisation procedure as well as the 

electrolyte in which polymerisation occurs. The PEDOT coated electrodes were successfully 

applied to both oxidation and reduction of hydrogen peroxide. Copolymerisation of EDOT 

and NR led to a polymer film (PEDOT/PNR) which exhibited characteristics of both 

polymers. Use of the PEDOT/PNR-modified electrode led to a decrease in the stabilisation 

time of the hydrogen peroxide sensor and to a less negative detection potential, besides giving 

a more robust modifier film than poly(neutral red) or PEDOT alone. The analytical 

parameters obtained were similar to those in the literature. Future work will include the 

testing of other polymer combinations or possibly immobilization of horseradish peroxidase 

enzyme to further improve the sensitivity.
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TABLES

Table 1 – Charge variation of PEDOT-modified electrodes obtained by different methods in 

0.1 M NaCl and in 0.1 M NaPSS obtained by comparing the second and thirtieth cyclic 

voltammograms recorded in 0.1M NaPSS.

PEDOT formation 
method + electrolyte

Initial Charge
/ C

Final Charge
/ C

Charge Loss
/ %

CV (NaCl) 2.12 2.04 3.7

Pot (NaCl) 8.85 8.00 9.7

Galv (NaCl) 7.97 7.97 0.1

CV (NaPSS) 18.1 16.3 9.9

Pot (NaPSS) 25.2 22.4 11

Galv (NaPSS) 4.47 3.80 15
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Table 2 - Equivalent circuit parameters from impedance spectra of PEDOT and PEDOT/PNR 

modified electrodes obtained by difrerent methods recorded in 0.1 M NaPSS (data from 

Figure 3 and Figure 6)

Potential
vs. SCE / V

Electrode 
coating

R1 /
kΩ cm2

C1 /
µF cm-2 sα-1

α1

-0.4 Bare electrode 4.2 123 0.84

PEDOT - CV 3.9 662 0.95

PEDOT - Pot 4.0 894 0.95

PEDOT - Galv 3.2 404 0.94

PEDOT/PNR - CV 5.7 138 0.76

+0.4 Bare electrode 75.5 50 0.88

PEDOT - CV 26.1 709 0.98

PEDOT - Pot --- 837 0.95

PEDOT - Galv 52.7 358 0.97

PEDOT/PNR - CV 253 31.3 0.89
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Table 3 - The performance of the PEDOT-electrodes towards the oxidation 

and reduction of H2O2 in phosphate buffer solution.

Applied potential

vs. SCE / V Electrode coating
Upper linear 

range / mmol dm-3

Sensitivity /
µA cm-2 mmol-1

dm3

LOD /
µmol dm-3

+0.55 (oxidation) PEDOT – CV 0.54 0.56 28

PEDOT – Pot 1.60 0.57 67

PEDOT – Galv 0.30 0.93 36

-0.50 (reduction) PEDOT – CV 0.50 - 3.12 42

PEDOT – Pot 1.00 - 8.94 62

PEDOT – Galv 0.94 - 12.8 52

-0.36 (reduction) PNR – CV 0.46 - 1.42 48

PEDOT/PNR – CV 0.46 - 0.92 80



Page 23 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

23

FIGURE CAPTIONS

Figure 1. Electropolymerisation of EDOT by (A) potential cycling; (B) potentiostatically

(+1.0 V) and (C) galvanostatically (0.2 mA cm-2) in 0.1 M NaCl () and 0.1 M NaPSS (---).

Figure 2. Charge accumulation of PEDOT-modified electrodes from cyclic voltammograms 

of films obtained by potential cycling, potentiostatic and galvanostatic methods in (A) 0.1 M 

NaCl and (B) 0.1 M NaPSS.

Figure 3. Complex plane impedance spectra of PEDOT-coated electrodes in 0.1 M NaPSS at 

+0.4 and -0.4 V vs SCE, for each polymerisation procedure (A) CV; (B) Pot and (C) Galv. 

The lines show equivalent circuit fitting.

Figure 4. CVs showing polymerisation in phosphate buffer (pH 5.5) between -1.0 V and 1.0 

V vs. SCE for (A) 0.5 mM NR and (B) mixture of 1.0 mM EDOT and 0.5 mM NR. Scan rate 

50 mV s-1.

Figure 5. CV in phosphate buffer (pH 5.0) of PEDOT/PNR obtained (A) by CV and Pot 

methods; scan rate 50 mV s-1 and (B) by CV at different scan rates. Inset shows the plot of

current peak dependence on the square root of scan rate.

Figure 6 - Complex plane impedance spectra of PEDOT/PNR-coated electrodes in 0.1 M 

NaPSS at +0.4 and -0.4 V vs SCE. The lines show equivalent circuit fitting.



Page 24 of 29

Acc
ep

te
d 

M
an

us
cr

ip
t

24

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

E
  /

 V
 v

s 
S

C
E

t  / s

NaCl
NaPSS

(A)

(B)

(C)

Figure 1 – Electropolymerisation of EDOT by (A) potential cycling; (B) potentiostatically

(+1.0 V) and (C) galvanostatically (0.2 mA cm-2) in 0.1 M NaCl () and 0.1 M NaPSS (---).
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(A)

(B)

Figure 2 – Charge accumulation of the PEDOT-modified electrodes from cyclic 

voltammograms of films obtained by potential cycling, potentiostatic and 

galvanostatic methods in (A) 0.1 M NaCl and (B) 0.1 M NaPSS.
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(A)

(B)

(C)

Figure 3 – Complex plane impedance spectra of PEDOT-coated electrodes in 0.1 M NaPSS 

at +0.4 and -0.4 V vs SCE, for each polymerisation procedure (A) CV; (B) Pot and (C) Galv.

The lines show equivalent circuit fitting.
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(A)

(B)

Figure 4 – CVs showing polymerisation in phosphate buffer (pH 5.5) between -1.0 V and 

1.0 V vs. SCE for (A) 0.5 mM NR and (B) mixture of 1.0 mM EDOT and 0.5 mM NR.

Scan rate 50 mV s-1.
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(A)

(B)

Figure 5 – CV in phosphate buffer (pH 5.0) of PEDOT/PNR obtained (A) by CV and Pot

methods; scan rate 50 mV s-1 and (B) by CV at different scan rates. Inset shows plots of 

current peak dependence on the square root of scan rate.
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Figure 6 - Complex plane impedance spectra of PEDOT/PNR-coated electrodes, obtained by 

potential cycling, in 0.1 M NaPSS at +0.4 and -0.4 V vs SCE. The lines show equivalent 

circuit fitting.
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