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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Membrane-assisted chemical looping reforming (MA-CLR) has been proposed as an alternative to the conventional 
CLR technology. In this work, a non-isothermal 1D model is used to simulate the MA-CLR fuel reactor. The effect 
of the resulting axial temperature gradients on the reactor performance is assessed, showing up to 10% declines in 
reactor performance (hydrogen extraction and fuel slip).The inclusion of the energy balance therefore appears to be 
important for this application, despite the high degree of mixing achievable in fluidized beds. 
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1. Introduction 

The combustion of fossil fuels constitutes the main source for CO2 emissions to the atmosphere. According to the 
IPCC fifth assessment report, it corresponds approximately to 78% of the total greenhouse gases emissions[1].  Hence, 
strategies to reduce this GHG emission are among of the most critical matters in research given the current high 
concern on climate change. Considering the 2°C scenario (2DS) that foresees a maximum global temperature increase 
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of 2°C (limit to avoid catastrophic changes on earth), energy and process-related CO2 emissions should be cut by 
almost 60% by 2050 compared to 2012[2, 3].  

Hydrogen is considered as a promising carbon-free energy carrier to facilitate a large reduction in energy-related 
greenhouse gas emissions[4, 5]. Unfortunately, the current hydrogen production at industrial scale is mostly fossil-
fuel based by steam methane reforming (SMR) of natural gas and coal gasification that results in about 500 Mt CO2 
per year[2]. To reduce these CO2-emissions, the integration of hydrogen production from fossil fuels with CO2 capture 
and storage (CCS) has been suggested as a key transition technology[2, 6-8].  

The current work focusses on the Chemical Looping Reforming (CLR) concept for methane reforming with 
integrated CO2 capture. This process is based on the known Chemical Looping Combustion (CLC) technology where 
an oxygen carrier (usually a metal oxide) circulates between two interconnected reactor units to transfer oxygen for 
the fuel combustion from the air reactor (AR) to the fuel reactor (FR)[9-11]. Therefore, in the AR the oxygen carrier 
(OC) is oxidized by a stream of air and in the FR it is reduced converting the fuel to CO2 and H2O in conventional 
CLC technology and syngas in CLR. In CLR, another important role of the oxygen carrier is to transport heat from 
the air reactor to the fuel reactor where the endothermic reforming reaction takes place.  

The syngas produced by the CLR process still requires additional processing to produce a pure H2 stream. These 
additional units can be avoided through the use of H2 perm-selective membranes to extract pure hydrogen directly 
from the reforming reactor. Thus, a membrane-assisted (MA) design has been presented as an alternative to the 
conventional CLR[4]. Membrane-assisted chemical looping reforming (MA-CLR) follows the same principles as 
conventional CLR, but with membranes introduced inside the fuel reactor. Hence, it employs two fluidized beds (FR 
and AR) with an oxygen carrier circulating between them to supply oxygen for combustion and heat to the endothermic 
reforming reaction while avoiding fuel/nitrogen mixing. The produced H2 from the reforming reactions permeates 
through the membranes, enhancing the CH4 conversion. 

The foundation of this work relies on a previous study by Morgado et al. (2017)[12] where a 1D generic 
phenomenological model based on the probabilistic approach developed by Thompson et al.[13] has been presented 
and used to simulate two CLR technologies. In this work, the model presented in[12] has been extended to incorporate 
membranes. Recently, Spallina et al.[14] conducted studies on the techno-economic assessment of MA fluidized bed 
reactors (FBRs) for H2 production with CO2 capture. Highly favorable economics were presented for the MA-CLR 
concept (CO2 avoidance cost of negative 30€/ton). In their work, 1D phenomenological modelling is also used to 
describe the MA-CLR fuel reactor, but the reactor was assumed to be isothermal. The present work includes the energy 
balance into the 1D model and models the axial dispersion of heat from the heated solids entering from the top of the 
fuel reactor to the endothermic reaction taking place in the lower regions.  Hence, the main objective of the present 
work is to quantify the effect of non-isothermal conditions (leading to an axial temperature gradient in the bed) on the 
performance of the MA-CLR fuel reactor. 

 
Nomenclature 

AE  Activation Energy (J/mol) 

2HF  Hydrogen permeation flux (mol/m2s) 

LHV  Lower heating value (kJ/mol) 
n  Molar flowrate (mol/s) 

0P  Permeability (mol/m2sPa0.74) 

2HP  Hydrogen partial pressure (Pa) 
R  Universal gas constant (m3 Pa/K mol) 

fuelS  Fuel slip performance measure (-) 
T  Temperature (K) 

mt  Membrane thickness (m) 

2HX  Hydrogen productivity performance measure (-) 
Superscripts/subscripts: 
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ext  Extracted 
in  Inlet 
out  Outlet 
perm  Permeate side 
ret  Retentate side 

2. Simulation 

The MA-CLR reactor was simulated using the developed standalone in-house MATLAB code described in detail 
in [12]. As aforementioned, the main feature in the present work is the inclusion of the membranes in the code that is 
described below. 

2.1. Model extension: Counter-current configuration 

When membranes are added to the CLR fuel reactor, a counter-current configuration enhances the reactor 
performance. Adding the fresh (oxidized) stream of OC at the top of the FR permits complete utilization of the fuel. 
The fuel gases that are not reformed and shifted to hydrogen and extracted via the membranes can slip past the 
membranes to reduce the OC entering from the top of the reactor. This advantage of complete fuel utilization is not 
possible in a co-current configuration.  

2.2. Model assumptions 

Important physical properties and simulation parameters are presented in Table 1 and are based on reference [14].  

Table 1. Important physical properties and simulation parameters  

Particle density 3451 kg/m3 
Particle diameter 250 µm 
Particle heat capacity 1200 J/ kg K 
Reactor diameter 1.26 m 
Reactor height 13 m  
Outlet pressure 49.5 bar  
Axial resolution 30 volume cells (nodes) 
Gas inlet flowrate 7.52 kg/s 
Solids inlet flowrate 132.66 kg/s 
Gas inlet temperature 454.2 °C  
Solids inlet temperature  900°C 

 
Unlike in [14], we assume the reactor to have constant cross section area by assuming the length of the membrane 

tubes to be equal to the reactor height. Although we retain the assumption that H2 can only permeate through the 
membranes up to 10.2 m. 

In the present study, Pd-membranes are considered and therefore Sievert´s law is used to model the H2 permeation 
[14, 15] . The introduction of membranes has an effect on the hydrodynamics of the reactor (as internals) and mainly 
restrict bubble growth that consequently reduces the bubble rise velocity and enhances bubble-to-emulsion mass 
transfer [14, 16]. Although this changes, the same list of closure laws used in [14] was considered. In equation 1, 0P
= 4.24×10-10, AE = 5.81×103 and mt =5×10-6. 
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3. Performance measures 

The reactor performance will be quantified via two general performance measures. Firstly, the H2 productivity that 
is defined as the ratio of the total hydrogen extracted to the total hydrogen potential. 
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Secondly, the amount of fuel slip from the reactor is quantified in terms of the lower heating value that is lost with 
the fuel gases slipping out of the reactor without being extracted as hydrogen or used to reduce the OC. 
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4. Results and discussion 

To gain confidence on the generic 1D phenomenological model used in this work and to ensure that the new features 
in the model have been correctly implemented, a virtually isothermal case (using high effective thermal conductivity) 
was conducted to mimic the work by Spallina et al. [14]. The simulation results are presented in Fig. 1 and it is verified 
that the model results agree with those of Spallina et al.[14].  

 
 
 
 
 
 
 
 
 

 

Fig. 1. Species composition profile (left) and permeated H2 through the membrane (right) along the height of the reactor for the MA-CLR fuel 
reactor under isothermal conditions 

When closure laws from literature are used to define the effective thermal conductivity based on the solids 
dispersion coefficient[17, 18], temperature gradients are observed along the fluidized bed. It leads to high temperatures 
in the upper region of the reactor that may compromise the membranes (Fig. 2).  

 

Fig. 2. Temperature profile along the reactor height for the isothermal case and using closures laws to define the effective thermal conductivity 
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Considering Pd-based membranes, a maximum temperature limit of 700°C is assumed. Fig. 2 shows the 
temperature profile along the height of the reactor. By comparing the isothermal case given by the blue line against 
the case using thermal conductivity models for the same inlet OC temperature (red line) it is observed that at 3 m the 
temperature exceeds the limit given by the membranes. In order to limit the temperature to 700°C where membranes 
are present (lower 10.2 m of the reactor), the OC inlet temperature has to be reduced. The yellow line represents the 
temperature profile when this temperature constrain is satisfied by reducing the OC inlet temperature by about 4%. 

Given the uncertainty related to the effective thermal conductivity (Keff) model, a sensitivity analysis has been 
conducted by changing the effective thermal conductivities to double and half the model prediction. In particular, the 
unknown effect of internal obstructions on axial mixing in such a very tall bed introduces significant uncertainty. 
These changes where employed in the solids dispersion that is proportional to the effective thermal conductivity. The 
main results obtained from this analysis are presented in Fig. 3 and Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Left side: Temperature profile along the reactor height for different thermal conductivities; Right side: Hydrogen productivity 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Fuel slip (left) and Gas flowrate required to meet same H2 productivity of the isothermal case (right) for different thermal conductivities 

Higher effective thermal conductivity results in a lower temperature gradient along the fluidized bed. This relation 
is clearly observed in Fig. 3 where a lower OC temperature is required for 0.5*Keff to satisfy the membrane temperature 
constraints and vice versa. Fig. 3 (right) shows that the H2 productivity is higher for higher thermal conductivities. 
The temperaturein the reactor up to 10.2 m is higher in this case favoring the endothermic reforming reactions and 
increasing membrane permeability. Neglecting the thermal gradient along the bed would result in an overestimation 
of the H2 productivity of about 7%. The reduced hydrogen extraction leaves more fuel to react with the oxygen carrier, 
causing more unconverted fuel to slip out of the reactor Fig. 4 (left). 

In practice, a higher gas residence time will be required to meet the H2 productivity predicted by isothermal reactor 
modelling. Fig. 4 (right) shows the required gas flowrates and it is verified that, when using Keff models, the gas 
flowrate needs to decrease by the considerable amount of 0.3-0.8 kg/s in order to ensure good reactor performance. 
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Considering Pd-based membranes, a maximum temperature limit of 700°C is assumed. Fig. 2 shows the 
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Fig. 4. Fuel slip (left) and Gas flowrate required to meet same H2 productivity of the isothermal case (right) for different thermal conductivities 

Higher effective thermal conductivity results in a lower temperature gradient along the fluidized bed. This relation 
is clearly observed in Fig. 3 where a lower OC temperature is required for 0.5*Keff to satisfy the membrane temperature 
constraints and vice versa. Fig. 3 (right) shows that the H2 productivity is higher for higher thermal conductivities. 
The temperaturein the reactor up to 10.2 m is higher in this case favoring the endothermic reforming reactions and 
increasing membrane permeability. Neglecting the thermal gradient along the bed would result in an overestimation 
of the H2 productivity of about 7%. The reduced hydrogen extraction leaves more fuel to react with the oxygen carrier, 
causing more unconverted fuel to slip out of the reactor Fig. 4 (left). 

In practice, a higher gas residence time will be required to meet the H2 productivity predicted by isothermal reactor 
modelling. Fig. 4 (right) shows the required gas flowrates and it is verified that, when using Keff models, the gas 
flowrate needs to decrease by the considerable amount of 0.3-0.8 kg/s in order to ensure good reactor performance. 



282	 Joana Francisco Morgado et al. / Energy Procedia 136 (2017) 277–282
 Shahriar Amini et al. / Energy Procedia 00 (2017) 000–000 

5. Summary and conclusions 

In this work, the effect of the non-isothermal conditions on the MA-CLR fuel reactor was studied. The in-situ 
generic 1D model was used to simulate the process and it employs effective thermal conductivity models from 
literature. Sensitivity studies were carried out by varying the effective thermal conductivity to double and half (2*Keff 
and 0.5*Keff) of the predicted value. The results from the study showed that considering temperature gradients is 
important for the reactor design parameters and has an impact on the reactor performance. In particular, the axial 
temperature gradient developing inside the reactor can enforce a ~10% lower gas throughput than predicted by 
isothermal reactor modelling. 
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